
IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.3, March 2015 73

A new Web Cache Replacement Approach based on Internal
Requests factor

Amany Sarhan, Ahmed M. Elmogy, Sally Mohamed Ali
at Computers and Control engineering department, Tanta University, Egypt

BSc. Of Computers and Control Engineering, Tanta University, Egypt

Summary
The increasing demand for World Wide Web (WWW) services
has led to a considerable increase in the amount of Internet
traffic. As a result, the network becomes highly prone to
congestion which increases the load on servers, resulting in
increasing the access times of WWW documents. Thus, web
caching is crucial for reducing the load on network, shorten
network latency and improve clients’ waiting time. Many web
cashing systems and policies have been proposed to determine
which objects to evict from the cache memory to accommodate
new ones. Most of these systems and policies are mainly based
on the enhancement of a well-known scheme called the Least
Frequently-Used (LFU) scheme. Although most of the proposed
schemes could overcome the disadvantages of the LFU, they still
have lots of overhead and are difficult to implement. This work
proposes a replacement policy with better characteristics. Also,
the developed system is easier to be implemented than the
previous approaches. The proposed policy considers the internal
requests generated in each web site and add this factor to the
frequency to select the evicted object. Another scheme which
was developed in the literature to improve the LFU called
Weighting Replacement Policy (WRP). Our research adds the
internal requests factor to this policy to improve its performance
and assure the effectiveness of this new factor. The simulation
results show the effectiveness of the proposed approach
compared with the earlier approaches.
 Key words
Web Cache, Replacement Algorithms, LFU schemes, Hit Ratio.

1. Introduction

The rapid growth of the World Wide Web services has
caused a tremendous and exponential increase in network
traffic and page access latency. Thus a reliable and an
efficient cashing mechanism is urgently needed. Caching
is an old and well-known performance enhancement
technique that is widely used in storage systems, databases,
Web servers, middleware, processors, and other
applications [1]. In all levels of storage hierarchy,
performance of the system is related to the caching
mechanism [2]. Web caching is the temporary storage of
remote web objects on a local server [3,4]. Web caching
can effectively decrease network traffic volume, and
reduce the latency problem [5] by bringing documents
closer to the clients. As a result, Web cache servers are
widely deployed in many places throughout the Web [3].
Three distinct approaches to web caching currently exist,

including: client-side caching [6,7], server-side caching
[8], and proxy caching [9]. Client-side caching refers to
caches that are built into most web browsers, which
caches Internet objects for a single user, but from a variety
of servers. Server-side caching (also known as reverse
caching) refers to caching that is placed in front of a
particular server to reduce the number of server requests
[10]. Whereas, in proxy caching, proxy servers serve as
intermediary between users and central servers. User’s
request is forwarded to the web server by the proxy server.
When the server returns the requested resource to the
proxy server, the proxy stores a copy in its cache such that
further requests to the same resource by the same user or
another user are met at the proxy without contacting the
web server again.
A replacement policy is increasingly becoming one of the
fundamental components of the caching mechanisms to
act as a key technology for high-speed multimedia
services delivery. The replacement policy acts as a
decision rule for evicting a page currently in the cache to
make room for a new page in case of cache saturation.
Thus, determining when and what to evict from the cache
[11]. Early versions of replacement algorithms depended
only on a single factor to decide the priority of the object
in cache memory including; the first-in-first-out (FIFO)
policy [12], the random replacement (RAND) policy [13],
the least recently used (LRU) policy [14], the least
frequently used (LFU) policy [15], and the LFU-aging
policy [1]. More recent algorithms aim to keep in the
cache the most valuable objects according to a cost
function which combines multiple parameters to calculate
the score of an object.
Towards finding a collection of algorithms that have a
profound impact on the performance of the network, many
caching and replacement algorithms have been proposed.
In [16], a model for adaptive cache size control (MACSC)
at runtime is proposed to automatically maintain the
prescribed hit ratio. Thus, the minimum expected caching
performance is guaranteed. Nimrod Megiddo in [1]
proposed ARC adaptive replacement cache algorithm
which outperforms the least-recently-used algorithm by
dynamically responding to changing access patterns and
continually balancing between workload recency and
frequency features. C. Umapathi et al. in [9, 17] described
a Web caching scheme that capitalizes on Web log

Manuscript received March 5, 2015
Manuscript revised March 20, 2015

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.3, March 2015 74

methods. The authors reported that the perfected
documents are accommodated in a dedicated part of the
cache, to avoid the drawback of incorrect replacement of
requested documents. Also, in [2], an adaptive
replacement policy is proposed . This policy has low
overhead on system and is easy to implement. This model
is named Weighting Replacement Policy (WRP) which is
based on ranking of the pages in the cache according to
three factors. Whenever a miss occurs, a page with the
lowest rank point is selected to be substituted by the new
desired page. The most advantage of this model is its
similarity to both LRU and LFU, which means it has the
benefits of both.
Although a great number of caching algorithms have been
reported in the literature, important parameters have been
ignored or given only sparse attention. In this paper, a new
replacement strategy is presented. The new strategy is
based on developing LFU algorithm by considering a new
factor which is the number of internal requests generated
from web sites and pages. This proposed algorithm
guarantees to occupy the cache memory with the most
benefit web pages and web site; we call this least
frequency and internal request (LFIR). After that we use
the new proposed factor to improve anther policy called
Weighting Replacement Policy (WRP) to assure the
effectiveness of the new factor. The rest of this paper is
organized as follows. Replacement policies strategies and
their review are presented in section 2. Section 3
introduces an overview of LFU and WRP schemes. The
details of the proposed approach are presented in section 4.
The conducted experimental results are introduced in
Section 5. Finally, conclusion and future work are
summarized in section 6.

2. Replacement Policy Strategies

When the cache is full, and new objects need to be stored,
a replacement policy must be used to determine which
objects to evict to make rooms for the new objects [9].
The replacement policy is considered as a decision rule for
evicting a page currently in the cache. A poor replacement
policy leads to high number of misses in the cache, and
also increases the cache miss (hit) penalty. A lot of
research, both in academia and industry is geared toward
finding the best cache replacement policy [18]. In general,
the replacement policies are classified as [19]:
•Recency-based policies: in this type of policies,
recency is used as the primary decision making factor;
most of the policies in this category are LRU variants.
LRU policy is one of the most popular policies. It evicts
the least recently referenced object first. This is
particularly popular because of its simplicity and fairly
good performance in many situations. It is designed on the
assumption that a recently referenced document will be

referenced again in the near future. LRU threshold is
needed for estimating the expected time needed to fill or
completely replace the cache content. This threshold is
dynamically evaluated based on current cache size. One of
the disadvantages of the LRU is that it only considers the
time of the last reference and it has no indication of the
number of references for a certain Web Object [20]. LRU-
MIN algorithm [21] is much similar to LRU. It maintains
a sorted list of cached documents based on the time
document was last used. The difference between LRU and
LRU-MIN is the method of selecting the candidate for
replacement. When the cache needs to replace a document
it searches from the tail of the sorted list. The first
document whose size is larger than or equal to the size of
the new document is removed.
•Frequency-based policies: the object popularity (or
frequency count) is considered as the primary factor in this
type [1]. As a result, this category of polices is suitable for
systems in which the popularity distribution of objects is
highly skewed, or in which there are many requests to
Web sites having objects with very steady popularity
(rarely changing abruptly). Such Web sites include online
libraries, distant learning, and online art galleries. LFU is
a simple example of this category[1]. LFU-Aging strategy
attempts to remove the problem of cache pollution due to
objects that become popular in short time by introducing
an aging factor [21]. On the other hand, LFU-DA, a
variant of LFU, avoids the cache pollution problem by
using the dynamic aging technique, which adds a constant
value to the frequency count of an object when it is
accessed [9].
•Size-based policies: the object size is used as the primary
factor [22], and this usually remove larger objects first.
The size-based policy sorts cached documents by size.
Documents with the same size are sorted by recency.
When there is insufficient space for caching the most
recently requested document, the least recently used
document with the largest size is replaced [23].
•Function-based policies: each object is generally
associated with a utility value [19]. This value is
calculated based on a specific function incorporating
different factors such as time, frequency, size, cost,
latency, and different weighting parameters. GD-Size is
the representative policy in this category. GD size deals
with variable size documents by setting H to cost/size
where cost is the cost of fetching the document while size
is the size of the document in bytes, resulting in the
Greedy-Dual-Size (GDS) algorithm. If the cost function
for each document is set uniformly to one, larger
documents have a smaller initial H value than smaller ones,
and are likely to be replaced if they are not referenced
again in the near future [24]. GDS algorithm was
originally developed in the context of disk paging and,
later on, was adapted to web caching. In the web caching

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.3, March 2015 75

version, its goal is to reduce the aggregate latency where
size and location of data can vary widely [25].
•Randomized polices: policies with complex data
structures motivate the consideration of randomized
policies that require no data structures to support eviction
decisions. A particularly simple example is RAND that
evicts an object drawn randomly from the cache [26].
The Hit ratio which is defined as the number of requests
met in the cache memory to the total number of requests
is used to measure the performance of the replacement
algorithms [27]. The higher the hit ratio, the better the
replacement policy [5]. The Byte hit ratio is the ratio of
byte in the total proxy cache size [27].

3. Least Frequency Used (LFU) Overview

Since a network proxy is required to serve thousands of
requests per second, the overhead needed to do so should
be kept to a minimum. To do so, the network proxy should
evict only resources that are not frequently used. Hence,
the frequently used resources should be kept at the
expense of the not frequently used ones since the former
have proved themselves to be useful over a period of time.
Static resources of heavily used pages are always
requested by every user of that page. Hence, the LFU
cache replacement strategy can be employed by these
caching proxies to evict the least frequently used items in
its cache [25]. The standard characteristics of LFU method
involve that the system is keeping track of the number of
times a block is referenced in memory. When the cache is
full and requires more room, the system will purge the
item with the lowest reference frequency. The major
disadvantage of the LFU replacement algorithm is that the
web site keeps its place in cache memory for a long time
even without using it again. This leads to wasting a certain
size of cache memory since this element stayed in the
memory with no change. Other disadvantages of LFU
policies are that they require logarithmic implementation
complexity in cache size, and they almost pay no attention
to recent history.
Most web browsers are still using traditional replacement
policies which are not efficient in web caching [28-30]. In
fact, there are few important factors of web objects that
can influence the replacement policy[26,30,31]. These
factors include but not restricted to recency (i.e., time of
the last reference to the object), frequency (i.e., number of
the previous requests to the object), size, and access
latency of the web object. These factors can be
incorporated into the replacement decision. Most of the
proposed approaches in the literature use one or more of
these factors without paying attention of combining some
of these factors. However, combination of these factors is
still a challenging task as one factor in a particular

environment may be more important than others in other
environments [6,19,31].
In order to improve the performance of the LFU algorithm,
a replacement based on Weighting-Replacement-Policy
(WRP) is proposed in the literature [2]. This algorithm
behaves like LFU by replacing pages that were not
recently used and pages that are accessed only once.
Ranking the pages in cache memory is done by three
factors; the counter which shows the recency of block (L),
the counter which shows the number of times that block
buffer has been referenced (F), and the time difference
(ΔT) between the last access time (Tc) and time of
penultimate (Tp). Thus, the weighting value of block i can
be computed by the following equation:

Wi = Li/(Fi ∗ ∆Ti)
The time between each reference to a block would be at
least one in its minimum case. In every access to buffer, if
referenced block j is in the buffer then a hit is occurred
and this policy will work as follows:
- Li will be changed to Li+1for every i ≠ j.
- For i = j first we put ΔTi = Li , Fj = Fj + 1 and then
Lj = 0
But if referenced block j is not in the buffer, a miss occurs
and the algorithm will choose the block in buffer which its
weighting function value is greater than the others. This
will be done from top to down. In this way, if values of
some object are equal to each other, the object which has
upper place in the buffer will be chosen to be evicted from
buffer. It means that our policy follows FIFO low in its
nature. Let assume that a miss has been occurred and
block k has the greatest weighting value and then it should
be evicted from buffer. First we change Li to Li + 1 for
every i ≠ k and then replace new referenced block with
block k. The final step is to set all weighting factors of
block k to their initial values. The weighting value of the
blocks that are in buffer will be updated in every access to
cache.

4. The Proposed Replacement Algorithm

The main objective of the proposed algorithm is to
maximize the hit rate by keeping many web pages and
sites in the memory which are carefully chosen. Thus, the
developed algorithm gets the largest possible benefit of
the cache memory. The proposed algorithm depends on
sorting the web sites that should stay in the memory based
on the number of internal requests generated by the user
through the web site itself. An internal request means a
request of another web page originating from this root web
page. They may be: a page, an image, a video, a
downloaded file or registration page. The internal requests
may occur also in the subpages as shown in Figure1.

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.3, March 2015 76

Figure 1. The internal requests generated by the site

To explain the counting methods of internal requests,
assume we have three web sites, each site was used to
access some other pages which we will call “internal
requests”. These pages are stored in the cache with their
frequency. Then we increment the root web site (i.e.
which was used to produce this page) by one for each
internal request generated from it (in addition to its
frequency). In this way, each page will have a priority
according to two factors: the number of times it was used
(LFU based) and the number of internal requests produced
from it. That is why we called it Least Frequently Used
with Internal Requests algorithm (LFUIR). In this way,
the sites that produce more internal requests will have
higher priority and should be kept in cache as they are the
main source of other pages. This will help the proxy to
keep the root pages for longer time especially with the
new technology of dynamic pages where the root page
always guides to dynamic links leading to changing
objects in time. There is no benefit of keeping each
possible object that will change in time and will be of no
use. The concept of the proposed algorithm can be
demonstrated by the following example:

Figure 2. The counting method of internal requests

Given that we have three web sites:
1- www.websiteobtimization.com
2- www.codeproject.com
3- www.ncdc.noaa.com

These sites were visited in the following order and were
used to produce requests of other pages as follows.
http://www.websiteobtimization.com
http://www.websiteoptimization.com/speed/tweak/average
-web-page/
http://www.websiteoptimization.com/sitemap/

http://www.websiteoptimization.com/publications/
http://www.websiteoptimization.com/services
http://www.codeproject.com
http://www.codeproject.com/Lounge.aspx?msg=4557115#
xx4557115xx
http://www.codeproject.com/Lounge.aspxc#
http://www.codeproject.com/Lounge.aspx.java
http://www.ncdc.noaa.gov
http://www.ncdc.noaa.gov/cdo-web/webservice
http://www.ncdc.noaa.gov/cdo-web/#t=secondTabLink

The first site
(http://www.websiteobtimization.com) was used to
produce four pages; thus performing 4 internal requests.
The second site (http://www.codeproject.com) was used
to produce four pages performing 3 internal requests.
Finally, the third site (http://www.ncdc.noaa.gov) was
used to produce four pages performing 2 internal requests.
Hence, the priorities of these 12 pages are: 5, 1, 1, 1, 1, 4,
1, 1, 3, 1, 1 respectively

5. Simulation Results

The proposed Least frequency and internal requests
(LFIR) algorithm works through three steps. The first step
is to calculate the frequency of all visited pages. The
second step is to calculate the number of internal requests
generated from master web page and subpages. Finally, it
adds the internal requests for number of frequency for
each page to decide the priority of data to select the item
with the lowest priority to be replaced with the requested
new item
In our experiment, about two hundred requests were taken
as a sample of requests. The percentage of hit ratio is
estimated for LFU and the proposed LFIR algorithms
considering different sizes of proxy as shown in Table 1.
As shown in Table 1, the developed LFIR algorithm
improves the performance of web cache by increasing the
hit ratio in different size of proxy (2MB, 5MB, 8MB,
10MB). The average enhancement compared with LFU is
about 1.7%. This leads to improving the process of
prefetching data from cache memory.

Table 1. Comparison between hit ratio in LFU and LFIR simulation
algorithms.

Cache Size LFIR hit LFU hit Improvement%

2MB

19.5%

17.5%

2.0%
5MB

36.5%

34%

2.5%

8MB

46%

44.5%

1.5%

10MB

47%

46%

1.0%

In order to maximize the hit ratio and improve the
performance of WRP algorithm, we used Least Internal
request (LIR) by adding it to WRP to create a new policy

http://www.websiteobtimization.com/
http://www.websiteoptimization.com/speed/tweak/average-web-page/
http://www.websiteoptimization.com/speed/tweak/average-web-page/
http://www.websiteoptimization.com/sitemap/
http://www.websiteoptimization.com/publications/
http://www.websiteoptimization.com/services
http://www.codeproject.com/
http://www.codeproject.com/Lounge.aspx?msg=4557115%23xx4557115xx
http://www.codeproject.com/Lounge.aspx?msg=4557115%23xx4557115xx
http://www.codeproject.com/Lounge.aspxc
http://www.codeproject.com/Lounge.aspx.java
http://www.ncdc.noaa.gov/
http://www.ncdc.noaa.gov/cdo-web/webservice
http://www.ncdc.noaa.gov/cdo-web/%23t=secondTabLink
http://www.websiteobtimization.com/
http://www.codeproject.com/
http://www.ncdc.noaa.gov/

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.3, March 2015 77

called WRPIR which based on WRP factors and the
internal requests number of web pages. This can be
described by the following equation:

Wi =
Li

(Fi + IRi) ∗ ∆Ti

In our experiment, about two hundred requests have been
taken as a sample to estimate the percentage between
number of hit page and the number of total requests on
different size of cache memory (2MB, 5MB, 8MB and
10MB). Table 2 shows the comparison between WRP and
WRPIR hit ratio with different sizes of cache memory.

Table 2. The comparison between WRP and WRPIR
Cache
Size

WRPIR hit
ratio

WRP hit
ratio

Improvement
(%)

2MB 42.6% 42.6% 0%
5MB 54% 45.6% 8.4%
8MB 88.6% 79.3% 9.3%
10MB 79% 82.3% -3.3%
As seen in the previous table, the average enhancement
compared with the (WRP) is 3.6%. This leads to improve
the process of prefetching data from cache memory.

6. Conclusion

Although many web caching policies have been proposed
in the literature, they still have lots of overheads and are
difficult to implement. In this paper, a new replacement
policy is developed in order to overcome some of the
problems found in the literature. The proposed strategy
was able to evict the large size objects from the cache
memory with low overhead on the network. This was seen
in the simulation results through calculating the hit ratio.
The simulation results showed that proposed algorithms
which were called LFIR and LFIRS occupied the cache
memory with most benefit pages, and with most benefit
pages plus smaller pages size respectively. Other factors
that would help to make the proposed schemes more
efficient will be taken into consideration in the future
work. Among these factors are the size of objects, and the
time of the previous accesses.

References
[1] Nimrod Megiddo and Dharmendra S. Modha,

“Outperforming LRU with an Adaptive Replacement Cache
Algorithm,” IEEE Computer Society, 2004.

[2] KavehSamiee,“A Replacement Algorithm Based on
Weighting and Ranking Cache Objects,” International
Journal of Hybrid Information Technology Vol.2, No.2,
April, 2009.

[3] G. Barish and K. Obraczka,“World wide web caching:
Trends and Techniques,” May 2000.

[4] GeetikaTewari and Kim Hazelwood, “Adaptive Web Proxy
Caching Algorithms,” Harvard University,2004.

[5] Dr T R Gopalakrishnan Nair1, P Jayarekha2, “A Rank
Based Replacement Policy for Multimedia Server Cache
Using Zipf-Like Law”journal of computing 2010.

[6] Waleed Ali andSitiMariyamShamsuddin, “Integration of
Least Recently Used Algorithm and Neuro-FuzzySystem
into Client-side Web Caching,” International Journal of
Computer Science and Security (IJCSS),2009.

[7] Teng, Wei-Guang, Cheng-Yue Chang, and Ming-Syan
Chen. "Integrating web caching and web prefetching in
client-side proxies." Parallel and Distributed Systems, IEEE
Transactions on 16.5 (2005): 444-455.

[8] Kim, Kyungbaek, and Daeyeon Park. "Reducing outgoing
traffic of proxy cache by using client-
cluster." Communications and Networks, Journal of 8.3
(2006): 330-338.

[9] K. Ramu and R.Sugumar, “Design and Implementation of
Server Side Web Proxy Caching Algorithm,” International
Journal of Advanced Research in Computer and
Communication Engineering, March 2012.

[10] Brian D. Davison, “A Web Caching Primer,” IEEE
InternetComputing, 2001..

[11] Brian D. Davison, “A Web Caching Primer,” IEEE
InternetComputing, 2001..

[12] Aguilar, Jose, and Ernst Leiss. "A Web proxy cache
coherency and replacement approach." Web Intelligence:
Research and Development. Springer Berlin Heidelberg,
2001. 75-84.

[13] González-Cañete, F. J., J. Sanz-Bustamante, E. Casilari, and
A. Triviño-Cabrera. "EVALUATION OF RANDOMIZED
REPLACEMENT POLICIES FOR WEB CACHES."
(2007).

[14] Romano, Sam, and Hala ElAarag. "A quantitative study of
recency and frequency based web cache replacement
strategies." In Proceedings of the 11th communications and
networking simulation symposium, pp. 70-78. ACM, 2008.

[15] Prof. Ketan Shah, Anirban Mitra, Dhruv Matani, algorithm
for implementing the LFU cache eviction scheme, August
16, 2010.

[16] AKY Wong, “A Novel Dynamic Cache Size Adjustment
Approach for Better Data Retrieval Performance over The
Internet,”ScienceDirect,2003.

[17] C. Umapathi and J. Raja, “A Prefetching Algorithm for
Improving Web Cache Performance, Journal of Applied
Sciences, 2006.

[18] Mohamed Zahran, “Cache Replacement Policy Revisited,”
The Annual Workshop on Duplicating, Deconstructing, and
Debunking (WDDD) Held in Conjunction with the
International Symposium on Computer Architecture (ISCA),
2007.

[19] A.K.Y. Wong. “Web Cache Replacement Policies: A
Pragmatic Approach,” IEEE Network

[20] Magazine, 2006.
[21] I. Vakali,“LRU-based algorithms for Web Cache

Replacement”In proceeding of: Electronic Commerce and
Web Technologies, First International Conference, EC-Web
2000, London, UK, September 4-6,

[22] Hala-elarag,”web proxy cache replacement strategies:
simulation, implementation and Performance
Evaluation”SpringerBriefs in Computer Science

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.3, March 2015 78

[23] Ali, Waleed, Siti Mariyam Shamsuddin, and Abdul Samad
Ismail. "A survey of Web caching and prefetching." Int. J.
Advance. Soft Comput. Appl 3, no. 1 (2011): 18-44

[24] Chung-yi Chang,Tony McGregor,Geoffrey Holmes,“The
LRU* WWW proxy cache document replacement
algorithm”Sep 17, 2010.

[25] Cherkasova, Ludmila, and Gianfranco Ciardo. "Role of
aging, frequency, and size in web cache replacement
policies." In High-Performance Computing and Networking,
pp. 114-123. Springer Berlin Heidelberg, 2001

[26] Chung-yi Chang,Tony McGregor,Geoffrey Holmes,“The
LRU* WWW proxy cache document replacement
algorithm”Sep 17, 2010

[27] S. Podlipnig and L. Boszormenyi, “A Survey of Web Cache
Replacement Strategies,” ACM Comp. Surveys, vol. 35, no.
4, Dec. 2003.

[28] Wessels, Duane. Web caching. O'Reilly Media, Inc., 2001.
[29] V. S. Mookerjee, and Y. Tan. “Analysis of a Least Recently

Used Cache Management Policy For Web Browsers,”
Operations Research, Linthicum, Mar/Apr 2002.

[30] Y. Tan, Y. Ji, and V.S Mookerjee. “Analyzing Document-
Duplication Effects on Policies for Browser and Proxy
Caching”. INFORMS Journal on Computing. 18(4), 506-
522. 2006.

[31] T.Koskela, J.Heikkonen, and K.Kaski. ”Web Cache
Optimization with Nonlinear Model Using Object Feature,”
Computer Networks Journal, Elsevier, 20 Dec. 2003..

[32] H.T. Chen, “Pre-fetching and Re-fetching in Web Caching
systems: Algorithms and Simulation,” Master Thesis, Trent
University, Peterborough, Ontario, Canada, 2008

[33] Siegel, Jon. CORBA 3 fundamentals and programming. Vol.
2. Chichester: John Wiley & Sons, 2000.

 Amany Sarhan Computers and
Control engineering department, Tanta
University, Egypt.

Ahmed M. Elmogy Computers and
Control engineering department, Tanta
University, Egypt.

Sally Mohamed Ali, BSc. Of
Computers and Control Engineering,
Tanta University, Egypt.

