
IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.2, February 2015 11

Genetic Algorithm for Automatic Generation of Representative
Test Suite for Mutation Testing

C. Prakasa Rao† P. Govindarajulu††

Research Scholar, Dept. of Computer Science,
S.V. University, Tirupati, India

Retd. Professor, Dept. of Computer Science, S.V.

University, Tirupati, India.

Abstract
Discovering bugs in software towards quality of software is given
paramount importance in research arena. Towards this end
automatic test case generation became essential as manual test
data generation and adding test oracles is tedious task. It is more
so when there are no formal specifications to unearth the faults in
test outcome. Therefore, it is important to generate representative
test sets that ensure complete code coverage. Genetic Algorithms
are proved to be very useful for generation of unit tests and well
suited for testing object oriented software systems. They are well
known for their capabilities to test complex objects through
sequences of method invocations. In this paper we used genetic
algorithm for generating representative test suite for mutation
testing. We built a tool that demonstrates the proof of concept.
The empirical results are encouraging.
Index Terms
Test suite generation, branch coverage, genetic algorithm, search
based testing

1. Introduction

It is a well known fact that software testing is an
indispensable part of System Development Life Cycle
(SDLC) which improves quality of software under test
(SUT). Unit testing is widely used for unearthing bugs in
SUT [18]. Each test contains test data required to execute
specific program and the expected output. Traditionally
many techniques came into existence over the years to
generate test cases for discovering faults in SUT.
Automatic test case generation is complex and challenging
task [28]. In the same fashion automated test data
generation is also difficult task[28]. Search based test data
generation is explored in [14], [31]. Recently the focus was
switched towards generation of test suites for high code
coverage. Still there is a problem of determining the
expected outcome which is also known as oracle problem.
Therefore it is important to take care of automatic test suite
generation and test oracles. For many years, as found in the
literature, it was common practice to generate a test case
for every coverage goal and combine all test cases to form
test suite. A problem in this approach is that the size of test
suite becomes unpredictable. The reason behind this is that
test case generated for fulfilling one goal might be useful
for other goals as well. This characteristic is exploited of

late to produce representative test suite that not only covers
the whole code besides ensuring smaller size test suite.
There are many problems when one goal is targeted at a
time. For instance, some branches are difficult to consider
for coverage while some branches are infeasible. It is still
open issues to find out how much time needs to be spent
and difficulty prediction of coverage goals. In this paper we
proposed a test suite generation approach using Genetic
Algorithm (GA) for producing representative test suite
generation that satisfies all coverage goals. The generated
test suite can be used to have mutation testing so that the
bugs in the SUT can identify the hidden bugs . Mutation
testing is fault-based testing that is widely used [19],[26].
The case study example is in Fig. 1 and Fig. 2 which is
used for empirical study. The example simulates a real
world vending machine which takes coin as input and gives
the requested.

Instead of generating test cases independently and then
combining them into a test suite, our approach is to
generate whole test suite that is representative of all

Manuscript received February 5, 2015
Manuscript revised February 20, 2015

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.2, February 2015 12

coverage goals. All test cases in test suite are generated at a
time and the fitness function used in GA takes care of
testing goals simultaneously. The GA is used to optimize
the generation of test suite. GA technique starts with initial
population that contains test suite which is randomly
generated.

 The generated test suite represents the test coverage goals.
Significantly smaller test suite is generated when compared
with test suites generated based on a single goal in mind.
Our solution towards generating whole test suite is
representative of all coverage goals so as to reduce the size
of test suite. Whole test suite generation was explored
earlier in [18], [26], [27], [18], [34]. Our contributions in
this paper are as follows.

• We developed a genetic algorithm that takes care
of generation of representative test suite
generation at a time in order to have smaller size
test suite besides ensuring full code coverage. The
generated test suite can also be used for mutation
testing.

• We built a tool that is designed to be modular and
planned to be extended in our future research. It is
meant for demonstrating the proof of concept with
respect to test suite generation with minimal size
and full coverage. Mutant killing test cases are
directly generated from the given source code.

The remainder of the paper is structured as follows. Section
2 reviews literature on the prior works in test suite
generation. Section 3 presents the proposed algorithm and
methodology. Section 4 presents results of the experiments.
Section 5 concludes the paper besides providing directions
for future work.

2. Related Works

This section review prior works on automated test suite
generation and related aspects. Genetic algorithms are
widely used for generating test cases automatically.
Rodolph [11] analyzed convergence properties pertaining
to genetic algorithms. Arcuri and Briand [34] proposed
adaptive random testing for enhancing random testing.
Baudry et al. [19] explored automatic test case optimization
using bacteriologic algorithm. Zhang et al. [27] combined
both static and dynamic approaches for automated test case
generation. Godefroid et al. [28] proposed a new approach
named Directed Automated Random Testing (DART) for
random test case generation. Tonella et al. [26] explored
evolutionary programming for test case generation. Visser
et al. [32] explored test input generation using PathFinder.
Inkumsah and Xie [16] integrated evolutionary testing
and symbolic execution for improving structural testing of
SUT. Islam and Csallaner [13] proposed a technique for
generating mock classes and test cases in support of coding
with respect to interfaces. Fraser and Arcuri [30] explored
on the length of test cases for structural coverage of SUT.
With respect to robustness testing Csallner et al. [29]
explored JCrasher for testing robustness testing of Java
applications.
Malburg and Fraser [31] proposed a hybrid approach using
constraint and search-based testing to test software. Fraser
and Zeller [28] focused on mutation-driven generation of
test cases and test oracles. Arcuri and Fraser [14] also
found it useful to have parameter tuning with respect to
search based software engineering. Many researchers
contributed to test suite generation, mutation testing and
automated testing of SUT as explored in [31]-[32].

3. Proposed Approach to Test Suite
Generation

In this section we describe the search – based approach we
followed towards generating test suite which is
representative of testing goals and also maximizes mutation
score. With respect to search based testing, genetic
algorithms have been around for many years for leveraging
test data derivation. In fact they are most popular and they
are of meta-heuristic in nature. The GA takes initial
population which is randomly generated and reproduction
is made iteratively using operators like crossover and
mutation. Thus the GA is one of the evolutionary
algorithms which make use of fitness function to have
optimal solutions. This paper considers the generation of
test suite for objects oriented programming. In fact, we
tested the proposed solution with Java source code. A test
case is considered a set of statements denoted as t={s1, s2,
s3, …, sl) of length l. In the conventional approach test
suites are generated based on individual goals. In this paper,

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.2, February 2015 13

we considered whole test suite generation that considers all
goals at a time and the test suite gets generated with
smaller size besides full coverage. Especially we used
branch coverage approach that guides the test suite
generation. Fitness function is used keeping branch
coverage in mind which estimates the closeness of test
suite with respect to all branches (if, while etc.) in the
program.

Fig. 3 shows the general framework that is used for test
suite generation and mutation testing. The framework starts
with source code configuration. It takes Java source code
(currently works for Java application testing) as input and
starts the genetic algorithm steps. In the process it makes
use of mutations iteratively and performs chromosome
operations. JUnit Test Case is used in order to have test
cases. It has assertions process as well. Finally the test
cases are evaluated and some mutants are killed. The final
test suite is presented. Mutation operators are applied on
Java byte-code level.
Operators of various kinds used in Java program are used
to have mutants generated. Each operator can have
different ways of execution and all possible ways are
considered to have mutations. The mutation operators are
used to perform various operations. The operators include
delete call, delete field, insert unary operator, replace
arithmetic operator, replace bitwise operator, replace
comparison operator, replace constant, and replace variable.

4. Experimental Results

We built a tool in Java programming language. It is menu-
driven and intuitive in nature. It takes Java source code as
input and performs mutation testing through whole test
suite generation. For given Java class presented in Fig. 1
many operators are involved and different mutants are

generated. The sample details are as presented in Table 1,
Table 2, Table 3, Table 4 and Table 5. The details are

Table 1 - Results for AORB operators

Oper
ator

Mutant
Name

Mutant
Content Chromosome

AOR
B

AORB_
1

credit =
credit *

coin;

(line 30) void_coin(int):credit +
coin => credit * coin

AOR
B

AORB_
2

credit =
credit / coin;

(line 30) void_coin(int):credit +
coin => credit / coin

AOR
B

AORB_
3

credit =
credit %

coin;

(line 30) void_coin(int):credit +
coin => credit % coin

AOR
B

AORB_
4

credit =
credit -
coin;

(line 30) void_coin(int):credit +
coin => credit - coin

AOR
B

AORB_
5

change =
credit * 90;

(line 42)
int_getChoc(java.lang.StringBuff

er):credit - 90 => credit * 90

AOR
B

AORB_
6

change =
credit / 90;

(line 42)
int_getChoc(java.lang.StringBuff

er):credit - 90 => credit / 90

AOR
B

AORB_
7

change =
credit % 90;

(line 42)
int_getChoc(java.lang.StringBuff

er):credit - 90 => credit % 90

AOR
B

AORB_
8

change =
credit % 90;

(line 42)
int_getChoc(java.lang.StringBuff

er):credit - 90 => credit % 90

Table 2 – Some of the results of AOIS operators

Operator Mutant
Name

Mutant
Content Chromosome

AOIS AOIS_1
if (++coin != 10
&& coin != 25

&& i !

((line 24)
void_coin(int):coin

 i
AOIS AOIS_2

if (--coin != 10
&& coin != 25

&& i !

(line 24)
void_coin(int):coin

 i
AOIS AOIS_3

if (coin++ != 10
&& coin != 25

&& i !

(line 24)
void_coin(int):coin

 i
AOIS AOIS_4

if (coin-- != 10
&& coin != 25

&& i !

(line 24)
void_coin(int):coin

 i
AOIS AOIS_5

if (coin != 10
&& ++coin !=
2 && i !

(line 24)
void_coin(int):coin

 i
AOIS AOIS_6

if (coin != 10
&& --coin != 25

&& i !

(line 24)
void_coin(int):coin

 i
AOIS AOIS_7

if (coin != 10
&& coin++ !=
25 && i !

(line 24)
void_coin(int):coin

 i
AOIS AOIS_8

if (coin != 10
&& coin-- != 25

&& i !

(line 24)
void_coin(int):coin

 i
AOIS AOIS_9

if (coin != 10
&& coin != 25
&& i !

(line 24)
void_coin(int):coin

 i
AOIS AOIS_10

if (coin != 10
&& coin != 25
&& i !

(line 24)
void_coin(int):coin

 i
AOIS AOIS_11

if (coin != 10
&& coin != 25
&& i !

(line 24)
void_coin(int):coin

 i

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.2, February 2015 14

Table 3 – Some of the Results of ROR operators

Operator Mutant
Name

Mutant
Content Chromosome

ROR ROR_1
if (coin > 10
&& coin !=

25 &&

(line 24) void_coin(int):
coin != 10 => coin >

10

ROR ROR_2
if (coin >=

10 &&
coin != 25

(line 24) void_coin(int):
coin != 10 => coin >=

10

ROR ROR_3
if (coin < 10
&& coin !=

25 &&

(line 24) void_coin(int):
coin != 10 => coin <

10

ROR ROR_4
if (coin <=

10 &&
coin != 25

(line 24) void_coin(int):
coin != 10 => coin <=

10

ROR ROR_5
if (coin ==

10 &&
coin != 25

(line 24) void_coin(int):
coin != 10 => coin ==

10

ROR ROR_6
if (true &&
coin != 25

&& coin !=

(line 24) void_coin(int):
coin != 10 => true

ROR ROR_7
if (false &&
coin != 25

&& coin !=

(line 24) void_coin(int):
coin != 10 => false

ROR ROR_8
if (coin !=

10 && coin
> 25 &&

(line 24) void_coin(int):
coin != 25 => coin >

25

ROR ROR_9
if (coin !=

10 && coin
>= 25 &&

(line 24) void_coin(int):
coin != 25 => coin >=

25

ROR ROR_10
if (coin !=

10 && coin
< 25 &&

(line 24) void_coin(int):
coin != 25 => coin <

25

Table 4 – Results of AOIU operators

Operator Mutant
Name

Mutant
Content Chromosome

AOIU AOIU_1
credit =
-credit +

coin;

(line 30)
void_coin(int):credit => -

credit

AOIU AOIU_2 return -
change;

(line 40)
int_getChoc(java.lang.String
Buffer):change => -change

AOIU AOIU_3
change

= -credit
- 90;

(line 42)
int_getChoc(java.lang.String

Buffer):credit => -credit

AOIU AOIU_4 return -
change;

(line 45)
int_getChoc(java.lang.String
Buffer):change => -change

AOIU AOIU_5 return -
credit;

(line 77)
int_getCredit():credit => -

credit

The results revealed that the mutants generated through
whole test suite generation, it was proved that the algorithm
is capable of generating test suite which is representative of
all goals and the branch coverage is given main focus. The
mutation score is computed by the application which tells

the coverage dynamics. The higher code coverage can be
achievable by getting less mutation score.

Table 5 – Results of COR operators

Operat
or

Mutant
Name

Mutant
Content Chromosome

COR COR_1
if (coin != 10 ||
coin != 25 &&
coin != 100) {

(line 24) void_coin(int):
coin != 10 && coin !=
25 => coin != 10 ||

coin != 25

COR COR_2
if (coin != 10 ^
coin != 25 &&
coin != 100) {

(line 24) void_coin(int):
coin != 10 && coin !=
25 => coin != 10 ^

coin != 25

COR COR_3

if (coin != 10
&& coin != 25
|| coin != 100)

{

(line 24) void_coin(int):
coin != 10 && coin !=
25 && coin != 100 =>
coin != 10 && coin !=

25 || coin != 100

COR COR_4

if ((coin != 10
&& coin !=
25) ^ coin !=

100) {

(line 24) void_coin(int):
coin != 10 && coin !=
25 && coin != 100 =>
(coin != 10 && coin !=

25) ^ coin != 100

COR COR_5

if (credit < 90
&&

stock.size() <=
0) {

(line 37)
int_getChoc(java.lang.St
ringBuffer): credit < 90 ||

stock.size() <= 0 =>
credit < 90 &&

COR COR_6
if (credit < 90
^ stock.size()

<= 0) {

(line 37)
int_getChoc(java.lang.St
ringBuffer): credit < 90 ||

stock.size() <= 0 =>
credit < 90 ^ stock.size()

Figure 4 – LOC details of SUT

As can be seen in Figure 4, it is evident that the
applications are presented in terms of the number of lines
of code.

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.2, February 2015 15

Figure 5 – Performance with different applications

As can be seen in Figure 5, it is evident that there is
performance difference in generating test suites based on
the size of the SUT.

Figure 6 – Mutant dynamics of applications

As can be seen in Figure 6, it is evident that the number of
mutants differs from each application.

Figure 7 – Average branch coverage vs. average mutation score

As can be seen in Figure 7, it is evident that the results
reveal the relationships between average branch coverage
and average mutation score[26] using scatter chart.

Figure 8 – Average branch coverage Vs. average mutation score.

As can be seen in Figure 8, it is evident that the results
reveal the relationships between average branch coverage
and average mutation score (proposed) using scatter chart.

5. Conclusions and Future Work

In this paper we studied the concept of generation of
representative test suite which ensures complete code
coverage. Coverage criteria play an important role in
automatic test case generation. Traditional approaches
targeted one particular coverage goal. From the recent
experiments in software testing it is evident that the
optimization of whole test suite generation is far better than
the traditional method of targeting one coverage goal.
Genetic algorithms have been applied successfully to
generate unit tests for testing object oriented software. GA
is one of the search based algorithms widely used to
generate test cases. In this paper we applied GA for
generating representative test suites and mutation testing.
We built a tool to demonstrate the proof of concept.
Mutation testing became easy with generation of test suite
that covers all goals. The empirical results revealed that the
application is capable of generating whole test suite which
is representative of all test goals besides keeping it small in
size. Our future work is to improve the tool for test suite
prioritization.

Acknowledgments

I take this opportunity to sincerely acknowledge Dr.
Kancharla Ramaiah, correspondent of Prakasam
Engineering College for providing all the facilities, which
buttressed me to perform my work comfortably. Foremost,
I would like to express my sincere gratitude to fellow
members of the teaching staff at the Prakasam
Engineering College. My sincere thanks also goes to my
Uncle Dr. C. Subba Rao for his inspiration and sparing his
precious time. Last but not the least, I would like to thank
my family : my parents Murali Krihsna Rao and

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.2, February 2015 16

Vasantha Lakshmi, for giving birth to me at the first place
and supporting me spiritually throughout my life.

References

[1] Alessandro Orso. (n.d). Integration Testing of Object-
Oriented Software. p1-105.

[2] Ali Mesbah,Arie van Deursen and Danny Roest. (2012).
Invariant-Based Automatic Testing of Modern Web
Applications. IEEE. 38 p35-53

[3] Andrea Arcuri. (2012). A Theoretical and Empirical
Analysis of the Role of Test Sequence Length in Software
Testing for Structural Coverage.IEEE. 38 p497-519

[4] Andrea Arcuri,Muhammad Zohaib Iqbal and Lionel Briand.
(2012). Random Testing: Theoretical Results and Practical
Implications. IEEE. 38 p258-277.

[5] Bertrand Meyer, Ilinca Ciupa, Andreas Leitner and Lisa
(Ling) Liu. (2007). Automatic testing of object-oriented
software. Chair of Software Engineering. p1-17.

[6] Cemal Yilmaz. (2012). Test Case-Aware Combinatorial
Interaction Testing. IEEE. p1-29.

[7] Claire Le Goues,ThanhVu Nguyen and Westley Weimer.
(2012). GenProg: A Generic Method for Automatic Software
Repair. IEEE. 38 p54-72.

[8] D. Kundu, M. Sarma, D. Samanta, and R. Mall, “System
Testing for Object-Oriented Systems with Test Case
Prioritization,” Software Testing, Verification, and
Reliability, vol. 19, no. 4, pp. 97- 333, 2009.

[9] George Kakarontzasa, Eleni Constantinoua, Apostolos
Ampatzogloua and Ioannis Stamelosa. (2013). Layer
assessment of object-oriented software: A metric facilitating
white-box reuse. p350-366.

[10] Gordon Fraser and Andrea Arcuri. (2013). Whole Test Suite
Generation.IEEE. 39 p276-291.

[11] Gordon Fraser, and Andreas Zeller. (2012). Mutation-Driven
Generation of Unit Tests and Oracles, IEEE, VOL. 38, NO. 2,
p1-15.

[12] G. Rothermel, R.H. Untch, C. Chu, and M.J. Harrold,
“Prioritizing Test Cases for Regression Testing,” IEEE Trans.
Software Eng., vol. 27, no. 10, pp. 929-948, Sept. 2001.

[13] Hai Hua, Chang-Hai Jiang a, Kai-Yuan Cai a,b, W. Eric
Wongc and Aditya P. Mathur d. (2013). Enhancing software
reliability estimates using modified adaptive testing. p289-
300

[14] Hui Liu, Zhiyi Ma, Weizhong Shao, and Zhendong Niu.
(2012). Schedule of Bad Smell Detection and Resolution: A
New Way to Save Effort. IEEE. 38 p220-235.

[15] James H. Andrews,Tim Menzies and Felix C.H. Li. (2011).
Genetic Algorithms for Randomized Unit Testing. IEEE. 37
p80-94.

[16] Jerod W. Wilkerson, Jay F. Nunamaker Jr and Rick Mercer.
(2012). Comparing the Defect Reduction Benefits of Code
Inspection and Test-Driven Development. IEEE. 38 p547-
560.

[17] J. Malburg and G. Fraser, “Combining Search-Based and
Constraint-Based Testing,” Proc. IEEE/ACM 26th Int’l Conf.
Automated Software Eng., 2011.

[18] Karthik Pattabiraman,Zbigniew T. Kalbarczyk, Member and
Ravishankar K. Iyer. (2011). Automated Derivation of
Application-Aware Error Detectors Using Static Analysis:
The Trusted Illiac Approach. IEEE. 8 p44-57

[19] Kiran Lakhotia. (2009). Search Based Testing . p1-177
[20] K. Sen, D. Marinov, and G. Agha, “CUTE: A Concolic Unit

Testing Engine for C,” Proc. 10th European Software Eng.
Conf. Held Jointly with 13th ACM SIGSOFT Int’l Symp.
Foundations of Software Eng., pp. 263-272, 2005.

[21] Malte Lochaua, Sascha Lityb,∗, Remo Lachmannc, Ina
Schaeferc and Ursula GoltzbaTU. (2014). Delta-oriented
model-based integration testing of large-scalesystems. p64-
84.

[22] Marwa Shousha, Lionel C. Briand and Yvan Labiche. (2012).
A UML/MARTE Model Analysis Method for Uncovering
Scenarios Leading to Starvation and Deadlocks in
Concurrent Systems. IEEE. 38 p354-374.

[23] Max Sch¨ afer, Andreas Thies, Friedrich Steimann and Frank
Tip. (2012). A Comprehensive Approach to Naming and
Accessibility in Refactoring Java Programs. IEEE. p1-27.

[24] Nina Elisabeth Holt a,⇑, Lionel C. Briand b and Richard
Torkar. (2004). Empirical evaluations on the cost-
effectiveness of state-based testing: An industrial case
study. . . p891-910

[25] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed
Automated Random Testing,” Proc. ACM SIGPLAN Conf.
Programming Language Design and Implementation, pp.
213-223, 2005.

[26] Richard Baker and Ibrahim Habli. (2010). An Empirical
Evaluation of Mutation Testing For Improving the Test
Quality of Safety- Critical Software. IEEE. p1-32.

[27] Roberto Pietrantuono,Stefano Russo and Kishor S. (2010).
Software Reliability and Testing Time Allocation: An
Architecture-Based Approach.IEEE. p323-337.

[28] Saswat Ananda, Edmund K. Burkeb, Tsong Yueh Chenc,
John Clarkd, Myra B. Cohene, Wolfgang Grieskampf, Mark
Harmang, Mary Jean Harroldh and Phil McMinni. (2013).
An orchestrated survey of methodologies for automated
software test case generation. p1979-2001

[29] Shifa-e-Zehra Haidry and Tim Miller. (2013). Using
Dependency Structures for Prioritization of Functional Test
Suites. IEEE. 39 p258-275.

[30] Tosin Daniel Oyetoyana, Daniela S. Cruzesa and Reidar
Conradia. (2013). A study of cyclic dependencies on defect
profile of software components. IEEE. p3163-3182.

[31] Vinicius Humberto Serapilha Durellia, Rodrigo Fraxino
Araujoa,b and Marco Aurelio Graciotto Silva. (2013). A
scoping study on the 25 years of research into software
testing in Brazil and an outlook on the future of the area.
p935-950.

[32] Yahya Rafique and Vojislav B. Miˇsi´. (2012). The Effects
of Test-Driven Development on External Quality and
Productivity: A Meta-Analysis. IEEE. X p1-24.

[33] Yasutaka Kamei,Emad Shihab and Naoyasu Ubayashi.
(2011). A Large-Scale Empirical Study of Just-In-Time
Quality Assurance. IEEE. . p1-19.

[34] Z. Ma and J. Zhao, “Test Case Prioritization Based on
Analysis of Program Structure,” Proc. 15th Asia-Pacific
Software Eng. Conf., pp. 471-478, 2008.

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.2, February 2015 17

Prakasa Rao Chapati received Master of
Computer Applications degree from
Madras University and Master of
Technology degree in Computer Science &
Engineering from Acharya Nagarjuna
University. He is a research scholar in the
department of computer science, Sri
Venkateswara University. His research
focus is on Software Testing to improve the

Quality under Software Project Management perspective.

Prof P.Govindarajulu, Professor at Sri
Venkateswara University, Tirupathi, has
completed M.Tech., from IIT Madras
(Chennai),Ph.D from IIT Bombay
(Mumbai), His area of research are
Databases, Data Mining, Image processing
and Software Engineering

	References
	[1] Alessandro Orso. (n.d). Integration Testing of Object-Oriented Software. p1-105.
	[3] Andrea Arcuri. (2012). A Theoretical and Empirical Analysis of the Role of Test Sequence Length in Software Testing for Structural Coverage.IEEE. 38 p497-519

