
IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.3, March 2015 24

Horizontal Aggregations In SQL To Generate Data Sets For Data
Mining Analysis In An Optimized Manner

Rekha S. Nyaykhor
M. Tech, Dept. Of CSE, Priyadarshini Bhagwati College of

Engineering, Nagpur, India

Nilesh T. Deotale
Asst. Professor, Dept. Of CSE, Priyadarshini Bhagwati

College of Engineering, Nagpur, India

ABSTRACT
Data mining is the domain which has utility in real world
applications. Data sets are prepared from regular transactional
databases for the purpose of data mining. However, preparing
datasets manually is time consuming and tedious in nature as it
involves aggregations, sub queries and joins. Moreover the
traditional SQL Structured Query Language) aggregations such as
MAX, MIN etc. can generate single row output which is not
useful in generating datasets. Therefore it is essential to build
horizontal aggregations that can generate datasets in horizontal
layout. These data sets can be used further for data mining in the
real world applications. This paper focuses on building user-
defined horizontal aggregations such as PIVOT, SPJ(SELECT
PROJECT JOIN) and CASE whose underlying logic uses SQL
queries.
Keywords-
Data Mining, Horizontal Aggregations, PIVOT, SQL, Data

1. Introduction

Horizontal aggregation is new class of function to return
aggregated columns in a horizontal tabular layout. So many
algorithms are required datasets with horizontal layout as
input with several records and one variable per column.
Managed large data sets without DBMS support can be a
more difficult task. Different subsets of data points and
dimensions are more flexible, easier and faster to do inside
a relational database with SQL queries than outside with
alternative tool. Horizontal aggregations can be performed
by using operator; it is easily implemented inside a query
processor, like a select, project and join operations. PIVOT
operator on tabular data that exchange rows, enable data
transformations useful in data modelling, data analysis, and
data presentation. There are many existing functions and
operators for aggregation in SQL.

In our horizontal aggregation provides a interface to
generate SQL code from a data mining tools. This SQL
code is further used to generate SQL queries, optimizing
them and testing them for correctness. This SQL code
reduces manual work in creating data sets for data mining
project. Since SQL code is automatically generated by
horizontal aggregation, it is easy and likely to be more
efficient than SQL code written by human effort. A person
who does not know SQL well or someone who is

not familiar with the database schema (e.g. a data mining
practitioner) can easily generate the SQL queries. Hence,
data sets can be created in less time. The data set can be
created inside the DBMS itself. In modern database
environments, they used to export de-normalized data sets
to cleaned and transformed outside a DBMS by using
external tools (e.g. statistical packages). But sending large
tables outside a DBMS is time taking, creates inconsistent
copies of the same data and it will cause the compromise of
database security. So, we are proposing a more effective,
better migrated and more secure solution than external data
mining tools. A horizontal aggregation needs just small
syntax extension to existing SQL aggregate functions.
Alternatively, horizontal aggregations can be used to
generate SQL code from a data mining tool to build data
sets for data mining analysis.

2. RELATED WORK

SQL is the de facto standard to interact with relational
databases. It is widely used in all kinds of applications
where connectivity to database containing valuable
business data is required. SQL provides commands of
various categories such as DML, DDL, and DCL. Using
SELECT query it is possible to use aggregations, sub
queries and joins. The vertical aggregations supported by
SQL include COUNT, MIN, AVG, MAX and SUM. These
are known as aggregate functions as they produce summary
of data [5]. The output of these functions is in the form of
single row values. These values can’t be directly used for
data mining. Therefore it is essential to use some data
mining procedures in order to generate data sets.

Association rule mining [6] is used in OLAP applications
as they can generate trends in the data [7]. In this paper we
extend the SQL aggregate functions in order to build new
constructs namely PIVOT, SPJ and CASE. SQL queries are
used in clustering algorithms also as explored in [5].
Spreadsheet like operations as extensions to SQL queries
are proposed in [8]. The paper also discussed optimizations
for joins and other operations. However, it is known that
CASE and PIVOT can be used to avoid joins. New class of
aggregations can be generated by using algebra that has
been used traditionally [9]. In fact this paper focuses on
generating new class of aggregations known as horizontal
aggregations which will optimize the joins as presented in

Manuscript received March 5, 2015
Manuscript revised March 20, 2015

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.3, March 2015

25

[10]. For optimizing queries tree-based plans are used
traditionally [11].

On aggregations also there is lot of research found in the
literature. Literature also includes cube queries and cross
tabulations [12]. Relational tables can unpivoted as
presented din [13]. Transformations are available that can
be used for horizontal aggregations [14]. Unpivot and
TRANSPOSE operators are similar. When compared with
PIVOT transpose can reduce the number of operations
required. They have inverse relationship between them.
They can produce vertical aggregations and decisions tree
required by data mining. Both operations are available in
SQL Server [15].

Horizontal aggregations are also presented by researchers
in [16] and [17] with known limitations. The limitation is
that the resultant data cannot be directly used for data
mining. In this paper we proposed new operators that are
best used for horizontal aggregations. The results of these
operations can be used for data mining purposes further.
The proposed operations include SPJ, PIVOT and CASE.

3. DEFINITIONS

Let F be a table having a simple primary key K represented
by an integer, p discrete attributes and one numeric attribute:
F(K;D1;D2;... …..;Dp;A). In OLAP terms, F is a fact table
with one column used as primary key, p represents distinct
columns and one measure column passed to standard SQL
aggregations. F is assumed to have a star schema to simplify
exposition. Column K will not be used to compute
aggregations. Dimension lookup tables will be based on
simple foreign keys. That is, one dimension column Dj will
be a foreign key linked to a lookup table that has Dj as
primary key. Input table F size is called N. That is, |F| = N.
Table F represents a temporary table or a view based on a,
star join, query on several tables. Other two main tables
used in our proposed method are Vertical Table (FV) and
Horizontal Table (FH).

3.1 Example

Fig. 1 gives an example showing the input table F, a
traditional vertical sum() aggregation stored in FV , and a
horizontal aggregation stored in FH. The basic SQL
aggregation query is:

SELECT D1, D2, sum(A)
FROM F
GROUP BY D1, D2
ORDER BY D1, D2;

Fig. 1 Example of F, FV, and FH.

As seen in fig. 1, sample data is given in input table.
Vertical aggregation result is presented in (b). In fact the
result generated by SUM function of SQL is presented in
(b). Horizontal aggregation results are presented in (c). .In
FV, D2 consist of only two distinct values X and Y and is
used to transpose the table. The aggregate operation is used
in this is sum (). The values within D1 are repeated, 1
appears 3 times, for row 3, 4 and, and for row 3 & 4 value
of D2 is X & Y. So D2X and D2Y are newly generated
columns in FH.

4. HORIZONTAL AGGREGATIONS

We introduce a new class of aggregations that have similar
behaviour to SQL standard aggregations, but which produce
tables with a horizontal layout. In contrast, we call standard
SQL aggregations vertical aggregations since they produce
tables with a vertical layout. Horizontal aggregations just
require a small syntax extension to aggregate functions
called in a SELECT statement. Alternatively, horizontal
aggregations can be used to generate SQL code from a data
mining tool to build data sets for data mining analysis.

4.1 Existing Method

Our main goal is to define a template to generate SQL code
combining aggregation and transposition (pivoting). A
second goal is to extend the SELECT statement with a
clause that combines transposition with aggregation.
Consider the following GROUP BY query in standard SQL
that takes a subset L1, L2,.....Lm from D1, D2,...., Dp:

SELECT L1, L2,......,Lm, sum(A)
FROM F
GROUP BY L1, L2,,......,Lm;

This aggregation query will produce a wide table with m
+ 1 columns (automatically determined), with one group for
each unique combination of values L1, L2,......, Lm and one
aggregated value per group (sum(A) in this case). In order
to evaluate this query the query optimizer takes three input
parameters:

• The input table F,

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.3, March 2015 26

• The list of grouping columns L1, L2,......,Lm;

• The column to aggregate (A).

4.2 Proposed Syntax in SQL

Here we are explaining SQL aggregate functions with a
extension of BY clause followed with a list of columns to
produce horizontal set of numbers.

SELECT L1;L2;.......Lm, H(A BY R1;R2.......;Rk)
FROM F
GROUP BY L1;L2;.......Lm;

The sub group columns R1;R2;……Rk should be a
parameter of aggregation. Here H() represents SQL
aggregation. It contains at least one argument represented
by A. The result rows are represented by L1;L2;.......;Lm in
group by clause. (L1;L2;.......Lm)∩ (R1;R2; …...Rk) = ∅.
We have tried to save SQL evolution semantics as possible.
And also we have to make efficient evolution mechanisms.
So we are proposing some rules.

• The GROUP BY clause is optional.
• If GROUP clause is present, there should not be a

HAVING clause.
• The transposing BY clause is optional.
• When BY clause is included, horizontal

aggregation reduces the vertical aggregation.
• Horizontal aggregation may combine with vertical

aggregation or other horizontal aggregation on the
same query.

• Till F does not change, horizontal aggregation can
be freely combined.

4.3 SQL Code Generation

In this section, we discuss how to automatically generate
efficient SQL code to evaluate horizontal aggregations. We
start by discussing the structure of the result table and then
query optimization methods to populate it. We will prove
the three proposed evaluation methods produce the same
result table FH.

4.3.1 Locking and Table Definition

• Locking

In order to get a consistent query evaluation it is necessary
to use locking [9], [19]. The main reasons are that any
insertion into F during evaluation may cause inconsistencies:

• It can create extra columns in FH, for a new
combination of R1;R2; ...;Rk;

• It may change the number of rows of FH, for a new
combination of L1;L2...;L m;

• It may change actual aggregation values in FH.

In other words the SQL statement becomes long transaction.
Horizontal aggregation can operate on static database
without consistency problem.

• Result Table Definition

Let the result table be FH. As mentioned FH has d
aggregation columns, plus its primary key. The horizontal
aggregation function H() returns not a single value, but a
set of values for each group L1;L2;...;Lm. Therefore, the
result table FH must have as primary key, the set of
grouping columns {L1;L2;...;Lm} and as non key columns
all existing combinations of values R1;R2;...;Rk. We get the
distinct value combinations of R1;R2;...;Rk using the
following statement.

SELECT DISTINCT R1;R2;......;Rk
 FROM F;

Assume this statement returns a table with d distinct rows.
Then each row is used to define one column to store an
aggregation for one specific combination of dimension
values. Table FH that has {L1;L2;...;Lm} as primary key
and d columns corresponding to each distinct subgroup.
Therefore, FH has d columns for data mining analysis and j
+ d columns in total, where each Xj corresponds to one
aggregated value based on a specific R1;R2;...;Rk values
combination.

4.4 Example

We are using the above some rules and created horizontal
table. Assume we want to summarize sales information with
one store per row for one year sales. In more detail, we
need the sales amount broken down by day of the week, the
number of transactions by store per month, the number of
items sold by department and total sales. The result is
shown in table 2.

5. QUERY EVALUATION mETHODS

Horizontal aggregation is evaluated by the following
methods as defined:

5.1 SPJ Method

It is based on standard relational algebra operators (SPJ
queries). The basic idea is to create one table with a vertical
aggregation for each result column, and then join all those
tables to produce another table. It is necessary to introduce
an additional table F0 that will be outer joined with
projected tables to get a complete result set. The optimized
SPJ method code is follows:

INSERT INTO FH
SELECT F0.L1, F0.L2,....,F0.Lm,
 F1.A, F2 .A,......,Fn .A

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.3, March 2015

27

FROM F0
LEFT OUTER JOIN F1
ON F0. L1= F1. L1 and. . . and F0. Lm= F1. Lm

LEFT OUTER JOIN F2
ON F0. L1= F2. L1 and. . . and F0. m= F2. Lm

LEFT OUTER JOIN Fn
ON F0. L1= Fn. L1 and. . . and F0. Lm= Fn. Lm

5.2 PIVOT Method

The pivot operator is a built-in operator which transforms
row to columns. It internally needs to determine how many
columns are needed to store the transposed table and it can
be combined with the GROUP BY clause. Since this

operator can perform transposition it can help in evaluating
horizontal aggregation. The optimized PIVOT method SQL
is as follows:

SELECT DISTINCT R1
FROM F; /*produces v1,………,vd*/
SELECT
 L1,L2,…,Lm
 ,v1,v2,….,vd
INTO FH
FROM (
 SELECT L1,L2,…..,Lm, R1,A
 FROM F) Ft
 PIVOT(
 V(A) FOR R1 in (v1,v2,…,vd)
) AS P;

5.3 CASE Method

It can be used in any statement or clause that allows a valid
expression. The case statement returns a value selected
from a set of values based on Boolean expression. The
Boolean expression for each case statement has a
conjunction of K equality comparisons. Query evaluation
needs to combine the desired aggregation with “case”
statement for each distinct combination of values of
R1;R2……..,Rk. The optimized case method code is as
follows:

SELECT DISTINCT R1,…..,Rk
 FROM Fv;
 INSERT INTO FH
 SELECT L1,L2,....,Lm

 ,sum(CASE WHEN R1=v11 and . . . Rk=vk1
 THEN A ELSE null END)

,sum(CASE WHEN R1=v1n and . . . Rk=vkn
THEN A ELSE null END)

 FROM Fv
 GROUP BY L1,L2,. . .,Lm ;

6. Conclusion AND future work

In this paper we extended three aggregate functions such as
CASE, SPJ and PIVOT. These are known as horizontal
aggregations. We have achieved it by writing underlying
constructs for each operator. When they are used, internally
the corresponding construct gets executed and the resultant
data set is meant for OLAP (Online Analytical Processing).
In order to prepare real world datasets that are very much
suitable for data mining operations, we explored horizontal
aggregations by developing constructs in the form of
operators such as CASE, SPJ and PIVOT. Instead of single
value, the horizontal aggregations return a set of values in
the form of a row. The result resembles a multidimensional
vector. We have implemented SPJ using standard relational
query operations. The CASE construct is developed
extending SQL CASE. The PIVOT makes use of built in
operator provided by RDBMS for pivoting data.
In future, this work can be extended to develop a more
formal model of evaluation methods to achieve better
results. Then we can also develop more complete I/O cost
models.

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.3, March 2015 28

REFERENCES
[1] Gray, B., et al., (1996), “Data cube: A relational aggregation

operator generalizing group-by, cross-tab and subtota”l. In
ICDE Conference, pages 152.159.

[2] E.F. Codd,(1979), “Extending the database relational model
to capture more meaning”. ACM TODS, 4(4):397.434.

[3] Muley, S., et al., (2013), “Query Optimization Approach in
SQL to prepare Data Sets for Data Mining Analysis”,
International Journal of Computer Trends and Technology
(IJCTT) – volume4Issue8,pp 1-5.

[4] Blakeley, R., et al., (2008), “.NET database programmability
and extensibility in Microsoft SQL Server”. In Proc. ACM
SIGMOD Conference, pages 1087.1098.

[5] C. Ordonez, (2006), “Integrating K-Means Clustering with a
Relational DBMS Using SQL,” IEEE Trans. Knowledge and
Data Eng., vol. 18, no. 2, pp. 188-201.

[6] Wang, Z., et al., (2003), “ATLAS: A Small But Complete
SQL Extension for Data Mining and Data Streams,” Proc.
29th Int’l Conf. Very Large Data Bases (VLDB ’03), pp.
1113- 1116.

[7] Sarawagi, S., et al’, (1998), “Integrating Association Rule
Mining with Relational Database Systems: Alternatives and
Implications,” Proc. ACM SIGMOD Int’l Conf.
Management of Data (SIGMOD ’98), pp. 343-354.

[8] Witkowski, S.,et al., (2003), “Spreadsheets in RDBMS for
OLAP,” Proc. ACM SIGMOD Int’l Conf. Management of
Data (SIGMOD ’03), pp. 52-63.

[9] Garcia-Molina, J., et al., (2001) “Database Systems: The
Complete Book”, first ed. Prentice Hall.

[10] C. Galindo-Legaria and A. Rosenthal, (1997) “Outer Join
Simplification and Reordering for Query Optimization,”
ACM Trans. Database Systems, vol. 22, no. 1, pp. 43-73.

[11] Bhargava, P., et al., (1995), “Hypergraph Based Reorderings
of Outer Join Queries with Complex Predicates,” Proc. ACM
SIGMOD Int’l Conf. Management of Data (SIGMOD ’95),
pp. 304-315.

[12] Gray, A., et al., (1996), “Data Cube: A Relational
Aggregation Operator Generalizing Group-by, Cross- Tab
and Sub-Total,” Proc. Int’l Conf. Data Eng., pp. 152-159.

[13] Graefe, U., et al., (1998), “On the Efficient Gathering of
Sufficient Statistics for Classification from Large SQL
Databases,” Proc. ACM Conf. Knowledge Discovery and
Data Mining (KDD ’98), pp. 204-208.

[14] Clear, D., et al., (1999), “Non- Stop SQL/MX Primitives for
Knowledge Discovery,” Proc. ACM SIGKDD Fifth Int’l
Conf. Knowledge Discovery and Data Mining (KDD ’99),
pp. 425-429.

[15] Cunningham, G., et al., (2004), “PIVOT and UNPIVOT:
Optimization and Execution Strategies in an RDBMS,” Proc.
13th Int’l Conf. Very Large Data Bases (VLDB ’04), pp.
998- 1009.

[16] C. Ordonez, (2004), “Horizontal Aggregations for Building
Tabular Data Sets,” Proc. Ninth ACM SIGMOD Workshop
Data Mining and Knowledge Discovery (DMKD ’04), pp.
35-42.

[17] C. Ordonez, (2004), “Vertical and Horizontal Percentage
Aggregations,” Proc. ACM SIGMOD Int’l Conf.
Management of Data (SIGMOD ’04), pp. 866-871.

[18] Carlos Ordonez and Zhibo Chen, (2012), “Horizontal
Aggregations in SQL to Prepare Data Sets for Data Mining
Analysis”, IEEE TRANSACTIONS ON KNOWLEDGE
AND DATA ENGINEERING, VOL. 24, NO. 4.

[19] Luo, J, et al., (2005), “Locking Protocols for Materialized
Aggregate Join Views,” IEEE Trans. Knowledge and Data
Eng., vol. 17, no. 6, pp. 796-807.

