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Summary 
In the view of Computational Biology, Computational Chemistry, 
Chemical Engineering, Molecular Biology, Biochemistry and 
Genetics Engineering, investigating proteins networks of 
separate species in a significant way is definitely one of the most 
important problems in ongoing evolutionary and systems biology 
research and experiments. PPIs networks enable to check the 
sequence of proteins in a unique fashion. Dynamic PPIs 
Alignment System (DPPIsAS) is an algorithm based system that 
enables to find out the proteins associated in a certain network. 
DPPIsAS used Protein Road Discovery (PRD) to determine the 
similar proteins that shares the interactions. After PRD, Protein 
Road Maintenance (PRM) is assured under several steps. How 
the proteins interact is checked by Canonical Correlation 
Analysis (CCA). Finally, the results are depicted based on the 
closeness, betweenness, average distance, and degree and edge 
betweenness.  
Keywords: 
Protein Road Discovery (PRD), Protein Road Maintenance 
(PRM), Canonical Correlation Analysis (CCA). DPPIsAS. 

1. Introduction 

In the view of Computational Biology, Computational 
Chemistry, Chemical Engineering, Molecular Biology, 
Biochemistry and Genetics Engineering, investigating 
proteins networks of separate species in a significant way 
is definitely one of the most important problems in 
ongoing evolutionary and systems biology research and 
experiments. PPIs networks enable to check the sequence 
of proteins in a unique fashion. In that case the biological 
network is very helpful because it provides appropriate 
information towards information interchange. PPIs 
networking are great to share the genes features of cell as 
feedback or transformation mode of network. Alignments 
of Protein sequences are also important subjects of PPIs 
networking as pair wise local or global alignment or 
multiple alignments.  
PPI network is a formation of a graph that is an undirected 
weightless graph with set of vertices and edges. It is as 
similar as G (V, E) where, V denotes all the proteins of the 
chains or networks and E indicates the relationship 
between proteins as edges. Information loaded into DNA 
segments or genes transform though RNA to ultimate goal 
of proteins. A reliable and powerful network system is 

very essential to represents all the data set and information 
of PPIs. Protein-Protein Interaction Networks (PPIN) is 
precisely useful due to its presence helps to define all 
functionalities of living cell of plants, animals and insects. 
All the organic functionalities inside the cell are controlled 
by proteins. But it is very interesting that a single protein 
does not perform any duties of cell, instead a groups of 
protein used to perform the duties by making cooperation 
with each other by creating a bond which the bond is 
works as the path of networking. Million cells of contain 
millions of proteins. So their bonding of each other creates 
a very complex networking among them. 
Proteins-Protein Interactions manage various 
transcriptional, signaling and metabolic mechanisms in 
cells [1]. Some research have narrated the PPIs in 
graphical representation [2-3]. The prime target of 
network alignment is to predict the best mapping among 
all nodes in given networks based on the similarity of the 
constituent molecules and their related proteins. Networks 
alignment and sequencing may be imposed for predicting 
conserved functional modules [4-5]. The network 
isomorphism outline tells that alignment is a NP-hard 
problems and sometimes it is really difficult to manage the 
interaction among proteins [6-9]. In this regards some 
heuristics models also developed to make the alignment 
easier and computationally feasible [10-15].   

1.1 Why Global Network Alignment over Local 
Network Alignment 

Various research have had addressed network alignment 
complication as before [8],[9],[10] and some distinction is 
noticed. Earlier we have defined that PPIs network is 
similar with undirected graph as G(V,E). for each relation 
in edges, the graph may be weightless or weighted. The 
prime objective of network alignment is to determine one 
or heterogeneous scaling between the terminals of the 
source network and for each scaling the respective set of 
marked edges. The scaling of source network may be 
partial (local) or complete (global).  
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1.2 Local Network Alignment 

Local Network Alignment is mapping technique that does 
not select all the nodes from the source network; instead a 
small segment of network will be select from source 
networks. Local network alignment enables to determine 
collective, unconnected nodes of homologous sub-graph 
from whole source input networks.  As   for example, 
suppose there are two source protein networks as P1 and 
P2, if a protein r1 from network P1 is scaled with and r2 
from network P2, then r1 and r2 indicate to the common 
node to the common sub-graph as local network alignment 
and their exist a common edge between r1 and r2. Greater 
part of the local network alignment research follows the 
scaling as sequence similarity as the degree of 
metamorphic relation. But the pivotal drawback and 
difficulties is the duplicate overlap between scaled source 
protein networks. To address the problem Kolley et al [16] 
illustrate how BLAST homogenous scores and PPIs 
network information can use to fix conserved activity 
motifs and the algorithm is named as PathBLAST which 
is one of the pioneer algorithms in Local Protein Network 
Alignment. An update of PathBLAST is design [19] 
named as NetworkBLAST-M, addressed to fix preserved 
protein factors in different species. Consequently, the 
authors from [18] concentrate to reduce the duplication 
and deletion and the algorithm is named as MaWISh 
[Maximum Weight Induced Sub-graph].  The recent 
development on local network alignment [17] designed for 
multiple species under module structures which named as 
Graemlin. 

1.3 Global Network Alignment 

The process which scale complete input protein sequences 
to fix the best matching part of the given sequences is 
called Global Network Alignment (GNA). This always 
selects a unique scaling throughout the whole part of the 
source network sequences despite if there were locally 
minimal in few parts of the input networks. On the other 
hand, a Local Network Alignment (LNA) can select any 
locally best scaling for every local sub-area of similarity, 
even if there exist overlapping and mutually irregular. The 
important goal of Global Network Alignment is to fix an 
extensive scaling so that the length of respective similar 
sub-network is capitalized. In GNA, every node in source 
network is either matched to some terminal of the given 
network or completely gap as Indel (insert or delete). The 
similarity between Global Sequence Alignment (GSA) 
and Global Network Alignment (GNA) is that GSA 
continuously compares the genome segments to check the 
mutation between input sequences and GNA is used to 
check the interaction and to measure the mutation among 
distinct species. In later section various Global Network 
Alignment algorithm have been described. Some are 

PATH [20], GA [21], NATALIE [22], NetAlignBP, 
NetAlignMR [23], and PISwap [24] all focus on GNA and 
all of them only address the pairwise alignment problem. 
In our previous work [25] we also checked for local 
sequence alignment for DNA. Consequently, our last work 
[26] on global PPIs alignment is also a good analysis for 
global protein network alignment. 
This research work has some important significance. 
Firstly, we have verified the similar proteins network 
interaction with protein road discovery (PRD) analysis. 
After PRD, it is very essential to maintain the interactions 
information for future road tracking. Protein Road 
Maintenance (PRM) method permits to keep the tracking 
of the system. PRD and PRM process are performed 
inside local proteins networks. Thirdly, Canonical 
Correlation Analysis (CCA) assesses the relationship 
amongst protein networks. Finally, over all global 
networks are measured using Destination Sequenced 
Protein Vectors (DSPV). This paper organized with seven 
sections including introduction. Section 2 narrates basics 
on global networks algorithms.  Subsequent section 
describes the protein road discovery analysis. Section 4 
illustrates protein road maintenance.  Next section depicts 
the global protein networks inter-relation.  Experimental 
results have showed at section 6. Last but not the least, 
concluding remarks have been described at section 7. 

2. Fundamentals of Global Networks 
Algorithms  

It is feasible to consider all source protein data set and 
their interactions as a formation and relations like formal 
graph. To define a graph (G) in mathematically it is easy 
to define that a graph is a mathematical object consisting 
of nodes, vertices or points (V) and edges, links or arcs (E) 
between pairs of nodes. V is also defied by V (G) and VG 
and E is defined as E (G) and EG ; E ⊆ V x V. The protein 
networks graph size can be demonstrated as parameters:  n 
= |V|, m = |E| where n denotes the total number of 
vertices and m is the total number of edges. Suppose for a 
protein network graph G contains m edges then the degree 
of the graph is  Σ deg (v) = 2m = 2 |E |. For a specific input 
protein data set it is possible to represents the proteins as a 
complete graph Kn, which is a simple graph constructed 
by n vertices with each connected to each of the others by 
an edge.  Individual vertex in Kn has degree n – 1.  
Simultaneously, bipartite graph helps to clearly visualize 
the global multiple alignment. For any bi-partite graph 
Km,n formed by two set of vertices, demonstrated with m 
vertices in one set and n in the other.  Each of the m 
vertices is connected to each of the n vertices. Standalone 
network maintain an edge between two protein vertices if 
and only if the respective proteins pair interact with each 
other. In this regards for k PPIs networks, the complete 
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network or graph set are Gk= {G1,G2,G3,…………….Gk} 
and Gi= (Vi,Ei) 

3. Protein Road Discovery 

The Protein Road Discovery (PRD) is an interactive 
process that dynamically established relations among 
proteins. It is designed specifically for use in multi-hop 
proteins network. Using PRD, the Protein network is 
completely self-organizing and mechanical. Network 
nodes interact to interchange chemical reactions and signal 
to allow relationship over multiple “hops” between nodes. 
As protein nodes in the network move about or join or 

leave the network, and as interactions among Proteins 
such as sources of interference change, all road finding are 
automatically determined and maintained by the PRD 
process. Since the number or sequence of intermediate 
protein hops needed to reach any destination protein nodes 
may change at any time, the resulting protein network 
structure may be quite rich and rapidly changing. The 
PRD process allows protein nodes to automatically 
discover a source road across multiple protein network 
hops to any destination in the global protein network 
alignment. Information exchange among proteins sent 
then carries in proteins where information keeps the track 
with sequence.  

 

 

Figure 1: Large protein networks with thousand of nodes 

A protein network may have huge protein nodes. Suppose 
a protein network (Figure 1) comprise thousands of 
protein nodes. Protein Road Discovery is the process by 
which a source node S interacts to a destination node D 
and creates a path form source to destination (Figure 2). 
Basically PRD is used when a source node or any protein 
node wants to make a relationship with any other protein 

nodes that is a destination node.  A protein node first 
keeps the track of the destination node by placing 
information of destination in source node header and 
desired path cost.  Generally, S will find a perfect source 
road by searching its Road Cache of road previously 
learned. However if it fails, PRD automatically find a new 
road to destination D. 

 

 

Figure 2: Interactions among proteins, started from source S to destination D 
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To start the Road Discovery, S initiates Road Request 
(RREQ) information to its neighbor nodes and all network 
nodes accept this interaction initiated request in the range 
of S. Each and every RREQ message determines the 
initiator and target of the Road Discovery, and also 

contains a distinct request id, determined by the initiator 
of the request. Consequently, each RREQ also maintain a 
record list that contains the address of each internal node 
through which this fixed copy of the RREQ message has 
been forwarded (Figure 3). 

 

 

Figure 3: Broadcasting the messages from source nodes to remaining nodes where Source S propagate the interactions among neighbors nodes. 

 
The process is continuous until the propagation reached to 
destination node (Figure 4). Each source RREQ contains 
source proteins node id, current positions of source node, 
destination id, last known sequence number and broad cast 
id. Besides, initiate a timer to get wait reply. Intermediate 

nodes check the source id and broadcast id of RREQ. If 
already get the response it will discard the response, if not, 
set up a reverse road for the source node and increase the 
RREQ hope count. Finally, broad cast the RREQ to all of 
its neighbors. 

 

 

Figure 4: Here protein T receives interactions RREQ from W and R, however T does not interact with any other protein because T has already forwarded 
RREQ once. 

 
When another node receives a RREQ and if it is the target 
of the road discovery, it returns a Road Reply (RREP) 
message to the starting node of road discovery.  
 
 
 

 
Whenever starting node receives a RREP, it caches this 
road in its Road Cache (RC) for transferring information 
to the destination (Figure 5(a) and 5(b)). 
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4. Protein Road Maintenance  

Protein Road Maintenance (PRM) is the method that 
source node S is able to identify, during using a source 
road to destination D, if the network structure has altered 
such that it can no longer use its road to the destination D 
due to the previous road no longer works. When Road 
Maintenance notice a source road is broken, source S can 
try to maintain any other road it happens to know to D, or 
can fixed Road Discovery again to find an alternative road. 
Road Maintenance is used only when source S is actually 
sending information to destination D. 

5. PPIs Network Correlation Measures 

The relationships among proteins or PPIs can be possible 
to estimates. The best estimation is the Canonical 
Correlation Analysis (CCA) [27].  Various proteins 
vectors as a and b in r and t dimensional space. Suppose X 
and Y are set of proteins. X= (x1, x2, x3, x4,. . . . . . . ., xp) 
and Y= (y1,y2,. . . . . . .yq).  The correlation between X and 
Y is ρ. So ρ=cor (a/Xb/Y). So we get in equation 1 
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Two protein nodes X and Y always interact with parent 
node j. the neighbors proteins x1, x2, x3,………..xp and 
y1,…..yq.  The interaction among  x(j) and y(j) as cross 
correlation ρxy(j) in equation 2 
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The individual interaction are narrated in equation 3 to 5 
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6. Results and Implementation 

We develop a system based on Java to measure the 
interactions. Consequently, we use Cytoscape [28], a 
proteins analysis tool for PPIs measurement.  The 
interactions are very complex to measure and proteins 
always change its positions to get proper interaction. We 
use eukaryotes baker’s yeast and human data set for PPIs 
networks alignment (Section 6.1).  On the other hand, 
prokaryotic PPI networks, of bacteria and viruses, 
respectively illustrated subsequently (Section 6.2 and 
Section 6.3). We illustrate that DPPIsAS expose large 
networks that are the parts of total network.  We also align 
proteins of same function. The interactions among 
proteins are clearly visible at above figures. We use Java 
springs to enable such relationships among all protein data. 
At the same time we have compare results of our system 
with Cytoscape.  We significantly noticed that our system 
outperforms Cytoscape at various aspects especially at 
time and space complexity. Besides, we minimize the 
complexities in some other sides such as easy PPI, grade 
measurements, protein orientation identification and 
structure formation. Cytoscape is a generalized tool and it 
is difficult to handle all functionalities rapidly. Some 
molecular identification plays important role in human 
body as well as animals and plants nutrition’s. To measure 
instant activity and actions, Cytoscape is slow and 
imperfect.  

6.1 Global PPIs alignment for Yeast-Human 

We use our system to align yeast S.cerevisiae global PPIs 
network [29]. Similarly, global protein network of human 
[30].  The yeast has 2, 45,788 interactions amongst 37,876 
proteins and the latter has 3,67,1,456 interactions amongst 

49,141 proteins. To design alignments, we execute each 
and every possible 27 = 128 combinations of the seven 
topological and sequence measures such as Average 
shortest path to number of directed nodes, Closeness 
centrality versus self loops, Clustering coefficient to 
number of direct edge, Edge Count to neighborhood 
Connectivity, In degree versus out degree, Neighborhood 
Connectivity versus Topological Connectivity, 
Neighborhood to closeness connectivity certain genes and 
Partner of Multi-edge Connectivity to neighborhoods 
connectivity. To account for a possible randomness in the 
algorithm caused by randomly breaking ties, we run each 
of the 32 tests 30 times and compute the statistics. The 
maximum edge effect is 33.55% including 7383 PPIs 
alignment among 21000 proteins. The alignment is 
performed by scoring proteins interactions pair values. 
The measurements of these interactions are vital part of 
the alignment.  We termed it as sequencing 1 (Table 1). 
Nonetheless, applying only signatures does not satisfy all 
possible combinations and results to dissimilar matchings 
for dissimilar executions with mean  edge correctness 
(EC) (equation 6) of 29.88% and the standard deviation of 
0.55% for 555 executions. 
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Here there are two global alignment networks as 
G1(V1;E1) and G2(V2;E2), where V1< V2, as a total 
injective function f : V1→V2. The experimental result 
shows that such alignment is not always perfect due to lots 
of interactions (Figure 6).  
It is also proven that only BLAST edge value does not 
satisfy the relationships with different networks for 
different executions with the mean edge correctness of 
23.45% and standard deviation of 0.55% for 555 
executions. BLAST shows best outcomes for sequencing 
with the EC values of 0.12% and it constructed by 4563 
aligned interactions amongst 7893 proteins.  We termed 
this as sequencing 2. Besides, when we impose protein 
signatures, relationship degrees, protein cluster 
coefficients and calculated BLAST scores, we noticed that 
the alignment are 99.98% similar amongst 555 executions 
with edge corrections 34.77% grouped by 7893 aligned 
interactions amongst 9987 proteins. We termed this as 
sequencing 3. 
In Addition, we measure structural nature of sequencing 1, 
2 and 3 by testing the amplitude of their largest common 
connected sub-sequences (LCCSSs). LCCSSs are the 
largest connected string graph where each of the aligned 
protein networks has fixed size. We verify this network 
due to the preferences of large network alignment and 
contiguous sub-sequences instead of a number of small 
disconnected network regions. The extent of the LCCSSs 
in Sequencing 1 is 5,345 nodes and 9,536 edges, that is 
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about 87:7% and 31:5% of the yeast’s nodes and edges, 
respectively. The LCCSSs disclose by Sequencing 2 has 

6,345 nodes and 8,234 edges. Sequencing 3, has the 
LCCSSs with 8,853 nodes and 12,678 edges.  

 
 

 

Figure 6: Protein Networks with huge number of edges. 

 
 Sequencing 1 Sequencing 2 Sequencing 3 
>=1 66:45% (10−11) 23:55% (10−6) 19:33% (10−9) 
>=2 76:23% (10−2 23:51% (10−4) 27:56% (10−9) 
>=3 78:97% (10−5 45:24% (10−3) 8:07% (10−9) 
>=4 1.55% 6:12% (10−4) 7:04% (10−9) 
>=5 2.33% 9:71% (10−6) 2:97% (10−9) 
>=6 12.45% 1:97% (10−9) 0.23:71% 

(10−9) 

Table 1: Sequencing Edge correctness 

We design proper prediction to prepare “Biological 
Process” forecasting for botanical and zoological protein 
data set. We have taken all biological data to verify the 
yeast-human alignment to determine protein pairs where 
one protein is annotated with other protein in biological 
annotated terms. In this regards we easily moves the 
annotations from the annotated protein to the one that is 
not annotated. The experiments for data forecasting and 
predictions for “Atomic and Biological Function” and 
“Nuclear Component” are made in the same directions. 
We design “Biological Process” predictions for 235 
anthropological proteins, “Atomic and Biological 
Function” predictions for 345 human proteins and 
“Nuclear Component” predictions for 897 human proteins. 

Similarly, the experiments under yeast data set, we 
construct “Biological Process” predictions for 896 
proteins, “Atomic and Molecular Function” guess for 
1367 proteins and “Cellular Component” guess for 987 
proteins. 

6.2 Aligning Bacterial PPI networks 

We measure the uplifted backbone for practical 
interconnected networks of E. coli that merge with good 
features of empirical Protein-Protein Interactions and 
summing data [31]. The data set contains 9,564 
interconnected relations amongst 4,321 proteins. We 
assess the top estimation of C. jejuni proteins network 
constructed by 14,987 interconnected relations amongst 
2,678 proteins generated by yeast-2-hybrid analysis [32]. 
We have compare M-GRAAL and our system and noticed 
that our system perform 30% better and accurate result 
than that of M-GRAAL. We have collected all the protein 
sequences and Gene Ontology annotation data for these 
bacteria from the National Center for Biotechnology 
Information (NCBI) and European Bioinformatics 
Institute (EMBL-EBI) website of December 2014. 
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6.3 Aligning viral PPI networks 

We also measure herpesviral protein-protein interaction in 
global networks of five herpesviruses: as first one is 
varicella-zoster virus (VZV), second one Kaposis 
sarcoma- associated herpes virus (KSHV), third one is 
herpes simplex virus 1 (HSV-1), next one is murine 
cytomegalovirus (mCMV) and finally Epstein-Barr virus 
(EBV) [33]. However, these global networks may have 
some limitations in the sense of proper interaction and 
maintainers. We have designed state of the arts structural 
global protein networks alignment and compare with M-
GRAAL algorithm and noticed that our developed system 
perform far better result in the matter of path discovery.  

7. Conclusion  

Sequencing global proteins networks of several species is 
anticipated to be a helpful automated system or tool. 
DGPPIS allows comparative analysis of different data of 
different species. Besides, it enables to discover the 
pathway in large global networks. PPIs are very complex 
matter due to huge number of interconnected proteins.  In 
the light of upcoming growth of gigantic number of 
molecular and other functional network data set, protein 
sequencing and interactions methods are anticipated to 
become progressively priceless in elaborating our 
consideration and regulation huge global proteins 
networks.. In future, we will measure the Mutual 
information test (MIT) score for global protein networks 
and gene regulatory networks.    MIT score tells the actual 
nature of the gene and protein networks. Gene regulatory 
network is a complex molecular structure that generated 
from gene expressions.  MIT score will strictly check the 
gene expressions formation and topology. 
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