
IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.2, February 2015 80

Embedded Static RAM Redundancy Approach using Memory
Built-In-Self-Repair by MBIST Algorithm

Rakesh Manukonda Suresh Nakkala
LEC, Singarayakonda, MLEC, Singarayakonda,

Abstract
This paper proposes Memory Built in Self Repair (MBISR)
approach which consists of a Built-In Self-Test (BIST) module, a
Built-In Address-Analysis (BIAA) module and a Multiplexer
(MUX) module. On average embedded RAMs occupy 90% area
in system-on-chip (SOC), so embedded memory test design has
become an essential part of the SOC development. Built-In Self-
Repair (BISR) with Redundancy is an effective yield-
enhancement blueprint for embedded memories. The entire
design consists of a BIST (Built in self-test) which uses MARCH
C- algorithm for test pattern generation (TPG), an SRAM of 6 bit
address and 4 bit data that operates in 4 modes as circuit under
test (CUT), a Built in Address analyzer (BIAA) for storing faulty
locations of SRAM and to repair those faulty locations and a
MUX module to select test data and external data. The
combination of BIST, MUX and BIAA together is called as
BISR (Built in Self repair) System in the design. A practical 4K
× 32 SRAM IP with BISR circuitry is designed and implemented
based on a 55nm CMOS process. Experimental results gives that
the BISR occupies 20% area on SoC and it works up to 150MHz
range. This paper is implemented using Verilog HDL. Simulation
and Synthesis is done using Xilinx ISE 14.2 Tools.
Keywords
Built-In-Self-Repair (BISR); Built-In Address-Analysis; Built-In-
Self-Test; Embedded SRAM; Multiplexer MUX;

1. Introduction

The VLSI manufacturing technology advances has made
possible to put millions of transistors on a single die. This
advancement in IC technology enabled the integration of
all the components of a system into a single chip. A
complex IC that integrates the major functional elements
of a complete end product into a single chip is known as
System on Chip (SOC). It enables the designers to move
everything from board to chip. SOC incorporates a
portable / reusable IP, Embedded CPU, Embedded
Memory, Real World Interfaces, Software, Mixed-signal
Blocks and Programmable Hardware. Reduction in size,
lower power consumption, higher performance, higher
reliability, reuse capability and lower cost are the benefits
of using SOC. However, before SOC products can be
widely seen on the market, many design and
manufacturing issues have to be solved first. One of them
is testing plural, heterogeneous cores of the SOC and the
chip itself.

To increase the reliability and yield of embedded
memories, many redundancy mechanisms have been
proposed [3-6]. In
[3-5] both redundant rows and columns are incorporated
into the memory array. In [6] spare words, rows, and
columns are added into the word-oriented memory cores
as redundancy. All these redundancy mechanisms bring
penalty of area and complexity to embedded memories
design. Considered that compiler is used to configure
SRAM for different needs, the
BISR had better bring no change to other modules in
SRAM.
To solve the problem, a new redundancy scheme is
proposed in this paper. Some normal words in embedded
memories can be selected as redundancy instead of adding
spare words, spare rows, spare columns or spare blocks.
Memory test is necessary before using redundancy to
repair.
 The DFT circuitry controlled through a BIST circuitry is
more time-saving and efficient compared to that controlled
by the external tester (ATE) [7]. However, memory BIST
does not address the loss of parts due to manufacturing
defects but only the screening aspects of the manufactured
parts [8]. BISR techniques aim at testing embedded
memories, saving the fault addresses and replacing them
with redundancy. In [9], the authors proposed a new
memory BISR strategy applying two serial redundancy
analysis (RA) stages. [10] Presents an efficient repair
algorithm for embedded memory with multiple
redundancies and a BISR circuit using the proposed
algorithm. All the previous BISR techniques can repair
memories, but they didn’t tell us how to avoid storing fault
address more than once. This paper proposes an efficient
BISR strategy which can store each fault address only
once.

2. Fault Models , Test Algorithms and bist

A fault model is a systematic and precise representation of
physical faults in a form suitable for simulation and test
generation [11]. Applying the reduced functional model,
SRAM faults can be classified as follows in [12]:

• Stuck-at-Fault (SF): Either a cell or a line is
stuck to logical `0' or `1'.

Manuscript received February 5, 2015
Manuscript revised February 20, 2015

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.2, February 2015 81

• Transition Fault (TF): The 0->1 (or 1->0)
transition is impossible on a cell or a line.

• Coupling Fault (CF): When a cell is written
from 0->1 (or 1->0), the content of the other cell
is changed. CF is generalized to a k-coupling
fault when k-1 cells are changed and is classified
into Inversion or Idempotent coupling faults
depending upon what content changed.

• Address Decoder Fault (ADF): No cell will be
accessed with a certain address or multiple cells
are accessed simultaneously or a certain cell can
be accessed with multiple addresses.
a) There is no cell for particular address
b) There is no address for a cell
c) Multiple cells pointed by single memory

address
d) Multiple Addresses points to single cell

• Address Decoder Open Faults (ADOF): CMOS
address decoder open faults are caused by open
defects in the CMOS logic gates of the memory
address decoders, and due to their sequential
behavior, cannot be mapped to faults of the
memory array itself.

• Retention Faults (RF): A cell fails to retain its
logic value after some time. This fault is caused
by a broken pull-up resistor.

• Neighborhood Pattern Sensitive Fault (NPSF):
a typical neighborhood pattern sensitive faults
preventing the base cell from being transited to a
certain value is called `static' NPSF, and an NPSF
is called `dynamic' when a transition on the
neighborhood cells triggers a transition on the
base cell.

MBIST ALGORITHMS:

A. Classical Test Algorithms
Classical test algorithms are either simple, fast but have
poor fault coverage, such as Zero-one, Checkerboard; or
have good fault coverage but complex and slow, such as
Walking, GALPAT, Sliding Diagonal, Butterfly, MOVI,
and etc.. Due to these imbalanced conflicting traits, the
popularity of these algorithms is decreasing.

B. March-based Test Algorithms

They are the foundations of the memory test. An Efficient
and economical memory test should provide the best fault
coverage in the shortest test time [13]. BIST is used to test
memories in the paper and its precision is guaranteed by
test algorithms. The algorithms in most common use are
the March tests. March tests have the advantage of short
test time but good fault coverage. There are many March
tests such as March C, March C-, March C+, March 3 and
so on. TABLE I compares the test length, complexity and

fault coverage of them ‘n’ stands for the capacity of
SRAM.
March tests have the advantage of short testing time with
good fault coverage. The proposed MARCH algorithm is
MARCH C-. The MARCH C- algorithm has the high fault
coverage with less test length. The algorithm steps are as
follows.

March C- has better fault coverage than March 3 and
shorter test time than March C and March C+. So March
C- has been chosen as BIST algorithm in this paper .In
above steps, “up” represents executing SRAM addresses in
ascending order while “down” in descending order.

Table 1. Comparisons of March Tests
Algorithm Name Test length Fault Coverage

March C 11n AF,SAF,TF,CFin,CFid and CFst

March C- 10n AF,SAF,TF,CFin,CFid and CFst

March C+ 14n AF,SAF,TF,CFin,and CFid

MATS 4n AF,SAF

MATS+ 5n AF,SAF

Marching 1/0 14n AF,SAF,TF

MATS++ 6n AFs, SAFs, TFs, Some CFs

March A 15n AFs, SAFs, TFs, Some CFs

March Y 8n AFs, SAFs, TFs, Some CFs

March B 17n AFs, SAFs, TFs, Some CFs

The BIST module in the paper refers to the MBISR design
of Mentor Graphics. It mainly consists of a BIST
controller, a test vector generator, an address generator and
a comparator. It can indicate when memory test is done
and weather there is fault in memory.

3. Proposed MBISR Scheme

A. Basic Architecture

The proposed MBISR Scheme is flexible. There are 60
normal words and 4 Normal-Redundant words. When the
BISR is used, the Normal-Redundant words are accessed
as normal ones. Otherwise, the Normal-Redundant words
can only be accessed when there are faults in normal
words. In this case, the SRAM can only offer capacity of

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.2, February 2015 82

60 words to users. This should be referred in SRAM
manual in details.
This kind of selectable redundancy architecture can save
area and increase efficiency. After BISR is applied, other
modules in SRAM can remain unchanged. Thus the
selectable redundancy won’t bring any problem to SRAM
compiler. Repair is a popular technique for memory yield
improvement. The MBISR flow is shown Figure 1.

Figure 1. MBISR Flow diagram

In MBISR built in self-test is used to generate the test
vectors for the require memory circuit. Built in self-
diagnosis is used to detect the faults. After the fault
diagnosis the redundancy memory (Spare rows and
columns are allocated to the faulty memory locations using
redundancy analyzer. In the reconfiguration the defective
cells are swapped with the spare cells

A. Proposed BISR Architecture
The proposed architecture mainly consists of three
modules: BIST module, BIAA module, MUX module. The
BIST module uses March C- to test the addresses of the
normal words in SRAM. It detects SRAM failures with a
comparator that compares actual memory data with
expected data. If there is a failure (compare_Q = 1), the
current address is considered as a faulty address. The
BIAA module can store faulty addresses in a memory
named Fault_A_Mem. Counter in BIAA that counts the
number of faulty addresses. When BISR is used (bisr_h =
1), the faulty addresses can be replaced with redundant
addresses to repair the SRAM. The inputs of SRAM in
different operation modes are controlled by the MUX
module. In test mode (test_h = 1), the inputs of SRAM are
generated in BISR while they are equal to system inputs in
access mode (test_h = 0). The BISR has three modules
namely BIST, BIAA and the MUX. Signals
test_CEN,test_WEN,test_D, test_A are the test inputs
given to SRAM through MUX from BIST when test_h=1.
CEN_0, WEN_0, D-0, A_0 are the external inputs given to
SRAM by the user when test_h=0. Signal test_done will
be high when march test is completed. Over_h is high
when number of faults are more than Fault_A_Mem array
size. Fail_h is high when there is a fault in the redundancy.

B. BIAA (Built in Address Analyzer) Module
BIST detects SRAM failures with a comparator that
compares actual memory data with expected data. If there
is a failure (compare_Q = 1), the current address is
considered as a faulty address. The BIAA module can
store faulty addresses in a memory named Fault_A_Mem.
There is a counter in BIAA that counts the number of
faulty addresses. When BISR is used (bisr_h = 1), the
faulty addresses can be replaced with redundant addresses
to repair the SRAM. The inputs of SRAM in different
operation modes are controlled by the MUX module. In
test mode (bist_h = 1), the inputs of SRAM are generated
in BISR while they are equal to system inputs in access
mode (bist_h = 0).

C. BISR Flow:
Each fault address can be stored only once into Fault-A-
Mem. March C- has 6 steps. In another word, the
addresses will be read 5 times in one test. Some faulty
addresses can be detected in more than one step. Take
Stuck-at-0 fault for example, it can be detected in both 3rd
and 5th steps. But the fault address shouldn’t be stored
twice. So we propose an efficient method to solve the
problem in BIAA module. Below figure shows the flows
of storing fault addresses. BIST detects whether the
current address is faulty. If it is, BIAA checks whether the
Fault-A-Mem overflows. If not, the current fault address
should be compared with those already stored in Fault-A-
Mem. Only if the faulty address isn’t equal to any address
in Fault-A-Mem, it can be stored. To simplify the
comparison, write a redundant address into Fault-A-Mem
as background. In this case, the fault address can be
compared with all the data stored in Fault-A-Mem no
matter how many fault addresses have been stored
The fault address is stored in fault-mem-A and it points to
a certain redundant address. The redundant address maps
one-to-one to the fault-mem-A. The fault-mem-A stores

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.2, February 2015 83

the faulty address in it and the normal data is checked with
the fault-mem-A and gets stored in the RAM here we are
considering a 64 bits address RAM and we consider 6
redundant Bits. The faulty address are stored in the fault-
mem-A and when these fault address are mapped with the
test address and when the fault address is found in the
fault-mem-A then that faulty address is replaced by the
redundant bits. Using this method the BISR can quickly
get the corresponding redundant address to replace the
faulty one. As shown in Figure 3. once a fault address is
stored in Fault-A-Mem, it points to a certain redundant
address. The fault addresses and redundant ones form a
one-to-one mapping.

Figure 3. Flow chart showing address storage

D. BISR Features:

Firstly, the BISR strategy is flexible. TABLE II lists the
operation modes of SRAM. In access mode, SRAM users
can decide whether the BISR is used base on their needs.
If the
BISR is needed, the Normal-Redundant words will be
taken as redundancy to repair fault. If not, they can be
accessed as normal words.
Secondly, the BISR strategy is efficient. On one hand, the
efficiency reflects on the selectable redundancy which is
described as flexible above. No matter the BISR is applied
or not, the Normal-Redundant words are used in the

SRAM. It saves area and has high utilization. On the other
hand, each fault address can be stored only once into
Fault-A-Mem. As said before, March C- has 6 steps. In
another word, the addresses will be read 5 times in one test.
Some faulty addresses can be detected in more than one
step. Take Stuck at-0 fault for example, it can be detected
in both 3rd and 5th steps. But the fault address shouldn’t
be stored twice. So we propose an efficient method to
solve the problem in BIAA module. Figure 4 shows the
flows of storing fault addresses. BIST detects whether the
current address is faulty. If it is, BIAA checks whether the
Fault-A-Mem overflows. If not, the current fault address
should be compared with those already stored in Fault-A-
Mem. Only if the faulty address isn’t equal to any address
in Fault-A-Mem, it can be stored. To simplify the
comparison, write a redundant address into Fault-A-Mem
as background. In this case, the fault address can be
compared with all the data stored in Fault-A-Mem no
matter how many fault addresses have been stored.
At last, the BISR strategy is high-speed. As shown in
Figure
4, once a fault address is stored in Fault-A-Mem, it points
to a certain redundant address. The fault addresses and
redundant ones form a one-to-one mapping. Using this
method, the BISR can quickly get the corresponding
redundant address to replace the faulty one.

4. Experimental Results

The proposed BISR was designed at RT level and it was
synthesized to gate-level using Synopsys DC compiler.

Figure 4. RTL schematic of top module

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.2, February 2015 84

Figure 5. RTL schematic of top module with internal

modules

Figure 6. Simulation of top module 1

normal_a[5:0] and normal_d[3:0]are the external address
and data given to the SRAM. SRAM has 4 faulty locations
6,7,8,57. q[3:0] is the output of SRAM.mem[0:63] is the
SRAM of 64 locations. When test_h=1 and bisr_h=0 BIST
tests 58 locations and BIAA stores the faulty addresses in
fault_a_mem[0:5]. If fault locations are more than 6 BISR
system indicates overflow by making over_h=1.When
test_h=1 and bisr_h=1 BIST tests the redundant locations.
In Figure 5.1a 4 redundant locations are tested since
SRAM has 4 faulty locations.

HDL Synthesis Report

Macro Statistics
Adders/Subtractors : 3
 6-bit adder : 2
 6-bit subtractor : 1
Counters : 1
 3-bit up counter : 1
Registers : 75
 1-bit register : 5
 4-bit register : 61
 6-bit register : 9
Latches : 1
 4-bit latch : 1
Comparators : 19
 3-bit comparator greatequal : 1

 3-bit comparator greater : 1
 3-bit comparator less : 1
 6-bit comparator equal : 12
 6-bit comparator greater : 1
 6-bit comparator less : 1
 7-bit comparator greatequal : 1
 7-bit comparator lessequal : 1
Multiplexers : 1
 4-bit 64-to-1 multiplexer : 1
Tristates : 1
 6-bit tristate buffer : 1

Final Results

RTL Top Level Output File Name:
top_sample.ngr
Top Level Output File Name : top
sample
Output Format : NGC
Optimization Goal : Speed
Keep Hierarchy : NO
Design Statistics
IOs : 19
Cell Usage:
BELS : 540
INV : 2
LUT2 : 20
LUT3 : 155
LUT3_D : 4
LUT3_L : 4
LUT4 : 198
LUT4_D : 13
LUT4_L : 15
MUXF5 : 84
MUXF6 : 28
MUXF7 : 12
MUXF8 : 4
VCC : 1
FlipFlops/Latches : 319
FDCE : 4
FDE : 311
LDE : 4
Clock Buffers : 1
BUFGP : 1
IO Buffers : 18
IBUF : 15
OBUF : 3

5. Conclusion

An efficient BISR strategy for SRAM with selectable
redundancy has been presented in this paper. It is designed
flexible that users can select operation modes of SRAM.

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.2, February 2015 85

The BIAA module can avoid storing fault addresses more
than once and can repair fault address quickly. We are
performing Built in self-test and repair to detect the faults
in offline mode. The future scope of this study can be to
make use of any other algorithm which can detect more
number of faults. We can also try to detect the faults in the
online mode.

References
[1] Semiconductor Industry Association, “International

technology roadmap for semiconductors (ITRS), 2003
edition,” Hsinchu, Taiwan, Dec.2003.

[2] C. Stapper, A. Mclaren, and M. Dreckman, “Yield model
forProductivity Optimization of VLSI Memory Chips with
redundancy and Partially good Product,” IBM Journal of
Research and Development,Vol. 24, No. 3, pp. 398-409,
May 1980.

[3] W. K. Huang, Y. H. shen, and F. lombrardi, “New
approaches for repairs of memories with redundancy by
row/column deletion for yield enhancement,” IEEE
Transactions on Computer-Aided Design, vol. 9, No. 3, pp.
323-328, Mar. 1990.

[4] P. Mazumder and Y. S. Jih, “A new built-in self-repair
approach to VLSI memory yield enhancement by using
neuraltype circuits,” IEEE transactions on Computer Aided
Design, vol. 12, No. 1, Jan, 1993.

[5] H. C. Kim, D. S. Yi, J. Y. Park, and C. H. Cho, “A BISR
(built-in selfrepair) circuit for embedded memory with
multiple redundancies,” VLSI and CAD 6th International
Conference, pp. 602-605, Oct. 1999.

[6] Shyue-Kung Lu, Chun-Lin Yang, and Han-Wen Lin,
“Efficient BISR Techniques for Word-Oriented Embedded
Memories with Hierarchical Redundancy,” IEEE ICIS-
COMSAR, pp. 355-360, 2006.

[7] C. Stroud, A Designers Guide to Built-In Self-Test, Kluwer
Academic Publishers, 2002.

[8] Karunaratne. M and Oomann. B, “Yield gain with memory
BISR-a case study,” IEEE MWSCAS, pp. 699-702, 2009.

[9] I. Kang, W. Jeong, and S. Kang “ High-efficiency memory
BISR with two serial RA stages using spare memories,” IET
Electron. Lett., vol. 44, no. 8, pp. 515-517, Apr. 2008.

[10] Heon-cheol Kim, Dong-soon Yi, Jin-young Park, and
Chang-hyun Cho, “A BISR (Built-In Self-Repair) circuit for
embedded memory with multiple redundancies,” in Proc. Int.
Conf. VLSI CAD, Oct. 1999, pp.602-605.

[11] M. Sachdev, V. Zieren, and P. Janssen,“ Defect detection
with transient current testing and its potential for deep
submicron CMOS ICs,” IEEE International Test Conference,
pp. 204-213, Oct. 1998.

