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Abstract 
Discovering bugs in software towards quality of software is given 
paramount importance in research arena. Towards this end 
automatic test case generation became essential as manual test 
data generation and adding test oracles is tedious task. It is more 
so when there are no formal specifications to unearth the faults in 
test outcome. Therefore, it is important to generate representative 
test sets that ensure complete code coverage. Genetic Algorithms 
are proved to be very useful for generation of unit tests and well 
suited for testing object oriented software systems. They are well 
known for their capabilities to test complex objects through 
sequences of method invocations. In this paper we used genetic 
algorithm for generating representative test suite for mutation 
testing. We built a tool that demonstrates the proof of concept. 
The empirical results are encouraging.  
Index Terms 
Test suite generation, branch coverage, genetic algorithm, search 
based testing 

1. Introduction 

It is a well known fact that software testing is an 
indispensable part of System Development Life Cycle 
(SDLC) which improves quality of software under test 
(SUT). Unit testing is widely used for unearthing bugs in 
SUT [18]. Each test contains test data required to execute 
specific program and the expected output. Traditionally 
many techniques came into existence over the years to 
generate test cases for discovering faults in SUT. 
Automatic test case generation is complex and challenging 
task [28]. In the same fashion automated test data 
generation is also difficult task[28]. Search based test data 
generation is explored in [14], [31]. Recently the focus was 
switched towards generation of test suites for high code 
coverage. Still there is a problem of determining the 
expected outcome which is also known as oracle problem. 
Therefore it is important to take care of automatic test suite 
generation and test oracles. For many years, as found in the 
literature, it was common practice to generate a test case 
for every coverage goal and combine all test cases to form 
test suite. A problem in this approach is that the size of test 
suite becomes unpredictable. The reason behind this is that 
test case generated for fulfilling one goal might be useful 
for other goals as well. This characteristic is exploited of 

late to produce representative test suite that not only covers 
the whole code besides ensuring smaller size test suite.  
There are many problems when one goal is targeted at a 
time. For instance, some branches are difficult to consider 
for coverage while some branches are infeasible. It is still 
open issues to find out how much time needs to be spent 
and difficulty prediction of coverage goals. In this paper we 
proposed a test suite generation approach using Genetic 
Algorithm (GA) for producing representative test suite 
generation that satisfies all coverage goals. The generated 
test suite can be used to have mutation testing so that the 
bugs in the SUT can identify the hidden bugs . Mutation 
testing is fault-based testing that is widely used [19],[26]. 
The case study example is in Fig. 1 and Fig. 2 which is 
used for empirical study. The example simulates a real 
world vending machine which takes coin as input and gives 
the requested. 
 

 

Instead of generating test cases independently and then 
combining them into a test suite, our approach is to 
generate whole test suite that is representative of all 
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coverage goals. All test cases in test suite are generated at a 
time and the fitness function used in GA takes care of 
testing goals simultaneously. The GA is used to optimize 
the generation of test suite. GA technique starts with initial 
population that contains test suite which is randomly 
generated. 

  

   The generated test suite represents the test coverage goals. 
Significantly smaller test suite is generated when compared 
with test suites generated based on a single goal in mind. 
Our solution towards generating whole test suite is 
representative of all coverage goals so as to reduce the size 
of test suite. Whole test suite generation was explored 
earlier in [18], [26], [27], [18], [34]. Our contributions in 
this paper are as follows. 

• We developed a genetic algorithm that takes care 
of generation of representative test suite 
generation at a time in order to have smaller size 
test suite besides ensuring full code coverage. The 
generated test suite can also be used for mutation 
testing.  

• We built a tool that is designed to be modular and 
planned to be extended in our future research. It is 
meant for demonstrating the proof of concept with 
respect to test suite generation with minimal size 
and full coverage. Mutant killing test cases are 
directly generated from the given source code.  

 
The remainder of the paper is structured as follows. Section 
2 reviews literature on the prior works in test suite 
generation. Section 3 presents the proposed algorithm and 
methodology. Section 4 presents results of the experiments. 
Section 5 concludes the paper besides providing directions 
for future work. 

2. Related Works 

This section review prior works on automated test suite 
generation and related aspects. Genetic algorithms are 
widely used for generating test cases automatically. 
Rodolph [11] analyzed convergence properties pertaining 
to genetic algorithms. Arcuri and Briand [34] proposed 
adaptive random testing for enhancing random testing. 
Baudry et al. [19] explored automatic test case optimization 
using bacteriologic algorithm. Zhang et al. [27] combined 
both static and dynamic approaches for automated test case 
generation. Godefroid et al. [28] proposed a new approach 
named Directed Automated Random Testing (DART) for 
random test case generation. Tonella et al. [26] explored 
evolutionary programming for test case generation. Visser 
et al. [32] explored test input generation using PathFinder. 
Inkumsah and Xie [16]         integrated evolutionary testing 
and symbolic execution for improving structural testing of 
SUT. Islam and Csallaner [13] proposed a technique for 
generating mock classes and test cases in support of coding 
with respect to interfaces. Fraser and Arcuri [30] explored 
on the length of test cases for structural coverage of SUT. 
With respect to robustness testing Csallner et al. [29] 
explored JCrasher for testing robustness testing of Java 
applications.  
Malburg and Fraser [31] proposed a hybrid approach using 
constraint and search-based testing to test software. Fraser 
and Zeller [28] focused on mutation-driven generation of 
test cases and test oracles. Arcuri and Fraser [14] also 
found it useful to have parameter tuning with respect to 
search based software engineering. Many researchers 
contributed to test suite generation, mutation testing and 
automated testing of SUT as explored in [31]-[32].  

3. Proposed Approach to Test Suite 
Generation 

In this section we describe the search – based approach we 
followed towards generating test suite which is 
representative of testing goals and also maximizes mutation 
score. With respect to search based testing, genetic 
algorithms have been around for many years for leveraging 
test data derivation. In fact they are most popular and they 
are of meta-heuristic in nature. The GA takes initial 
population which is randomly generated and reproduction 
is made iteratively using operators like crossover and 
mutation. Thus the GA is one of the evolutionary 
algorithms which make use of fitness function to have 
optimal solutions. This paper considers the generation of 
test suite for objects oriented programming. In fact, we 
tested the proposed solution with Java source code. A test 
case is considered a set of statements denoted as t={s1, s2, 
s3, …, sl) of length l. In the conventional approach test 
suites are generated based on individual goals. In this paper, 
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we considered whole test suite generation that considers all 
goals at a time and the test suite gets generated with 
smaller size besides full coverage. Especially we used 
branch coverage approach that guides the test suite 
generation. Fitness function is used keeping branch 
coverage in mind which estimates the closeness of test 
suite with respect to all branches (if, while etc.) in the 
program.  
 

 

Fig. 3 shows the general framework that is used for test 
suite generation and mutation testing. The framework starts 
with source code configuration. It takes Java source code 
(currently works for Java application testing) as input and 
starts the genetic algorithm steps. In the process it makes 
use of mutations iteratively and performs chromosome 
operations. JUnit Test Case is used in order to have test 
cases. It has assertions process as well. Finally the test 
cases are evaluated and some mutants are killed. The final 
test suite is presented. Mutation operators are applied on 
Java byte-code level.  
Operators of various kinds used in Java program are used 
to have mutants generated. Each operator can have 
different ways of execution and all possible ways are 
considered to have mutations. The mutation operators are 
used to perform various operations. The operators include 
delete call, delete field, insert unary operator, replace 
arithmetic operator, replace bitwise operator, replace 
comparison operator, replace constant, and replace variable.  

4. Experimental Results 

We built a tool in Java programming language. It is menu-
driven and intuitive in nature. It takes Java source code as 
input and performs mutation testing through whole test 
suite generation. For given Java class presented in Fig. 1 
many operators are involved and different mutants are 

generated. The sample details are as presented in Table 1, 
Table 2, Table 3, Table 4 and Table 5. The details are  
 

Table 1 - Results for AORB operators 

Oper
ator 

Mutant 
Name 

Mutant 
Content Chromosome 

AOR
B 

AORB_
1 

credit = 
credit * 

coin; 

(line 30) void_coin(int):credit + 
coin => credit * coin 

AOR
B 

AORB_
2 

credit = 
credit / coin; 

(line 30) void_coin(int):credit + 
coin => credit / coin 

AOR
B 

AORB_
3 

credit = 
credit % 

coin; 

(line 30) void_coin(int):credit + 
coin => credit % coin 

AOR
B 

AORB_
4 

credit = 
credit - 
coin; 

(line 30) void_coin(int):credit + 
coin => credit - coin 

AOR
B 

AORB_
5 

change = 
credit * 90; 

(line 42) 
int_getChoc(java.lang.StringBuff

er):credit - 90 => credit * 90 

AOR
B 

AORB_
6 

change = 
credit / 90; 

(line 42) 
int_getChoc(java.lang.StringBuff

er):credit - 90 => credit / 90 

AOR
B 

AORB_
7 

change = 
credit % 90; 

(line 42) 
int_getChoc(java.lang.StringBuff

er):credit - 90 => credit % 90 

AOR
B 

AORB_
8 

change = 
credit % 90; 

(line 42) 
int_getChoc(java.lang.StringBuff

er):credit - 90 => credit % 90 
 

Table 2 – Some of the results of AOIS operators 

Operator Mutant 
Name 

Mutant 
Content Chromosome 

AOIS AOIS_1 
if (++coin != 10 
&& coin != 25 

&& i  !  
 

((line 24) 
void_coin(int):coin 

 i  
AOIS AOIS_2 

if (--coin != 10 
&& coin != 25 

&& i  !  
  

(line 24) 
void_coin(int):coin 

 i  
AOIS AOIS_3 

if (coin++ != 10 
&& coin != 25 

&& i  !  
  

(line 24) 
void_coin(int):coin 

 i  
AOIS AOIS_4 

if (coin-- != 10 
&& coin != 25 

&& i  !  
  

(line 24) 
void_coin(int):coin 

 i  
AOIS AOIS_5 

if (coin != 10 
&& ++coin != 
2  && i  !  

  

(line 24) 
void_coin(int):coin 

 i  
AOIS AOIS_6 

if (coin != 10 
&& --coin != 25 

&& i  !  
  

(line 24) 
void_coin(int):coin 

 i  
AOIS AOIS_7 

if (coin != 10 
&& coin++ != 
25 && i  !  

  

(line 24) 
void_coin(int):coin 

 i  
AOIS AOIS_8 

if (coin != 10 
&& coin-- != 25 

&& i  !  
  

(line 24) 
void_coin(int):coin 

 i  
AOIS AOIS_9 

if (coin != 10 
&& coin != 25 
&& i  !  

  

(line 24) 
void_coin(int):coin 

 i  
AOIS AOIS_10 

if (coin != 10 
&& coin != 25 
&& i  !  

  

(line 24) 
void_coin(int):coin 

 i  
AOIS AOIS_11 

if (coin != 10 
&& coin != 25 
&& i  !  

 

(line 24) 
void_coin(int):coin 

 i   
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Table 3 – Some of the Results of ROR operators 

Operator Mutant 
Name 

Mutant 
Content Chromosome 

ROR ROR_1 
if (coin > 10 
&& coin != 

25 && 
   

 

(line 24) void_coin(int): 
coin != 10  =>   coin > 

10 

ROR ROR_2 
if (coin >= 

10 && 
coin != 25 

   
  

(line 24) void_coin(int): 
coin != 10  =>   coin >= 

10 

ROR ROR_3 
if (coin < 10 
&& coin != 

25 && 
   

 

(line 24) void_coin(int): 
coin != 10  =>   coin < 

10 

ROR ROR_4 
if (coin <= 

10 && 
coin != 25 

   
  

(line 24) void_coin(int): 
coin != 10  =>   coin <= 

10 

ROR ROR_5 
if (coin == 

10 && 
coin != 25 

   
  

(line 24) void_coin(int): 
coin != 10  =>   coin == 

10 

ROR ROR_6 
if (true && 
coin != 25 

&& coin != 
  

(line 24) void_coin(int): 
coin != 10  =>   true 

ROR ROR_7 
if (false && 
coin != 25 

&& coin != 
  

(line 24) void_coin(int): 
coin != 10  =>   false 

ROR ROR_8 
if (coin != 

10 && coin 
> 25 && 

   
 

(line 24) void_coin(int): 
coin != 25  =>   coin > 

25 

ROR ROR_9 
if (coin != 

10 && coin 
>= 25 && 

   
 

(line 24) void_coin(int): 
coin != 25  =>   coin >= 

25 

ROR ROR_10 
if (coin != 

10 && coin 
< 25 && 

   
 

(line 24) void_coin(int): 
coin != 25  =>   coin < 

25 
 
 

Table 4 – Results of AOIU operators 

Operator Mutant 
Name 

Mutant 
Content Chromosome 

AOIU AOIU_1 
credit = 
-credit + 

coin; 

(line 30) 
void_coin(int):credit => -

credit 

AOIU AOIU_2 return -
change; 

(line 40) 
int_getChoc(java.lang.String
Buffer):change => -change 

AOIU AOIU_3 
change 

= -credit 
- 90; 

(line 42) 
int_getChoc(java.lang.String

Buffer):credit => -credit 

AOIU AOIU_4 return -
change; 

(line 45) 
int_getChoc(java.lang.String
Buffer):change => -change 

AOIU AOIU_5 return -
credit; 

(line 77) 
int_getCredit():credit => -

credit 
 

The results revealed that the mutants generated through 
whole test suite generation, it was proved that the algorithm 
is capable of generating test suite which is representative of 
all goals and the branch coverage is given main focus. The 
mutation score is computed by the application which tells 

the coverage dynamics. The higher code coverage can be 
achievable by getting less mutation score. 

Table 5 – Results of COR operators 

Operat
or 

Mutant 
Name 

Mutant 
Content Chromosome 

COR COR_1 
if (coin != 10 || 
coin != 25 && 
coin != 100) { 

(line 24) void_coin(int): 
coin != 10 && coin != 
25  =>   coin != 10 || 

coin != 25 

COR COR_2 
if (coin != 10 ^ 
coin != 25 && 
coin != 100) { 

(line 24) void_coin(int): 
coin != 10 && coin != 
25  =>   coin != 10 ^ 

coin != 25 

COR COR_3 

if (coin != 10 
&& coin != 25 
|| coin != 100) 

{ 

(line 24) void_coin(int): 
coin != 10 && coin != 
25 && coin != 100  =>   
coin != 10 && coin != 

25 || coin != 100 

COR COR_4 

if ((coin != 10 
&& coin != 
25) ^ coin != 

100) { 

(line 24) void_coin(int): 
coin != 10 && coin != 
25 && coin != 100  =>   
(coin != 10 && coin != 

25) ^ coin != 100 

COR COR_5 

if (credit < 90 
&& 

stock.size() <= 
0) { 

(line 37) 
int_getChoc(java.lang.St
ringBuffer): credit < 90 || 

stock.size() <= 0  =>   
credit < 90 && 

   

COR COR_6 
if (credit < 90 
^ stock.size() 

<= 0) { 

(line 37) 
int_getChoc(java.lang.St
ringBuffer): credit < 90 || 

stock.size() <= 0  =>   
credit < 90 ^ stock.size() 

   

 

Figure 4 – LOC details of SUT 

As can be seen in Figure 4, it is evident that the 
applications are presented in terms of the number of lines 
of code.  
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Figure 5 – Performance with different applications 

As can be seen in Figure 5, it is evident that there is 
performance difference in generating test suites based on 
the size of the SUT.  
 

 

Figure 6 – Mutant dynamics of applications 

As can be seen in Figure 6, it is evident that the number of 
mutants differs from each application.  
 

 

Figure 7 – Average branch coverage vs. average mutation score 

As can be seen in Figure 7, it is evident that the results 
reveal the relationships between average branch coverage 
and average mutation score[26] using scatter chart. 

 

Figure 8 – Average branch coverage Vs. average  mutation score. 

As can be seen in Figure 8, it is evident that the results 
reveal the relationships between average branch coverage 
and average mutation score (proposed) using scatter chart.  

5. Conclusions and Future Work 

In this paper we studied the concept of generation of 
representative test suite which ensures complete code 
coverage. Coverage criteria play an important role in 
automatic test case generation. Traditional approaches 
targeted one particular coverage goal. From the recent 
experiments in software testing it is evident that the 
optimization of whole test suite generation is far better than 
the traditional method of targeting one coverage goal. 
Genetic algorithms have been applied successfully to 
generate unit tests for testing object oriented software. GA 
is one of the search based algorithms widely used to 
generate test cases. In this paper we applied GA for 
generating representative test suites and mutation testing. 
We built a tool to demonstrate the proof of concept. 
Mutation testing became easy with generation of test suite 
that covers all goals. The empirical results revealed that the 
application is capable of generating whole test suite which 
is representative of all test goals besides keeping it small in 
size. Our future work is to improve the tool for test suite 
prioritization.  
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