
IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.3, March 2015 11 

A Comparative Study between Various Sorting Algorithms 

Jehad Hammad †  
 

† Faculty of Technology and Applied Sciences, Al-Quds Open University, Palestine 

Summary 
The objectives of this paper are to provide a solid foundation for 
the sorting algorithms and to discuss three of them (bubble sort, 
selection sort and gnome sort). In this work, the reader will be 
able to know the definition of algorithms and recognize the major 
design strategies of algorithms, including Divide and Conquer, 
Dynamic Programming, The Greedy-Method and Backtracking 
and Branch-and-Bound. The aim of this comparison between the 
three algorithms is to know the running time of each one 
according to the number of input elements. C-Sharp language is 
used in the implementation. The result of this implementation 
shows no specific algorithm can solve any problem in absolute. 
Key words: 
Bubble sort, selection sort, gnome sort, Divide-and-Conquer, 
Dynamic Programming, The Greedy-Method and Backtracking 

1. Introduction 

"An algorithm is a complete, step-by-step procedure for 
solving specific problem. Each step must be 
unambiguously expressed in terms of a finite number of 
rules and guaranteed to terminate in a finite number of 
applications of the rules. Typically, a rule calls for the 
execution of one or more operations." [2]. The use of 
algorithms did not begin with the introduction of 
computers, people using them while they are solving 
problems. We can describe algorithms as a finite sequence 
of rules which describes and analyses the algorithms. The 
major design strategies for the algorithms will be  
described in section three. Sorting has attracted the 
attention of many researchers because information is 
grown rapidly and this requires a stable sorting algorithms 
in taking into account the vectors of performance, stability 
and memory space. Each sorting algorithm has its own 
technique in executing; besides, every problem can be 
solved with more than one sorting algorithms. In this study, 
we will compare between the sorting algorithms based on 
best-case B(n), average-case A(n), and worst-case 
efficiency W(n) [6] that refer to the performance of the 
number n of elements. The Big O notation is used to 
classify algorithms by how they respond to changes in 
input size. [7, 9] 

2. Sorting 

Sorting is the process of arranging data in specific order 
which benefits searching and locating the information in an 
easy and efficiency way. Sorting algorithms are developed 
to arrange data in various ways; for instance, an array of 
integers may be sorted from lower to highest or from 
highest to lower or array of string elements may sorted in 
alphabetical order. Most of the sorting algorithms, like 
selection sort, bubble sort and gnome sort algorithms [6], 
use swapping elements technique until reaching the goal. 
Each sorting algorithm is chosen based on best-case, 
average-case and worst-case efficiency. Table 1 shows the 
order of the best-case, average-case and worst case for 
some of sorting algorithms.    

Table 1: Summary of the best-case, average-case and worst-case[2] 

Algorithm B(n) A(n) W(n) 

HornerEval n n n 

Towers 2n 2n 2n 
LinearSearch 1 n n 
BinarySearch 1 logn logn 
Max, Min , 

MaxMin n n n 
InsertionSort n n2 n2 
MergeSort nlogn nlogn nlogn 
HeapSort nlogn nlogn nlogn 
QuickSort nlogn nlogn n2 
BubbleSort n n2 n2 

SelectionSort n2 n2 n2 
GnomeSort n n2 n2 

3. Major Design Strategies for the algorithms 

The main aspect of design algorithms is to produce a 
solution which gives sufficient run time. Bellow, there is a 
brief overview of each strategy 

3.1  Divide-and-Conquer 

 Manuscript received March 5, 2015 
Manuscript revised March 20, 2015 



IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.3, March 2015 12 

First, the sequence to be sorted A is partitioned into two 
parts, such that all elements of the first part B are less than 
or equal to all elements of the second part C (divide). Then 
the two parts are sorted separately by recursive application 
of the same procedure (conquer). Recombination of the 
two parts yields the sorted sequence (combine). [2] Figure 
1 illustrates this approach. 
 

 

Fig. 1  Divide-and-Conquer Strategy.  

3.2 Dynamic Programming 

Like divide-and-conquer, dynamic programming technique 
builds a solution to a problem from solution to sub-
problems, and all sub-problems must be solved before 
proceeding to next sub-problems [2]. For instance, 
Dynamic programming version of Fibonacci. 

Fibonacci(n) 
If n is 0 or 1, return 1 
Else solve Fibonacci(n-1) and Fibonacci(n-2) 
Look up value if previously computed 
Else recursively compute 
Find their sum and store 
Return result 

The O(n) for  solving Fibonacci is (n-2).  

3.3 The Greedy Method 

It is a hoping algorithm that solves the problem by 
choosing an optimal choice for the solution that leads to 
the goal but that will coast much time. [2] Figure 2 shows a 
case of greedy method to reach the goal G 

3.4 Backtracking and Branch-and-Bound 

Backtracking is using depth-first search in the space tree 
while Branch-and-Bound is using the breadth-first search. 
Both depend on how to take a decision to reach the 
solution; for example. in traveling salesman problem(TSP), 

an algorithm must keep tracking with shortest path and cut-
off any tour who's distance exceed the current short one [2]. 

  

Fig. 2  Greedy Method case.  

4.  Implemented Sorting Algorithms 

The paper in this section will discuss the technique of three 
sorting algorithms (bubble sort, selection sort and gnome 
sort). 
 
4.1 Selection sort algorithm 

Selection sort is the simplest according to sorting 
techniques. As shown in figure 3 in order to sort an array 
of size n, selection find the minimum value, swap it into 
the first position, then repeat searching and swapping on 
the remaining (n-1) elements. [1] 

We concluded 

        
 
Big O notation O(n2) for the three cases (Best, Average 
and worst) is the same since selection sort algorithm 
continue sorting even if the remaining elements in the array 
is already sorted, in figure 3 after loop3 no need to do 
more sorting [4, 3]. Selection algorithm is easy for 
implementation and useful for sorting small data as it does 
not occupy a large space of memory, but it is inefficient for 
large list. [5] 
 



IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.3, March 2015 13 

 

Fig. 3  Greedy Method  

4.2  Bubble sort algorithm 

Bubble sort starts comparing the last item M in list with the 
(M-1) and swaps them if needed.  The algorithm repeats 
this technique until the required order as shown in the 
Pseudo code: 

For  i = 1:n, 
             swapped = false 
             for  j = n:i+1, 
                        if a[j] < a[j-1], 
                                     swap a[j,j-1] 
                                     swapped = true 
             break if not swapped 
end 

In case of sorted data, bubble sort takes O(n) (best-case) 
time, since it passes over the items one time.  But it takes 
O(n2) time in the average and worst cases because it 
requires at least 2 passes through the data.1) Advantage: 
Simplicity and ease-of-implementation.2) Disadvantage: 
Code inefficient.[3]  

               O(n2) = n + (n + 1) + (n + 2) + :: + 1 

4.3  Gnome sort algorithm 

Gnome sorting algorithm is similar to bubble sort [4]. The 
movement of the elements depends on series of swapping 
and no need for nested loops to reach the final order of the 
list. The algorithm always finds the first place where tow 
adjacent elements are in the wrong order and swaps them 
as shown in Pseudo-code 

function gnome(a[])  
               i := 1 
              while i < a[].length 
                           if (a[i] >= a[i-1]) 
                           i++ 
              else 
                           swap a[i] and a[i-1] 
                           if (i > 1) 
                           i-  
                           end if 
              end if 
              end while 
 end function 

If the data is already sorted, gnome sort takes O(n) (best-
case) time.  This is because it passes over the items one 
time without swapping though taking O(n2) time in the 
average and worst cases because of requiring at least 2 
passes through the data as bubble sort algorithm. [8] 

5.  Performance comparison between the 
implemented sorting Algorithms 

In this work, the selection sort, bubble sort and gnome sort 
algorithms have been implemented by using c-sharp 
programming language that calculates the executing time at 
the same input data on the same computer (windows 7 
professional 64-bit operating system having Intel Core i5 
and 4GB installed memory). Stopwatch timer in c-sharp is 
used to measure the running time in milliseconds. 

The unsorted data-set has the size of 5000,10000,20000 
and 30000 also 30000 already sorted data. The experiment 
is executed in low different technique. The first one is by 
doing the test four times on every unsorted data for the 
three sorting algorithms as shown in table 2. The second 
one is also by doing the test four times on the sorted data 
for the three algorithms as shown in table 3. 

Table 2: Running time for unsorted items. 
First Run(Time in Milliseconds) 

N items Selection sort Bubble sort Gnome sort 
5000 117 248 119 

10000 459 1030 483 
20000 1851 3899 1934 
30000 3734 9446 4323 

Second Run(Time in Milliseconds) 



IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.3, March 2015 14 

5000 115 352 119 
10000 459 926 461 

20000 1851 4236 1858 
30000 3696 7516 3116 

Third Run(Time in Milliseconds) 
5000 116 251 119 

10000 463 1043 465 

20000 1579 4099 1810 
30000 3110 5594 3391 

Fourth Run(Time in Milliseconds) 
5000 116 248 119 

10000 457 957 483 

20000 1534 3636 1621 
30000 3995 8553 4438 

Average Run(Time in Milliseconds) 
5000 116 249.75 119 

10000 459.5 989 473 

20000 1703.75 3967.5 1805.75 
30000 3633.75 7777.25 3817 

Table 3: Running time for sorted items. 

First Run(Time in Milliseconds) 

N Sorted  items Selection sort Bubble sort 
 

Gnome sort 

30000 4979 4054 0 

Second Run(Time in Milliseconds) 

30000 2919 2991 0 

Third Run(Time in Milliseconds) 
30000 3608 4035 0 

Fourth Run(Time in Milliseconds) 
30000 4077 4038 0 

Average Run(Time in Milliseconds) 

30000 3670.75 3779.5 0 

6.  Results and Discussions 

We can observe from the table 2 that selection Sort is 
taking the least time in all cases as shown in figure 4, 
figure 5, figure 6 and figure 7. 

 

Fig. 4 first run for unsorted items  

 

Fig. 5  Second run for unsorted items  

 

Fig. 6  Third run for unsorted items  



IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.3, March 2015 15 

 

Fig. 7  Fourth run for unsorted items  

In figure 8, the average time for selection sort shows that 
no big different that indicates that O(N2)time for best, 
average and worst cases are the same.  Bubble and gnome, 
however, show that in best case O(N)time and O(N2) time 
for average and worst cases. 

 

Fig. 8  Average run for unsorted items  

Figure 9 shows that the average time for selection sort in 
terms of sorted or unsorted data is the same which 
concludes that O(N2) time for best, average and worst 
cases are the same and bubble sort has the same 
performance whether the data is sorted or not. Gnome 
shows good performance in case the data is sorted and the 
best case is O(1) time. 

7.  Conclusion 

This paper discuss a comparison between three sorting 
algorithms (selection sort, bubble sort and gnome sort). 
The analysis of these algorithms are based on the same 
data and on the same computer.  It has been shown that 
gnome sort algorithm is the quickest one for already sorted 
data but selection sort is more quick than gnome and 
bubble in unsorted data. Bubble sort and gnome sort swap 
the elements if required. In selection sort, however, it 
continues sorting even if the elements are already sorted. 
Doing more comparison between more different sorting 
algorithms is required since no specific algorithm that can 
solve any problem in absolute. 

 

Fig. 9  Average run for sorted items  

Acknowledgments 

The author would like to express his cordial thanks to Mr. 
Jumah Zawhera from Al-Quds Open University – 
Bethlehem Branch (QOU) for his valuable advice as well 
as to Dr. Yousef Abuzir the Dean of Faculty of 
Technology and Applied Sciences (FTAS). 
References 
[1] url:http://www.cs.ucf.edu/courses/cop3502/nihan/spr03/sort

.pdf 
[2] Kenneth A. Berman and Jerome L. Paul. Algorithms:   

Sequential, Parallel, and Distributed. Computer Science and 
Engineering. Thomason course technology, 2002. isbn:     0-
534-42057-5. 

[3] Md. Khairullah. Enhancing Worst Sorting Algorithms. 
Computer Science and Engineering. International Journal of 
Advanced Science and Technology, 2013.  

[4] Khalid Suleiman Al-Kharabsheh et al. Review on Sorting 
Algorithms A Comparative Study. Computer Science. 
International Journal of Computer Science and Security 
(IJCSS), 2013. 



IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.3, March 2015 16 

[5] Ramesh Chand Pandey. Study and Comparison of various 
sorting algorithms. Computer Science and Engineering. 
2008. isbn: 80632019. 

[6] Pankaj Sareen. Comparison of Sorting Algorithms                   
(On the Basis of Average Case). Department of Computer 
Applications. International Journal of Advanced Research in 
Computer Science and Software Engineering, 2013. isbn: 
2277 128X. 

[7] url 
https://classes.soe.ucsc.edu/cmps102/Spring04/TantaloAsy
mp.pdf 

[8] Paul E. Black, "big-O notation", in Dictionary of 
Algorithms and Data Structures [online], Paul E. Black, ed., 
U.S. National Institute of Standards and Technology. 11 
March 2005. Retrieved December 16, 2006. 

[9] Sarbazi-Azad, Hamid (2 October 2000). "Stupid Sort: A 
new sorting algorithm". Newsletter (Computing Science 
Department, Univ. of Glasgow) (599): 4. Retrieved 25 
November 2014. 

 
 

Jehad A. H. Hammad received the M.S. 
degree in Computer science from the 
School of Computer Sciences, University 
Sains, Malaysia (USM) in 2009. His 
research interests include Algorithms, 
Parallel and Distributed Computing 
Architecture, Advance Network and Data 
Communication, e-learning, and virtual 
classes. Currently, Hammad is Faculty 

member at Al-Quds Open University, Bethlehem branch. 
He was a supervisor and member of inclusive Education team 
at the Directorate of Education, Bethlehem, Palestine. The 
Author is looking forward to further research in the field of 
Algorithms, Distributed Computing  and  related studies. 
 

http://www.nist.gov/dads/HTML/bigOnotation.html
http://sina.sharif.edu/%7Eazad/stupid-sort.PDF
http://sina.sharif.edu/%7Eazad/stupid-sort.PDF

	W(n)
	A(n)
	B(n)
	Algorithm
	First Run(Time in Milliseconds)
	Gnome sort
	Bubble sort
	Selection sort
	N items
	First Run(Time in Milliseconds)
	Gnome sort
	Bubble sort
	Selection sort
	N Sorted  items

