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Summary 
In the recent years smart phones have dramatically changed the 
face of the earth and the way the world operates by emerging 
itself as a pocket of technology. More then 50% of the smart 
phones owners use Location Based Services (LBS) of some kind 
everyday. The core component of the LBS is the proximity 
testing of users which determines if two mobile users are in 
vicinity to each other without claiming them to disclose their 
exact locations. In this paper we have worked on implementing 
Pinkas Partial Matching(PM)-Semi-Honest protocol using Mixed 
Multiplicative Homomorphic (MMH) encryption techniques that 
has the support of private proximity testing by utilizing location 
tags. This paper provides a practical assessment of proximity 
testing for LBS by implementing Partial Matching 
(PM)-Semi-honest protocol with MMH encryption. Android 
platform has been used for the implementation purposes of this 
protocol. 
Key words: 
Private-Set Matching & Intersection, Location Tags, MMH 
encryption, Location Based Services, PM-Semi-Honest Protocol. 

1. Introduction 

With the ongoing move of smart phones towards 
near-ubiquity, much of society has come to take these 
do-all devices for granted. According to one survey 
conducted by the “bitrebels.com”, more then 80% of the 
cell phone owners check their smart phones within 15 
minutes of waking up in the morning giving us a effulgent 
picture of how much everyday endeavors are influenced 
by this little device. The most significant feature of this 
device is Global Positioning System (GPS)[23] tracking 
that have virtually changed the concept of our society 
making concept of access and information available on the 
go at anytime and place. It embodies itself as pocket 
search engine empowering users to submit queries and 
receive their answers for any information they may desire 
or need. Such information can be gathered with respect to 
time and position by use of LBS [1]. Thus, one can define 
Location Based Services as-  
“Location Based Services are information services 
accessible with mobile devices through the mobile network 

and utilizing the ability to make use of the location of the 
mobile device” [2]  
There exist a number of LBS that includes Google 
Latitude, Foursquare, Loopt, Facebook places, and a large 
number of smart phone applications [4], [5]. One of the 
issues in LBS is the privacy which has been in debate for 
the recent years. Research and studies are being conducted 
to provide better privacy& security with this application. 
The primary challenge is that some of the people would 
dislike revealing their location information even to their 
closest friends at all times, yet allowing others to know 
some of the time [5].  
This paper proceeds with the discussion of Privacy & 
Security concerns related to LBS in Section 2 followed by 
Proximity Services and Location tags in Section 3 and 4 
respectively. Then Private Proximity Testing and Private 
Set Matching are discussed in section 5 and 6. Then 
PM-Semi Honest Protocol algorithm is explained in 
section 7 succeeded by the discussion of MMH encryption 
in section 8. The discussion is concluded at the end with 
the implementation of PM-Semi Honest Protocol with 
MMH encryption followed by the performance analysis of 
the implementation in section 9. 

2. Privacy and Security Concerns in LBS 

The subject of privacy is often addressed by the concern 
that how much of the sensitive information is to be kept 
secret in any application [7]. A substantial amount of 
privacy concern with the employment of LBS is the 
delivery of user precise location information with the 
un-trusted third parties. This concern applies to proximity 
services as well [1]. One of the biggest concerns is that it 
can be possible to compile a very detailed picture of 
someone’s movements if they are carrying a wireless 
device that communicates its location to network operators 
[6]. LBS providers must alleviate consumer privacy fears 
by implementing secure network and encryption 
technologies to curb illegal activity [6], [16]. In general, 
privacy-preserving systems for LBS services are expected 
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to satisfy Location, identity & tracking protection. 
Mutual authentication for security purposes should be 
implemented to prevent spoofing attacks. 

3. Proximity Services 

Proximity based services are a unique class of Location 
Based Services. These services inform users when they are 
within a certain distance of other people, businesses, or 
other things [10], [14]. Proximity testing is asymmetric 
which means one party will learn if the other party is 
nearby whereas the other party learns nothing [14]. In our 
paper we have demonstrated that it is indeed reasonable to 
deliver location functionality in a secure manner. In other 
words if the friends are nearby then they will be notified of 
their presence in the vicinity. No other information 
regarding their location or position will be revealed to 
either party. 
Let us consider an application of proximity testing, 
keeping in mind that different applications require 
different proximity granularity [1].  

• Alice and Bob who happened to be friends and 
wants to be serendipitously notified if they are in 
same shopping mall so that they can spend 
pleasant time together. Alternatively, Alice and 
Bob first meet online, but later decide to meet in 
person at a coffee shop. Alice arrives first and she 
wants to be notified when Bob arrives [1].  

• Alice would like to get dinner with her friend Bob 
who travels a lot and wants to know if he is in 
town. Here the proximity granularity is a wide 
geographic area [1].  

• Bob, a student lands at his college airport and 
wants to check if anyone from his college is 
currently at the airport so that he can share a ride 
with him or her to campus [1].  

• Alice is a manager who wants to automatically 
record who is present at her daily meetings. 
However, her employees do not want their 
location tracked. Privacy preserving proximity 
testing over this well organized group allows 
satisfying both requirements [1]. 

 
Figure 1. Three overlapping hexagonal  grids. A blue grid 

cell is highlighted 
 

4. Location Tags 

A location tag is a secret consociated with a point in space 
and time. It is an assembly of location features deduced 
from (mainly electromagnetic) signals present in the 
physical environment. The matching function can be based 
on Hamming distance, set distance, etc [1]. 
 
4.1 Properties of Location Tags 
 
The key properties of the location Tags are: 

• Unpredictability- It should not be possible to 
generate matching tags unless and until  nearby 

• Reproducibility- Two devices at same place & 
time produce matching tags (not necessarily 
identical) [17]. 

Location tags provide a different model for proximity 
testing. The main advantage is that since the location tags 
of the two parties need to match, spoofing the location is 
no longer possible, which stops online brute force attacks 
[1]. The main disadvantage is that users no longer have 
control over the granularity of proximity: the notion of 
neighborhood is now entirely dependent on the type of 
location tag considered [1], [17], [12]. 
 
4.2 Construction of Location Tags 
 
Several possible ways to extract location tags are [1]: 

• WiFi broadcast packets comprises of a variety of 
different protocols (e.g. source and destination IP 
addresses, sequence numbers of packets, and 
precise timing information all offer varying 
degrees of entropy) offering a rich potential for 
extracting location tags information. 

• WiFi Access point IDs: These points constantly 
advertise their presence using a combination of 
SSID and MAC Address which is already used by 
Skyhook for creating a database of ID-location 
mappings via “wardriving” [1]. 

• Bluetooth. Just like WiFi IDs, Bluetooth IDs are 
unique to each device giving it an advantage over 
WiFi IDs of almost always being associated with 
mobile rather than fixed devices, making 
Bluetooth-based location tags more time variable. 
The only limitation is the range making it a poor 
source of location tags [1]. 
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• GPS works by timing signals sent by a number of 
orbital satellites. GPS consists of several signals, 
including “P(Y)” (encrypted precision code) and 
“M-code” (military) [1]. 

• GSM: Cellular towers that are in range in any one 
time seem like a promising location tag in the 
future due to its space- and time varying 
characteristics such as signal strength. 

• Audio: In certain restricted conditions audio can 
serve as extractor for location for example music 
playing in background of coffee shop or a 
conversation in the meeting room.  

• Atmospheric gases: [1] the cell-phone-as-sensor 
project has experimented with CO, NOx and 
temperature sensors on cell phones and hopes this 
will become standard on smart phones so that it 
can be used for real-time pollution mapping and 
other applications. If these sensors ever become 
main stream, they are another potential source of 
location tags. 

5. Proximity testing using location tags 

Private set intersection is a well studied problem and an 
elegant solution was given by Freedman, Nissim and 
Pinkas [10]. The protocol of Freedman, Nissim and Pinkas 
makes use of a homomorphic encryption Scheme E that 
anyone can encrypt and Alice can decrypt. At the end of 
the following protocol, Alice learns |A ∩B| and Bob learns 
nothing [1]. 
So the protocol would work as follows:  

1. Alice generates a polynomial p from her set 
of location tags.  

2. Alice then sends the encrypted polynomial 
coefficients E(p) to Bob.  

3. Bob the calculates his own polynomial p(b) 
with his location tags and then encrypts it as 
E(p(b)).  

4. Then Bob picks a random number r on E(p) 
and computes E(r(p(b)) using Homomorphic  
encryption.  

5. Then Bob sends Alice the permutation of 
encryptions computed in earlier step.  

Alice then decrypts it and outputs the nonzero decryptions 
as intersection of A and B. 
 

6. Private Set Matching and Set Intersection 

The protocol follows the following basic structure. Alice 
defines a polynomial P whose roots are her inputs [10]: 

𝑷𝑷(𝒚𝒚) = (𝒙𝒙𝟏𝟏 − 𝒚𝒚)(𝒙𝒙𝟐𝟐 − 𝒚𝒚) … . . (𝒙𝒙𝒌𝒌 − 𝒚𝒚) = �𝜶𝜶𝒖𝒖𝒚𝒚𝒖𝒖
𝒌𝒌𝒌𝒌

𝒖𝒖=𝟎𝟎

 

She sends to Bob homomorphic encryptions of the 
coefficients of this polynomial. Bob uses the 
homomorphic properties of the encryption system to 
calculate the polynomial at each of his inputs. He then 
multiplies each result by a fresh random number r to get an 
intermediate result, and adds to it an encryption of the 
value of his input, i.e., Server bob computes Enc(r .P(y) + 
y). Therefore, for each of the elements in the intersection 
of the two parties' inputs, the result of this computation is 
the value of the corresponding element, whereas for all 
other values the result is random [10]. 

7. Pinkas Partial Matching (PM)-Semi-Honest 
Protocol using Location tags 

Working of this protocol will be explained with 
demonstration of an example. Assume the following [20]: 
Let Input: Client's input(Alice) is a set X={x1, . . . , xk}, 
Server's input (Bob) is a set Y={y1, . . . , yk}.  
The elements in the input sets are location tags taken from 
a domain of size N. 
1. Alice performs the following operations: 
(a) Alice selects the secret-key parameters for a 
semantically-secure homomorphic encryption scheme, and 
publishes its public keys and parameters. The plaintexts 
are in a field that contains representations of the N 
elements of the input domain. 
(b) Alice uses interpolation to compute the coefficients of 
the polynomial  
P(y) = (x1−y)*(x2−y)* . . . *(xk−y)=ak*yˆk+ . . . +a1*y+a0, 
of degree k, with roots x1, . . . , xk. 
(c) Alice encrypts each of the (k+1) coefficients by the 
semantically-secure homomorphic encryption scheme and 
sends to Server Bob the resulting set of ciphertexts, 
{Enc(a0), . . . , Enc(ak)}. 
Then, this information is communicated to Server Bob. 
2. Bob performs the following for every y in Y, 
(a) He uses the homomorphic properties to evaluate the 
encrypted polynomial at y. That is, Server Bob computes 
Enc(P(y))=Enc(ak*yˆk+ . . . +a1*y+a0). 
(b) Bob selects a random value r and computes 
Enc(r*P(y)). 
(c) Bob randomly permutes this set of k ciphertexts. 
Then Bob sends the result back to the Alice. 
Alice decrypts all k ciphertexts received. She locally 
outputs all values x in X for which there is a corresponding 
decrypted value. 
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In the original paper [10] the encryption scheme 
recommended was Pailler, developed by Pascal Paillier in 
Public-Key Cryptosystems Based on Composite Degree 
Residuosity Classes, and is semantically secure. It is an 
additively probabilistic and asymmetric algorithm which is 
homomorphic and self-binding. It states that given 
composite n and integer z, it is hard to determine if y exists 
such that z = yn (mod n2). In Paillier you choose two large 
prime numbers p and q which are randomly and 
independently selected of each other such that gcd (pq, 
(p-1)(q-1))=1 This property is assured if both prime 
numbers are of equal length [18]. You then compute n=pq 
and λ=lcmp(p-1,q-1). Then g is computed by taking a 
random number such that g ε Ẑn

2 such that L(gλ mod n2 ) 
is invertible modulo n where 𝑳𝑳 = 𝒙𝒙 = 𝒖𝒖−𝟏𝟏

𝒏𝒏
 where n and g 

are public encryption keys and p and q(λ) are private 
decryption keys respectively that is 
 

Encryption Keys(x,r)= gm mod n2 

Decryption Keys (y)= = 𝑳𝑳�𝒚𝒚𝝀𝝀 𝒎𝒎𝒎𝒎𝒎𝒎 𝒏𝒏𝟐𝟐�
𝑳𝑳�𝒈𝒈𝝀𝝀 𝒎𝒎𝒎𝒎𝒎𝒎 𝒏𝒏𝟐𝟐�

 
 
As far as performance analysis of Pailler encryption 
scheme is concerned, Pailler showed poor performance 
results [19].The encryption time of Paillier depicted huge 
time difference compared to RSA [22] and ElGamal [23]. 
RSA showed better performance over ElGamal and Paillier 
in term of encryption time and ElGamal showed better 
performance over RSA and Paillier in term of decryption 
time [19]. When throughput analysis was performed RSA 
showed better throughput over ElGamal and Paillier in 
encryption process and ElGamal showed better throughput 
over RSA and Paillier in decryption process [19].  Paillier 
showed worst result in encrypted file size with exponential 
increase of the input file size. The best result was shown 
by RSA. ElGamal, RSA. Paillier showed same exponential 
increase in decrypted file size with increase in input file 
size [19]. The main reason was the complex computation 
involved in the encryption and decryption process. Due to 
the complexity of Pailler we needed to find the encryption 
scheme that was simple and required less computation 
with better performance and required security and hence 
we opt for MMH. 

8. Mixed Multiplicative Homomorphism 
(MMH) 

In Homomorphic encryption schemes operations can be 
performed on the encrypted or cipher text just as they are 
performed on the plain text. A Homomorphic encryption 
scheme depicts the property of additive, multiplicative and 
mixed multiplicative homomorphism. For the 
implementation of PM-Semi honest protocol we have used 

mixed multiplicative homomorphism. In mixed 
multiplicative homomorphism, decrypting the product of 
one ciphertext plaintext is same as multiplication of two 
plaintext, represented as E(x*y) = E (x) * y. [8], [9], [11], 
[12]. Crypto system implements MMH using large prime 
numbers p and q that are secret for calculating a public 
parameter n such that n=p*q. The set of original plaintexts 
is in Zp ={ x|x <= p } and the set of ciphertexts is in Zn = 
{ x|x} whereas Qp = { a|a ∉ Zp } has the set of encryption 
clues. 
The encryption process chooses plain text 'x' ∈ Zp and a 
random number 'a' in Qp such that x = a mod p and 
ciphertext y is calculated as y = Ep (x) = a mod n. In the 
decryption process plaintext is recovered as x= Dp(y) = y 
mod p, where p and n are private public keys respectively. 
MMH has the property of additive, multiplicative and 
mixed multiplicative homomorphism. 
Here is a simple example for demonstration. Let the 
cryptosystem select p=13, q=5 from which we calculate 
n=p*q= 13*5=65. Let x1=3 and x2=7. Now x should be in 
a mod p that is x1=3=a mod p  3=94 mod 13 from 
which we get a=94 and now Ep(x1)= a mod n = 94 mod 
65 = 29.Similarly x2= 7 = a mod p 7=111 mod 13 from 
which we have a=111 and then Ep(x2)= a mod n=111 mod 
65=46. Now Ep (x1) * x2 = 29 * 7 =203 mod 65 = 8. If we 
now decrypt it that is Dp (8) = 8 mod 13 = 8, which is 
same as the plaintext x1 * x2 = 21 mod 13 = 8. This shows 
that mixed multiplicative homomorphism can be 
performed on the ciphertext, as if performed on the 
plaintext [13].This example shows simplicity of MMH 
giving it an advantage over Paillier’s complex encryption 
and decryption schemes. 

9. Implementation of Pinkas PM-semi-honest 
protocol with MMH encryption 

We have implemented the PM-Semi Honest protocol in 
Android studio with Geny Motion. Client Server model 
has been used to implement this protocol with the help of 
JAVA language [24]. Single emulator is run for both Alice 
& Bob users to speed up the simulation time.   
The detailed specification of the implementation is shown 
in the following table.  
In order to present a better insight into the implementation 
of the protocol I would demystify it with an example.  
Let’s assume Alice is in the vicinity of Bob. Now Alice 
wants to be notified of Bob’s presence in the neighborhood. 
Alice (Client) will generate its input set called roots from a 
domain of size N. In our implementation its 
X={x1,x2,….xk} of client Alice. The number of the roots 
generated for the location tags can be user choice. These 
roots represent the location tags associated with the user. 
These roots are generated randomly by the function 
Random Generator from Math Library of Java since 
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location tags are difficult to be calculated with the present 
hardware available. 
 

Table 1: Specification of Implementation 
Platform Intel® Core (TM) i7-2720QM 

CPU@2.20Ghz 
Installed RAM 4 GB( 3.24 
usable) 

Operating System  Windows 7 
Programming 
Language  

Java 

Run time 
Environment  

JRE 8 [24] 

Network Model TCP/IP Client/ Server Model 
IDE/Other 
Platforms 

Eclipse/Android Studio with 
Geny Motion 

Crypto Library Java.Security [24] 
Encryption mode MMH 
Key size & 
Security 
parameters 

Private/Public key selected by 
user .Options include 
128,256,512 & 1024 bits 

Input set User selects the number of roots 
(Location Tags). Options 
include 2,4,8,16 and 32 roots 

Domain 2 cities (Freemont, Hayward) 
 
The size of each root will add up to be total size of 128 
bits in our implementation. For example if 2 roots are 
selected then size of each of these roots will be 64 making 
total of 128 bits. In this way we have worked with 
maximum 32 roots, each of 4 bits for the total of 128 bits. 
For the sake of simplicity in our example we select 2 roots 
for Alice i.e. X= {2, 4} roots which are randomly breaded 
as mentioned earlier.  Remember 2 and 4 each are 64 bits 
giving a total of 128 bit location tags. In our case we have 
generated the roots as follows: 
 

 
 
Now Alice will employ these roots to generate a 
polynomial which is P(y)=(2-y)(4-y)= 8-6y+y2.  She will 
now encrypt this polynomial with the homomorphic 
scheme that is MMH. Coefficients 8, 6, 1 will be 
encrypted as follows: 
 

P=13 (Private key), q=5 ,n=p*q =65 (Public key) 
 a0 =8 , a1=-6, a2 =1 
For a0 we calculated a =99 using a0=a*mod p 
Enc(a0)=99*mod 65=34, sly for  
Enc(a1) =45 , Enc(a2)=40 

 
 
Now these encrypted coefficients will be sent to Server 
Bob. Bob will use these encrypted coefficients to generate 
polynomial at its location tags. Since Bob is in the 
neighborhood it will also yield the matching roots from 
domain of size N i.e. Y ={ 2,4}. A random number r will be 
generated and following will be executed: 
P(y)=(2-y)(4-y)= 8-6y+y2 , Let r=1 for simplicity 
r*Enc(a2)*y2 - r*Enc(a1)y + r*Enc(a0) 
 
These computations are done for all values of Y that’s 2, 4 
by using MMH homomorphic properties.  
 

 
 
After encryption random permutation is performed on K 
ciphertexts and is sent to client Alice. 
 
 

EncryptedPolynomial p = new 
EncryptedPolynomial(this); 
EncryptedCoefficient[] p_coefficients = new 
EncryptedCoefficient[this.coefficients.length*2-1]; 
for (int i=1; i <= this.coefficients.length; i++) { 
 for (int j=1; j <= plain_coefficients.length; j++) { 
  int l = i+j-2; 
  EncryptedCoefficient p2 
=this.coefficients[i-1].multiply(plain_coefficients[j-1
]); 
     if (p_coefficients[l] == null) { 
  p_coefficients[l] = p2; 
                } 
 else { 
   p_coefficients[l] = p_coefficients[l].add(p2); 
              } 

} 
} 
 

private EncryptedPolynomial 
getPolynomial(BigInteger []c) { 
        EncryptedPolynomial poly = null; 
        try { 

poly = new EncryptedPolynomial(c, pubkey); 
        } catch (BigIntegerClassNotValid 
bigIntegerClassNotValid) { 
          
bigIntegerClassNotValid.printStackTrace(); 
        } 
        return poly; 
    } 
 

SecureRandom random = new SecureRandom(); 
byte bytes[] = new byte[16]; // 128 bits are converted 
to 16 bytes; 
        for (int i = 0; i < rootsNum; i++) { 
            random.nextBytes(bytes); 
            BigInteger p = new 
BigInteger(totalBits/rootsNum, random); 
Random rand = new Random(); 
randP[i] = rand.nextInt(29 -11) + 11; 
            list.add(p[i]); 
} 
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Alice will execute depermutation function on these 
ciphertexts and will then place its input to this equation. If 
the sum is 0 they are near by else they are far. Since in our 
case they are near so output is 0. 
One thing worth mentioning is that our private and 
public/private keys are of 128/256/512/1024 bits which are 
selected by the user at the time of simulation. Following 
snapshot will better clarify our implementation work.  
Figure 2 depicts Alice emulator side where user can 
choose its location, size of the key and number of roots for 
location tags. 
 

 
Figure 2 Alice 

 
Figure 3 is the Bob side. Its roots and key sizes are 
automatically adjusted according to Alice inputs and 
devising it on Bob side was not a necessity. 

 
Figure 3 Bob 

Two cases are simulated with this protocol which we will 
now be discussing. We have used two cities for location 
selection. One is Freemont and other is Hayward.  
 
Case 1: When Alice & Bob both are in Freemont 
Key Size used=1024 bits, Number of roots which are 
inputs to generate the polynomial (Location tags) used=32 
(each roots is of 4 bits giving a total of 128 bits=32*4) 
 

 
Figure 4 Alice results 

 
In Figure 4 the result come backs to Alice when she enters 
the start button from Figure 2. It took almost 5887ms to 
generate the results. This simulation time is recorded for 
the performance measurement later. 

 

 
Figure 5 Alice results 

 
In Figure 5 we see that the decrypted sum calculated out to 
be zero by the protocol using MMH implying Alice and 

public String[] permute(String[] data) 
{ 
        for (int i=0; i<data.length; i++) { 
            int randomPosition = 
rgen.nextInt(data.length); 
            System.out.println("Random value 
generated:"+randomPosition); 
            String temp = permutation[i]; 
            permutation[i] = 
permutation[randomPosition]; 
            permutation[randomPosition] = temp; 
        } 
        return permutation; 
} 
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Bob are in the vicinity. 
  

 
Figure 6 Bob results 

 
Figure 6 shows the encrypted coefficients received from 
Alice by Bob from MMH which it will use for its 
polynomial generation. Bob will also calculate this 
polynomial with MMH encryption. Due to limited space 
we are displaying few coefficients only. 
 

 
Figure 7 Bob Results  

 
Figure 7 shows Bob encrypted polynomial for its location 
tags. Only few have been displayed in this screen. 
 
Case 2: When Alice is in Freemont & Bob is in Hayward 
Key Size=512 bits, Number of roots (Location tags) used= 
8 (each root is of 16 bits giving total of 128 bits=8*16) 
 
Figure 8 is the result when Alice & Bob are at different 
locations. It took almost 396ms to complete the simulation 

and generating the output that Bob is not in the 
neighborhood.  
 

 
Figure 8 Alice results 

 

 
Figure 9 Alice Results 

 
Figure 9 show the decrypted sum of the protocol which 
resulted in a non- zero value and hence it concluded that 
Bob is not near by.  
Figure 10 shows encrypted coefficients received by Alice 
in this case 2. These are only few coefficients shown out 
of many. 

 
Figure 10 Bob Results  
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 Figure 11 Bob Results  

 
Figure 11 show the few calculated polynomials of Bob for 
its location in case number 2. 

9. Performance Measurements 

When the protocol was run on Android Studio with Geny 
motion with key size of 1024 bits and 32 roots the average 
time it took Alice to measure the proximity of Bob was 6 
seconds. As the number of roots starts to decrease the 
performance was getting better. While measuring 
performance we are assuming that keys are already 
generated that is we are not measuring the time of 
generation of the keys. As a result we observed that there 
is not a significant change in the simulation time. This 
shows that the protocol is key size independent. The only 
factor affecting its performance is the number of roots/ 
location tags. To compare the performance of the MMH 
encryption 2 graphs have been plotted. One is between 
different key sizes with same number of roots & other one 
plot with different number of roots but same key sizes.  
  

 
Figure 12 Comparison of Different Key sizes with same 

number of roots 

From figure 12 we analyses that with change in size of 
encryption key there is no effect on the time taken to 
simulate the protocol. But in Figure 13 we see huge effect 
on simulation time when the numbers of location tags are 
increased. we have tried running the same protocol in 
eclipse with its android sdk and my experience tells me 
that simulation gets pretty faster if Android studio is used 
with Geny motion instead [15]. There is almost a 
difference of 2-5 seconds in eclipse with android sdk, 
depending on the roots used, compared to same protocol 
being run in the Android studio with Geny Motion. Table 
2 shows the simulation results of the protocol with 
different key sizes and roots 
 

 
Figure 13 Comparison of different number of roots for 

same key size. 
 
In Table 2 the column “Time taken” is the time it took to 
start the protocol with MMH encryption and displaying the 
results on the screen. It is the system time that Figure 4 
and Figure 8 are displaying in their screen shots by the 
name “System time”. Similarly by choosing different key 
sizes and root sizes we have measured the time taken in 
each case. The rows of the “Time Taken” are filled by 
running the simulation 10-15 times and then taking 
average of these values to fill up the rows of the table. 
Table also lists columns of different encryption key sizes 
and number of roots used to measure the performance.  

10. Conclusions 

Location privacy has evolved itself as a growing concern 
among smart phone users. In this paper we implemented 
MMH encryption to simulate Pinkas PM-semi-honest 
protocol and have measured its performance.  Earlier this 
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protocol was implemented with complex and huge 
computation encryption scheme like Paillier. But in this 
paper we have proved that MMH encryption works for 
Pinkas protocol assuring that it could be a good candidate 
for the implemetation of Pinkas PM-Semi-Honest protocol 
with far less computation overhead.  
 
Table 2: Simulation Results with different key sizes and number of roots 

Number of 
roots key size Time taken 

2 128 460ms 
  256 469ms 
  512 485ms 
  1024 500ms 
      
4 128 690ms 
  256 699ms 
  512 750ms 
  1024 800ms 
      
8 128 1570ms 
  256 1600ms 
  512 1690ms 
  1024 1700ms 
      

16 128 3210ms 
  256 3250ms 
  512 3290ms 
  1024 3300ms 
      

32 128 6700ms 
  256 6820ms 
  512 6900ms 
  1024 7000ms 

 
We ran MMH encryption with diffetent root sizes and 
encryption key sizes and have successfully attained results 
with it. The size of the encryption key has no signficant 
change in simulation time of Pinkas PM-Semi honest 
protocol with MMH encryption. The only factor that 
effeted its performance were the number of the roots used 
to create polynomial location tags demonstrated a 
proportial increase in time. Our implementation results has 
encouraged us the use of MMH encryption for real time 
applicaions. The reduction in computation overhead with 
MMH encryption embolds its use for mobile applications 
where limited battery life is a key factor in determining the 

performance of the protocols. More computation means 
more power consumption resulting in less battery life and 
hence MMH encryption inconvertibly becomes the 
favorite. However, MMH encounters disadvantages like 
known plaintext attacks and integrity attacks as decryption 
is performed in modulo p, any unencrypted number x < p 
will be deciphered as itself [17].  
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