
IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.3, March 2015 1

Implementation of Pinkas Partial Matching (PM)-Semi Honest
Protocol Using Mixed Multiplicative Homomorphic Encryption

(MMH) For Location Based Services (LBS)

Levent Ertaul†, and Saleha Shakoor††

†Faculty of Mathematics & Computer Science, California State University, Hayward, (510) 885-3356 USA
††School of Mathematics & Computer Science, California State University, Hayward USA

Summary
In the recent years smart phones have dramatically changed the
face of the earth and the way the world operates by emerging
itself as a pocket of technology. More then 50% of the smart
phones owners use Location Based Services (LBS) of some kind
everyday. The core component of the LBS is the proximity
testing of users which determines if two mobile users are in
vicinity to each other without claiming them to disclose their
exact locations. In this paper we have worked on implementing
Pinkas Partial Matching(PM)-Semi-Honest protocol using Mixed
Multiplicative Homomorphic (MMH) encryption techniques that
has the support of private proximity testing by utilizing location
tags. This paper provides a practical assessment of proximity
testing for LBS by implementing Partial Matching
(PM)-Semi-honest protocol with MMH encryption. Android
platform has been used for the implementation purposes of this
protocol.
Key words:
Private-Set Matching & Intersection, Location Tags, MMH
encryption, Location Based Services, PM-Semi-Honest Protocol.

1. Introduction

With the ongoing move of smart phones towards
near-ubiquity, much of society has come to take these
do-all devices for granted. According to one survey
conducted by the “bitrebels.com”, more then 80% of the
cell phone owners check their smart phones within 15
minutes of waking up in the morning giving us a effulgent
picture of how much everyday endeavors are influenced
by this little device. The most significant feature of this
device is Global Positioning System (GPS)[23] tracking
that have virtually changed the concept of our society
making concept of access and information available on the
go at anytime and place. It embodies itself as pocket
search engine empowering users to submit queries and
receive their answers for any information they may desire
or need. Such information can be gathered with respect to
time and position by use of LBS [1]. Thus, one can define
Location Based Services as-
“Location Based Services are information services
accessible with mobile devices through the mobile network

and utilizing the ability to make use of the location of the
mobile device” [2]
There exist a number of LBS that includes Google
Latitude, Foursquare, Loopt, Facebook places, and a large
number of smart phone applications [4], [5]. One of the
issues in LBS is the privacy which has been in debate for
the recent years. Research and studies are being conducted
to provide better privacy& security with this application.
The primary challenge is that some of the people would
dislike revealing their location information even to their
closest friends at all times, yet allowing others to know
some of the time [5].
This paper proceeds with the discussion of Privacy &
Security concerns related to LBS in Section 2 followed by
Proximity Services and Location tags in Section 3 and 4
respectively. Then Private Proximity Testing and Private
Set Matching are discussed in section 5 and 6. Then
PM-Semi Honest Protocol algorithm is explained in
section 7 succeeded by the discussion of MMH encryption
in section 8. The discussion is concluded at the end with
the implementation of PM-Semi Honest Protocol with
MMH encryption followed by the performance analysis of
the implementation in section 9.

2. Privacy and Security Concerns in LBS

The subject of privacy is often addressed by the concern
that how much of the sensitive information is to be kept
secret in any application [7]. A substantial amount of
privacy concern with the employment of LBS is the
delivery of user precise location information with the
un-trusted third parties. This concern applies to proximity
services as well [1]. One of the biggest concerns is that it
can be possible to compile a very detailed picture of
someone’s movements if they are carrying a wireless
device that communicates its location to network operators
[6]. LBS providers must alleviate consumer privacy fears
by implementing secure network and encryption
technologies to curb illegal activity [6], [16]. In general,
privacy-preserving systems for LBS services are expected

Manuscript received March 5, 2015
Manuscript revised March 20, 2015

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.3, March 2015 2

to satisfy Location, identity & tracking protection.
Mutual authentication for security purposes should be
implemented to prevent spoofing attacks.

3. Proximity Services

Proximity based services are a unique class of Location
Based Services. These services inform users when they are
within a certain distance of other people, businesses, or
other things [10], [14]. Proximity testing is asymmetric
which means one party will learn if the other party is
nearby whereas the other party learns nothing [14]. In our
paper we have demonstrated that it is indeed reasonable to
deliver location functionality in a secure manner. In other
words if the friends are nearby then they will be notified of
their presence in the vicinity. No other information
regarding their location or position will be revealed to
either party.
Let us consider an application of proximity testing,
keeping in mind that different applications require
different proximity granularity [1].

• Alice and Bob who happened to be friends and
wants to be serendipitously notified if they are in
same shopping mall so that they can spend
pleasant time together. Alternatively, Alice and
Bob first meet online, but later decide to meet in
person at a coffee shop. Alice arrives first and she
wants to be notified when Bob arrives [1].

• Alice would like to get dinner with her friend Bob
who travels a lot and wants to know if he is in
town. Here the proximity granularity is a wide
geographic area [1].

• Bob, a student lands at his college airport and
wants to check if anyone from his college is
currently at the airport so that he can share a ride
with him or her to campus [1].

• Alice is a manager who wants to automatically
record who is present at her daily meetings.
However, her employees do not want their
location tracked. Privacy preserving proximity
testing over this well organized group allows
satisfying both requirements [1].

Figure 1. Three overlapping hexagonal grids. A blue grid

cell is highlighted

4. Location Tags

A location tag is a secret consociated with a point in space
and time. It is an assembly of location features deduced
from (mainly electromagnetic) signals present in the
physical environment. The matching function can be based
on Hamming distance, set distance, etc [1].

4.1 Properties of Location Tags

The key properties of the location Tags are:

• Unpredictability- It should not be possible to
generate matching tags unless and until nearby

• Reproducibility- Two devices at same place &
time produce matching tags (not necessarily
identical) [17].

Location tags provide a different model for proximity
testing. The main advantage is that since the location tags
of the two parties need to match, spoofing the location is
no longer possible, which stops online brute force attacks
[1]. The main disadvantage is that users no longer have
control over the granularity of proximity: the notion of
neighborhood is now entirely dependent on the type of
location tag considered [1], [17], [12].

4.2 Construction of Location Tags

Several possible ways to extract location tags are [1]:

• WiFi broadcast packets comprises of a variety of
different protocols (e.g. source and destination IP
addresses, sequence numbers of packets, and
precise timing information all offer varying
degrees of entropy) offering a rich potential for
extracting location tags information.

• WiFi Access point IDs: These points constantly
advertise their presence using a combination of
SSID and MAC Address which is already used by
Skyhook for creating a database of ID-location
mappings via “wardriving” [1].

• Bluetooth. Just like WiFi IDs, Bluetooth IDs are
unique to each device giving it an advantage over
WiFi IDs of almost always being associated with
mobile rather than fixed devices, making
Bluetooth-based location tags more time variable.
The only limitation is the range making it a poor
source of location tags [1].

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.3, March 2015

3

• GPS works by timing signals sent by a number of
orbital satellites. GPS consists of several signals,
including “P(Y)” (encrypted precision code) and
“M-code” (military) [1].

• GSM: Cellular towers that are in range in any one
time seem like a promising location tag in the
future due to its space- and time varying
characteristics such as signal strength.

• Audio: In certain restricted conditions audio can
serve as extractor for location for example music
playing in background of coffee shop or a
conversation in the meeting room.

• Atmospheric gases: [1] the cell-phone-as-sensor
project has experimented with CO, NOx and
temperature sensors on cell phones and hopes this
will become standard on smart phones so that it
can be used for real-time pollution mapping and
other applications. If these sensors ever become
main stream, they are another potential source of
location tags.

5. Proximity testing using location tags

Private set intersection is a well studied problem and an
elegant solution was given by Freedman, Nissim and
Pinkas [10]. The protocol of Freedman, Nissim and Pinkas
makes use of a homomorphic encryption Scheme E that
anyone can encrypt and Alice can decrypt. At the end of
the following protocol, Alice learns |A ∩B| and Bob learns
nothing [1].
So the protocol would work as follows:

1. Alice generates a polynomial p from her set
of location tags.

2. Alice then sends the encrypted polynomial
coefficients E(p) to Bob.

3. Bob the calculates his own polynomial p(b)
with his location tags and then encrypts it as
E(p(b)).

4. Then Bob picks a random number r on E(p)
and computes E(r(p(b)) using Homomorphic
encryption.

5. Then Bob sends Alice the permutation of
encryptions computed in earlier step.

Alice then decrypts it and outputs the nonzero decryptions
as intersection of A and B.

6. Private Set Matching and Set Intersection

The protocol follows the following basic structure. Alice
defines a polynomial P whose roots are her inputs [10]:

𝑷𝑷(𝒚𝒚) = (𝒙𝒙𝟏𝟏 − 𝒚𝒚)(𝒙𝒙𝟐𝟐 − 𝒚𝒚) … . . (𝒙𝒙𝒌𝒌 − 𝒚𝒚) = �𝜶𝜶𝒖𝒖𝒚𝒚𝒖𝒖
𝒌𝒌𝒌𝒌

𝒖𝒖=𝟎𝟎

She sends to Bob homomorphic encryptions of the
coefficients of this polynomial. Bob uses the
homomorphic properties of the encryption system to
calculate the polynomial at each of his inputs. He then
multiplies each result by a fresh random number r to get an
intermediate result, and adds to it an encryption of the
value of his input, i.e., Server bob computes Enc(r .P(y) +
y). Therefore, for each of the elements in the intersection
of the two parties' inputs, the result of this computation is
the value of the corresponding element, whereas for all
other values the result is random [10].

7. Pinkas Partial Matching (PM)-Semi-Honest
Protocol using Location tags

Working of this protocol will be explained with
demonstration of an example. Assume the following [20]:
Let Input: Client's input(Alice) is a set X={x1, . . . , xk},
Server's input (Bob) is a set Y={y1, . . . , yk}.
The elements in the input sets are location tags taken from
a domain of size N.
1. Alice performs the following operations:
(a) Alice selects the secret-key parameters for a
semantically-secure homomorphic encryption scheme, and
publishes its public keys and parameters. The plaintexts
are in a field that contains representations of the N
elements of the input domain.
(b) Alice uses interpolation to compute the coefficients of
the polynomial
P(y) = (x1−y)*(x2−y)* . . . *(xk−y)=ak*yˆk+ . . . +a1*y+a0,
of degree k, with roots x1, . . . , xk.
(c) Alice encrypts each of the (k+1) coefficients by the
semantically-secure homomorphic encryption scheme and
sends to Server Bob the resulting set of ciphertexts,
{Enc(a0), . . . , Enc(ak)}.
Then, this information is communicated to Server Bob.
2. Bob performs the following for every y in Y,
(a) He uses the homomorphic properties to evaluate the
encrypted polynomial at y. That is, Server Bob computes
Enc(P(y))=Enc(ak*yˆk+ . . . +a1*y+a0).
(b) Bob selects a random value r and computes
Enc(r*P(y)).
(c) Bob randomly permutes this set of k ciphertexts.
Then Bob sends the result back to the Alice.
Alice decrypts all k ciphertexts received. She locally
outputs all values x in X for which there is a corresponding
decrypted value.

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.3, March 2015 4

In the original paper [10] the encryption scheme
recommended was Pailler, developed by Pascal Paillier in
Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes, and is semantically secure. It is an
additively probabilistic and asymmetric algorithm which is
homomorphic and self-binding. It states that given
composite n and integer z, it is hard to determine if y exists
such that z = yn (mod n2). In Paillier you choose two large
prime numbers p and q which are randomly and
independently selected of each other such that gcd (pq,
(p-1)(q-1))=1 This property is assured if both prime
numbers are of equal length [18]. You then compute n=pq
and λ=lcmp(p-1,q-1). Then g is computed by taking a
random number such that g ε Ẑn

2 such that L(gλ mod n2)
is invertible modulo n where 𝑳𝑳 = 𝒙𝒙 = 𝒖𝒖−𝟏𝟏

𝒏𝒏
 where n and g

are public encryption keys and p and q(λ) are private
decryption keys respectively that is

Encryption Keys(x,r)= gm mod n2

Decryption Keys (y)= = 𝑳𝑳�𝒚𝒚𝝀𝝀 𝒎𝒎𝒎𝒎𝒎𝒎 𝒏𝒏𝟐𝟐�
𝑳𝑳�𝒈𝒈𝝀𝝀 𝒎𝒎𝒎𝒎𝒎𝒎 𝒏𝒏𝟐𝟐�

As far as performance analysis of Pailler encryption
scheme is concerned, Pailler showed poor performance
results [19].The encryption time of Paillier depicted huge
time difference compared to RSA [22] and ElGamal [23].
RSA showed better performance over ElGamal and Paillier
in term of encryption time and ElGamal showed better
performance over RSA and Paillier in term of decryption
time [19]. When throughput analysis was performed RSA
showed better throughput over ElGamal and Paillier in
encryption process and ElGamal showed better throughput
over RSA and Paillier in decryption process [19]. Paillier
showed worst result in encrypted file size with exponential
increase of the input file size. The best result was shown
by RSA. ElGamal, RSA. Paillier showed same exponential
increase in decrypted file size with increase in input file
size [19]. The main reason was the complex computation
involved in the encryption and decryption process. Due to
the complexity of Pailler we needed to find the encryption
scheme that was simple and required less computation
with better performance and required security and hence
we opt for MMH.

8. Mixed Multiplicative Homomorphism
(MMH)

In Homomorphic encryption schemes operations can be
performed on the encrypted or cipher text just as they are
performed on the plain text. A Homomorphic encryption
scheme depicts the property of additive, multiplicative and
mixed multiplicative homomorphism. For the
implementation of PM-Semi honest protocol we have used

mixed multiplicative homomorphism. In mixed
multiplicative homomorphism, decrypting the product of
one ciphertext plaintext is same as multiplication of two
plaintext, represented as E(x*y) = E (x) * y. [8], [9], [11],
[12]. Crypto system implements MMH using large prime
numbers p and q that are secret for calculating a public
parameter n such that n=p*q. The set of original plaintexts
is in Zp ={ x|x <= p } and the set of ciphertexts is in Zn =
{ x|x} whereas Qp = { a|a ∉ Zp } has the set of encryption
clues.
The encryption process chooses plain text 'x' ∈ Zp and a
random number 'a' in Qp such that x = a mod p and
ciphertext y is calculated as y = Ep (x) = a mod n. In the
decryption process plaintext is recovered as x= Dp(y) = y
mod p, where p and n are private public keys respectively.
MMH has the property of additive, multiplicative and
mixed multiplicative homomorphism.
Here is a simple example for demonstration. Let the
cryptosystem select p=13, q=5 from which we calculate
n=p*q= 13*5=65. Let x1=3 and x2=7. Now x should be in
a mod p that is x1=3=a mod p  3=94 mod 13 from
which we get a=94 and now Ep(x1)= a mod n = 94 mod
65 = 29.Similarly x2= 7 = a mod p 7=111 mod 13 from
which we have a=111 and then Ep(x2)= a mod n=111 mod
65=46. Now Ep (x1) * x2 = 29 * 7 =203 mod 65 = 8. If we
now decrypt it that is Dp (8) = 8 mod 13 = 8, which is
same as the plaintext x1 * x2 = 21 mod 13 = 8. This shows
that mixed multiplicative homomorphism can be
performed on the ciphertext, as if performed on the
plaintext [13].This example shows simplicity of MMH
giving it an advantage over Paillier’s complex encryption
and decryption schemes.

9. Implementation of Pinkas PM-semi-honest
protocol with MMH encryption

We have implemented the PM-Semi Honest protocol in
Android studio with Geny Motion. Client Server model
has been used to implement this protocol with the help of
JAVA language [24]. Single emulator is run for both Alice
& Bob users to speed up the simulation time.
The detailed specification of the implementation is shown
in the following table.
In order to present a better insight into the implementation
of the protocol I would demystify it with an example.
Let’s assume Alice is in the vicinity of Bob. Now Alice
wants to be notified of Bob’s presence in the neighborhood.
Alice (Client) will generate its input set called roots from a
domain of size N. In our implementation its
X={x1,x2,….xk} of client Alice. The number of the roots
generated for the location tags can be user choice. These
roots represent the location tags associated with the user.
These roots are generated randomly by the function
Random Generator from Math Library of Java since

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.3, March 2015

5

location tags are difficult to be calculated with the present
hardware available.

Table 1: Specification of Implementation
Platform Intel® Core (TM) i7-2720QM

CPU@2.20Ghz
Installed RAM 4 GB(3.24
usable)

Operating System Windows 7
Programming
Language

Java

Run time
Environment

JRE 8 [24]

Network Model TCP/IP Client/ Server Model
IDE/Other
Platforms

Eclipse/Android Studio with
Geny Motion

Crypto Library Java.Security [24]
Encryption mode MMH
Key size &
Security
parameters

Private/Public key selected by
user .Options include
128,256,512 & 1024 bits

Input set User selects the number of roots
(Location Tags). Options
include 2,4,8,16 and 32 roots

Domain 2 cities (Freemont, Hayward)

The size of each root will add up to be total size of 128
bits in our implementation. For example if 2 roots are
selected then size of each of these roots will be 64 making
total of 128 bits. In this way we have worked with
maximum 32 roots, each of 4 bits for the total of 128 bits.
For the sake of simplicity in our example we select 2 roots
for Alice i.e. X= {2, 4} roots which are randomly breaded
as mentioned earlier. Remember 2 and 4 each are 64 bits
giving a total of 128 bit location tags. In our case we have
generated the roots as follows:

Now Alice will employ these roots to generate a
polynomial which is P(y)=(2-y)(4-y)= 8-6y+y2. She will
now encrypt this polynomial with the homomorphic
scheme that is MMH. Coefficients 8, 6, 1 will be
encrypted as follows:

P=13 (Private key), q=5 ,n=p*q =65 (Public key)
 a0 =8 , a1=-6, a2 =1
For a0 we calculated a =99 using a0=a*mod p
Enc(a0)=99*mod 65=34, sly for
Enc(a1) =45 , Enc(a2)=40

Now these encrypted coefficients will be sent to Server
Bob. Bob will use these encrypted coefficients to generate
polynomial at its location tags. Since Bob is in the
neighborhood it will also yield the matching roots from
domain of size N i.e. Y ={ 2,4}. A random number r will be
generated and following will be executed:
P(y)=(2-y)(4-y)= 8-6y+y2 , Let r=1 for simplicity
r*Enc(a2)*y2 - r*Enc(a1)y + r*Enc(a0)

These computations are done for all values of Y that’s 2, 4
by using MMH homomorphic properties.

After encryption random permutation is performed on K
ciphertexts and is sent to client Alice.

EncryptedPolynomial p = new
EncryptedPolynomial(this);
EncryptedCoefficient[] p_coefficients = new
EncryptedCoefficient[this.coefficients.length*2-1];
for (int i=1; i <= this.coefficients.length; i++) {
 for (int j=1; j <= plain_coefficients.length; j++) {
 int l = i+j-2;
 EncryptedCoefficient p2
=this.coefficients[i-1].multiply(plain_coefficients[j-1
]);
 if (p_coefficients[l] == null) {
 p_coefficients[l] = p2;
 }
 else {
 p_coefficients[l] = p_coefficients[l].add(p2);
 }

}
}

private EncryptedPolynomial
getPolynomial(BigInteger []c) {
 EncryptedPolynomial poly = null;
 try {

poly = new EncryptedPolynomial(c, pubkey);
 } catch (BigIntegerClassNotValid
bigIntegerClassNotValid) {

bigIntegerClassNotValid.printStackTrace();
 }
 return poly;
 }

SecureRandom random = new SecureRandom();
byte bytes[] = new byte[16]; // 128 bits are converted
to 16 bytes;
 for (int i = 0; i < rootsNum; i++) {
 random.nextBytes(bytes);
 BigInteger p = new
BigInteger(totalBits/rootsNum, random);
Random rand = new Random();
randP[i] = rand.nextInt(29 -11) + 11;
 list.add(p[i]);
}

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.3, March 2015 6

Alice will execute depermutation function on these
ciphertexts and will then place its input to this equation. If
the sum is 0 they are near by else they are far. Since in our
case they are near so output is 0.
One thing worth mentioning is that our private and
public/private keys are of 128/256/512/1024 bits which are
selected by the user at the time of simulation. Following
snapshot will better clarify our implementation work.
Figure 2 depicts Alice emulator side where user can
choose its location, size of the key and number of roots for
location tags.

Figure 2 Alice

Figure 3 is the Bob side. Its roots and key sizes are
automatically adjusted according to Alice inputs and
devising it on Bob side was not a necessity.

Figure 3 Bob

Two cases are simulated with this protocol which we will
now be discussing. We have used two cities for location
selection. One is Freemont and other is Hayward.

Case 1: When Alice & Bob both are in Freemont
Key Size used=1024 bits, Number of roots which are
inputs to generate the polynomial (Location tags) used=32
(each roots is of 4 bits giving a total of 128 bits=32*4)

Figure 4 Alice results

In Figure 4 the result come backs to Alice when she enters
the start button from Figure 2. It took almost 5887ms to
generate the results. This simulation time is recorded for
the performance measurement later.

Figure 5 Alice results

In Figure 5 we see that the decrypted sum calculated out to
be zero by the protocol using MMH implying Alice and

public String[] permute(String[] data)
{
 for (int i=0; i<data.length; i++) {
 int randomPosition =
rgen.nextInt(data.length);
 System.out.println("Random value
generated:"+randomPosition);
 String temp = permutation[i];
 permutation[i] =
permutation[randomPosition];
 permutation[randomPosition] = temp;
 }
 return permutation;
}

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.3, March 2015

7

Bob are in the vicinity.

Figure 6 Bob results

Figure 6 shows the encrypted coefficients received from
Alice by Bob from MMH which it will use for its
polynomial generation. Bob will also calculate this
polynomial with MMH encryption. Due to limited space
we are displaying few coefficients only.

Figure 7 Bob Results

Figure 7 shows Bob encrypted polynomial for its location
tags. Only few have been displayed in this screen.

Case 2: When Alice is in Freemont & Bob is in Hayward
Key Size=512 bits, Number of roots (Location tags) used=
8 (each root is of 16 bits giving total of 128 bits=8*16)

Figure 8 is the result when Alice & Bob are at different
locations. It took almost 396ms to complete the simulation

and generating the output that Bob is not in the
neighborhood.

Figure 8 Alice results

Figure 9 Alice Results

Figure 9 show the decrypted sum of the protocol which
resulted in a non- zero value and hence it concluded that
Bob is not near by.
Figure 10 shows encrypted coefficients received by Alice
in this case 2. These are only few coefficients shown out
of many.

Figure 10 Bob Results

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.3, March 2015 8

 Figure 11 Bob Results

Figure 11 show the few calculated polynomials of Bob for
its location in case number 2.

9. Performance Measurements

When the protocol was run on Android Studio with Geny
motion with key size of 1024 bits and 32 roots the average
time it took Alice to measure the proximity of Bob was 6
seconds. As the number of roots starts to decrease the
performance was getting better. While measuring
performance we are assuming that keys are already
generated that is we are not measuring the time of
generation of the keys. As a result we observed that there
is not a significant change in the simulation time. This
shows that the protocol is key size independent. The only
factor affecting its performance is the number of roots/
location tags. To compare the performance of the MMH
encryption 2 graphs have been plotted. One is between
different key sizes with same number of roots & other one
plot with different number of roots but same key sizes.

Figure 12 Comparison of Different Key sizes with same

number of roots

From figure 12 we analyses that with change in size of
encryption key there is no effect on the time taken to
simulate the protocol. But in Figure 13 we see huge effect
on simulation time when the numbers of location tags are
increased. we have tried running the same protocol in
eclipse with its android sdk and my experience tells me
that simulation gets pretty faster if Android studio is used
with Geny motion instead [15]. There is almost a
difference of 2-5 seconds in eclipse with android sdk,
depending on the roots used, compared to same protocol
being run in the Android studio with Geny Motion. Table
2 shows the simulation results of the protocol with
different key sizes and roots

Figure 13 Comparison of different number of roots for

same key size.

In Table 2 the column “Time taken” is the time it took to
start the protocol with MMH encryption and displaying the
results on the screen. It is the system time that Figure 4
and Figure 8 are displaying in their screen shots by the
name “System time”. Similarly by choosing different key
sizes and root sizes we have measured the time taken in
each case. The rows of the “Time Taken” are filled by
running the simulation 10-15 times and then taking
average of these values to fill up the rows of the table.
Table also lists columns of different encryption key sizes
and number of roots used to measure the performance.

10. Conclusions

Location privacy has evolved itself as a growing concern
among smart phone users. In this paper we implemented
MMH encryption to simulate Pinkas PM-semi-honest
protocol and have measured its performance. Earlier this

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.3, March 2015

9

protocol was implemented with complex and huge
computation encryption scheme like Paillier. But in this
paper we have proved that MMH encryption works for
Pinkas protocol assuring that it could be a good candidate
for the implemetation of Pinkas PM-Semi-Honest protocol
with far less computation overhead.

Table 2: Simulation Results with different key sizes and number of roots

Number of
roots key size Time taken

2 128 460ms
 256 469ms
 512 485ms
 1024 500ms

4 128 690ms
 256 699ms
 512 750ms
 1024 800ms

8 128 1570ms
 256 1600ms
 512 1690ms
 1024 1700ms

16 128 3210ms
 256 3250ms
 512 3290ms
 1024 3300ms

32 128 6700ms
 256 6820ms
 512 6900ms
 1024 7000ms

We ran MMH encryption with diffetent root sizes and
encryption key sizes and have successfully attained results
with it. The size of the encryption key has no signficant
change in simulation time of Pinkas PM-Semi honest
protocol with MMH encryption. The only factor that
effeted its performance were the number of the roots used
to create polynomial location tags demonstrated a
proportial increase in time. Our implementation results has
encouraged us the use of MMH encryption for real time
applicaions. The reduction in computation overhead with
MMH encryption embolds its use for mobile applications
where limited battery life is a key factor in determining the

performance of the protocols. More computation means
more power consumption resulting in less battery life and
hence MMH encryption inconvertibly becomes the
favorite. However, MMH encounters disadvantages like
known plaintext attacks and integrity attacks as decryption
is performed in modulo p, any unencrypted number x < p
will be deciphered as itself [17].

References
[1] A.Narayanan, N. Thiagarajan, M. Lakhani, M. Hamburg,

and D. Boneh. “Location privacy via private proximity
testing”, Network and Distributed System Security
Symposium, NDSS, 2011.

[2] Virrantaus, K., Markkula, J., Garmash, A., Terziyan, Y.V.,
2001.“ Developing GIS-Supported Location-Based
Services”, In: Proc. of WGIS’2001 – First International
Workshop on Web Geographical Information Systems.,
Kyoto, Japan. 423–432, 2001.

[3] Open Geospatial Consortium (OGC), Open
LocationServices.www.nttdocomo.com/corebiz/network/ind
ex.html Internet information on mobile networks, 2005.

[4] S.Mascetti, Claudio Bettini, Dario Freni, X. Sean Wang, X.
Sean Wang, Sushil Jajodia. “ Privacy-Aware Proximity
Based Services”, Tenth International Conference on Mobile
Data Management: Systems, Services and Middleware,
2009.

[5] J.Dam Nielsen, Jakob Illeborg Pagter, and Michael Bladt
Stausholm. “ Location Privacy via Actively Secure Private
Proximity Testing”, Fourth International Workshop on
SECurity and SOCial Networking, Lugano, 19 March 2012.

[6] C. Steinfield. “ The Development of Location Based
Services in Mobile Commerce”, Technology Management
for Reshaping the World. Portland International Conference,
2004.

[7] L. Barkuus, and Anind Dey. “ Location-Based Services for
Mobile Telephony: a Study of Users’ Privacy Concerns”,
9TH IFIP TC13 International Conference on
Human-Computer Interaction, 2003.

[8] J. Domingo-Ferrer. “A Provably Secure Additive and
Multiplicative Privacy Homomorphism”. Information
Security Conference, LNCS 2433, pp 471–483, January
2002.

[9] J. Domingo-Ferrer and J. Herrera-Joancomarti. “A privacy
homomorphism allowing field operations on encrypted
data”, I Jornades de Matematica Discreta i Algorismica,
Universitat Politecnica de Catalunya, March 1998.

[10] M. Freedman, K. Nissim, and B. Pinkas. “Efficient private
matching and set intersection”, In Proc. of Eurocrypt’ 04,
pages 1–19. Springer-Verlag, 2004.

[11] Hyungjick Lee, Jim Alves-Foss,Scott Harrison, “ The use of
Encrypted Functions for Mobile Agent
Security”,Proceedings of the 37th Hawaii International
Conference on System Sciences – 2004.

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.3, March 2015 10

[12] J. Domingo-Ferrer, “A new Privacy Homomorphism and
Applications”, Elsevier North-Holland, Inc, 1996.

[13] Gorti VNKV Subba Rao. “Secured Data Comparison in
Bioinformatics using Homomorphic Encryption Scheme”,
Global Journal of Computer Science and Technology.
Volume 1.2, 2009 Sep

[14] Mike Hamburg, Joint work with Arvind Narayanan,
Narendran Thiagarajan, Mugdha Lakhani, Dan Boneh
“Location Services with Built--In Privacy,” 2011

[15] http://www.quora.com/Which-is-better-Eclipse-or-Android-
Studio

[16] http://www.sitepoint.com/improved-android-emulation-geny
motion/

[17] Sachin Upadhye1, P.G. Khot2. “Homomorphic Encryption
Scheme & Its Application for Mobile Agent Security”,
International Journal of P2P Network Trends and
Technology(IJPTT), Dec 2013

[18] Alexander Lange ,”An Overview of Homomorphic
Encryption” , PKC 2012, 15th International Conference on
Practice and Theory in Public Key Cryptography, Irvine,
CA, USA

[19] Shahzadi Farah, M. Younas Javed, Azra Shamim and
Tabassam Nawaz.” An experimental study on Performance
Evaluation of Asymmetric Encryption Algorithms”,
Proceedings of the 3rd European Conference of Computer
Science (ECCS '12)

[20] http://www.google.com/patents/US20060245587
[21] Elgamal, Taher (1985). "A Public key Cryptosystem and A

Signature Scheme based on discrete Logarithms". IEEE
Transactions on Information Theory

[22] Ron Rivest, Adi Shamir and Leonard Adleman,
https://tools.ietf.org/html/rfc2437

[23] http://www.gps.gov/
[24] http://www.java.com/en/

Levent Ertaul received B.Sc. from
Anatolia University Turkey, in 1984,
M.Sc. from Hacettepe University,
Turkey, in 1987, and PhD degree from
Sussex University, UK, in 1994. After
working as an assistant professor (from
1994) in the Dept. of Electrical &
Electronics Engineering, Hacettepe
University, he moved to California State

University, East Bay in 2002. He is currently a full time
Professor at California State University Eastbay, USA in the
department of Math & Computer Science. He is actively
involved in security projects nationally and internationally. His
current research interests are Wireless Security, Ad Hoc Security,
Security in WSNs and Cryptography. He has numerous
publications in security issues.

Saleha Shakoor is a graduate student in California State
University, East Bay, CA, USA

