
IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.4, April 2015 44

A Multi-layered Statechart Diagram Including Mitigation
Behavior

Hoijin Yoon,

Hyupsung University, Kyunggi, South Korea

Summary
Safety critical system such as Unmanned Aerial Vehicle, Medical
system, Railroad control system and so on includes software in it.
It is called Embedded software. Model based testing is a
recommended solution for testing embedded software. It needs a
specific model that it designs test cases from, and its testing
quality totally depends on the model’s quality. Unlike the
traditional software, the embedded software is expected to
control risky situation. It means that the mitigation of risk is
necessary. Therefore a model should include mitigation
information for testing mitigation behaviors of embedded
software. This paper proposes a diagram including both of
normal behaviors and their mitigation behaviors. The mitigation
behavior supports failsafe behavior, and Model based testing
using the multi-layered statechart diagram results in failtsafe
testing, which checks if the system mitigates risk well and
doesn’t go to failures at all.
Key words:
Model-based testing, Embedded software, Failsafe testing,
Mitigation, Safety Critical System.

1. Introduction

Nowadays, software goes into a device, which is used in
our daily life, instead of a general computer. The system is
called Embedded system and the software is called
Embedded software. An embedded system [1, 2] is a
system built for dedicated control functions. Embedded
software [2] is the software running on an embedded
system. Embedded systems have become increasingly
sophisticated and their software content has grown rapidly
in the last few years. The requirements that must be
fulfilled while developing embedded software are complex
in comparison to standard software. Moreover, it extends
to work in safety critical systems such as Medical devices,
Automotive systems, and Unmanned Aerial Vehicle
(UAV).
According to the study in [3] 50% of embedded systems
development projects are months behind schedule and only
44% of designs meet 20% of functionality and
performance expectations. This happens despite the fact
that approximately 50% of total development effort is
spent on testing [3, 4]. The testing in embedded systems
especially in safety critical systems is heavier than in
traditional computer based applications.

Model based Testing (MBT) allows tests to be linked
directly to the SUT requirements, makes readability,
understandability and maintainability of tests easier. It
helps to ensure a repeatable and scientific basis for testing
and it may give good coverage of all the behaviors of the
SUT [5]. Finally, it is a way to reduce the efforts and cost
for testing [6].
This paper proposes a model for MBT, which represents
Embedded software such as an autopilot software of UAV.
Unlike traditional modeling diagrams, our model covers
failsafe behaviors. It mean that MBT using the failsafe
behavior model tests if the system manages failure-causing
situations and handles their mitigations rightly.
In Section 2, we introduce some issues of MBT. Section 3
explains what this paper proposes. It is a multi-layered
state diagram that represents both of normal behaviors and
failsafe behaviors at the same time. We conclude this
paper with mentioning a usage of the multi-layered state
diagram in UAV.

2. Related Works

2.1 Model based Development

The development process of embedded systems usually
occurs on at least three different levels. First a model of
the system is built. It simulates the required system
behavior and usually represents an abstraction of the
system. When the model is revealed to be correct, code is
generated from the model. This is the software level.
Eventually, hardware including the software is the product
of the development. The reason for building those
intermediate levels is the fact, that it is much cheaper and
faster to modify a model than to change the final product.
The entire process is called model-based development
(MBD).
The multiple V-model [7, 8], based on the traditional V-
Modell®, takes this phenomenon into account. The V-
Modell is a guideline for the planning and execution of
development projects, which takes into account the whole
life cycle of the system. The V-Modell defines the results
that have to be prepared in a project and describes the
concrete approaches that are used to achieve these results
[9]. In the multiple V-model, each specification level (e.g.,

 Manuscript received April 5, 2015
Manuscript revised April 20, 2015

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.4, April 2015 45

model, software, final product) follows a complete V-
development cycle, including design, build, and test
activities as shown in Fig.1. The essence of the multiple
V-model is that different physical representations of the
same system on different abstraction levels are developed,
aiming at the same final functionality. Then, the complete
functionality can be tested on those different platforms.

Fig. 1 Multijple V-Model
Since certain detailed technical properties cannot be tested
very well on the model, they must be tested on the
prototype instead. Testing the various SUT representations
often requires specific techniques and a specific test
environment. Therefore, a clear relation between the
multiple V-model and the different test environments
exists.

2.2 MBT

Model-based testing is testing in which the entire test
specification is derived in whole or in part from both the
system requirements and a model that describe selected
functional aspects of the SUT. In this context, the term
entire test specification covers the abstract test scenarios
substantiated with the concrete sets of test data and the
expected SUT outputs. It is organized in a set of test cases
[10].
The introduction of MBD led to the development of
modeling technologies. Consequently, executable high-
level models can be obtained. The selection of a modeling
technology is very dependent on the type of system being
modeled and the task for which the model is being
constructed [11].
One thing we need to remember is that the models
generated through development phases are not good
sources of MBT. Development models could contain
defects, and to use models from development activities
could transfer defects of development models to testing
activity. It is recommended that test models should be
made separately from development phases, moreover by
an independent testing team.

3. Multi-layered State Diagram

UAV is running based on autopilot programs. This paper
proposes a specific diagram that covers normal behavior

model and failsafe behavior model together. We explain
the diagram with a case of Drone’s autopilot. Drone is one
kind of UAV and it is very popular since its price is low
and its operation is easy to learn. Also many industry
fields interest in adopting Drone to their business models.

3.1 Autopilot Implementation Environment in Drone

Drone flies following waypoints. Users set up waypoints
that they want Drone moves to. A waypoint consists of its
longitude, latitude, and altitude. A special tool helps this
setting up process. The tool is named Mission Planner [12].
Fig.2 is a screen shot of Mission Planner. Mission Planner
shows the map of the home location, which is also set up
by users. A sequence of waypoints are written in a file and
it will be sent to Drone’s special device. Pixhawk [13] is
one kind of the devices.
Fig.3 shows two pictures; one is a quadcopter and the
other is Pixhawk that is mounted on the quadcopter as
expressed in the red circle and arrow. Pixhawk is autopilot
device mounted on X8 manufactured by 3D Robotics. We
have X8 and used it as a sample case of autopilot
implementation. Finally, Pixhawk includes autopilot
waypoints and some other settings of peripheral devices of
Drone.

Fig. 2 Mission Planner

Fig. 3 3D Robotics quadcopter and its Pixhawk

3.2 Normal behaviors and Failsafe behaviors

In modeling software, there are three separate viewpoints;
Functional modeling, Behavioral modeling, and Structural
modeling. We focus on Behavioral modeling since the

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.4, April 2015 46

failsafe mitigation would fall on Behavioral modeling.
Normally, Behavioral modeling is to draw Statechart
diagram, Sequence diagram, or Collaboration diagram of
Unified Modeling Language (UML) [14]. Behavioral
model is built for each function of Functional model. The
normal behavior is what users or clients expect a system to
do.
Safety critical system, such as Drones, Medical system,
Railroad system and so on, should control unexpected
behaviors because the unexpected behaviors could result in
a very serious happening like killing human. Therefore,
the unexpected behaviors need to be modeled and tested.
According to Risk Management Process, developers
implement mitigation strategies for expected risks. In
Drone, developers set up mitigation strategies in a menu
called “Failsafe options” of Mission Planner. They set up a
mitigation action for a certain risky condition. For example,
the copter should land if the battery level is below 10.5V.
This behavior is called Failsafe behavior.

3.3 Multi-layered Statechart diagram

Unlike traditional behavioral modeling, we add another
layer that covers Failsafe behaviors. The failsafe behavior
is on risk mitigation, and safety critical systems are
supposed to have mitigation strategies for the expected
risks. In case of Drone, the battery failure is a main cause
of crashes. The mitigation is set up through Mission
Planner, and the mitigation strategy for the battery failure
is embedded in autopilot programs that is running on
Pixhawk.

Fig. 4 Multi-layered statechart diagram for battery failure mitigation

This mitigation modeling is done separately from
behavioral modeling. Of course, the testing would be done

separately. Now we need to remind the fact that failures
could happen during normal behaviors. It means that we
should test if the system mitigates risk well and doesn’t go
to failures at all. It is Failsafe Testing. The failsafe testing
focus on the flow of going from normal behavior states to
failsafe behavior states. That is why we need to combine
normal behaviors and failsafe behaviors in one model.
Fig.4 is the proposed diagram, multi-layered statechart
diagram. It is about a sample mitigation, which orders
Drone to “Land” or “Return to home” if the battery
voltage level is under the threshold. The default threshold
value is 10.5V. In each waypoint state, it compares the
current voltage with the threshold. If the current value is
over the threshold, it would go to the next waypoint safely.
If the voltage is under threshold, it would do the
predefined mitigation action. Land or Return to Home
could be one.

4. Conclusions

MBT is a recommended solution for testing Embedded
software. Recently, software is embedded in safety critical
systems such as Railroad system, Aircraft, Drone, Medical
devices and so on. It means that Embedded software
testing is important as much as the safety issue is getting
serious.
This paper proposed a multi-layered statechart diagram
that includes normal behaviors and failsafe behaviors
together. Traditional statechart diagram is used in
Behavioral modeling, and the behavioral modeling builds
diagrams that shows clients or users’ requirements. And
MBT apply test criteria to the modeling diagram and
design test cases. As mentioned in Section 2, MBT’s result
totally depends on which models are used. Our multi-
layered statechart diagram has MBT design test cases that
check if the system mitigates risk well and doesn’t go to
failures at all.
Suppose MBT applies “all-path criterion” to Fig.4 diagram.
One of the test cases is <TakeOff, WP1, WP2, WP3,
Compare with threshold, UnderThreshold, Land> and its
expected output is <no-failure>. It tests if the system goes
to Compare with threshold from WP3, and if it goes to
Land in UnderThreshold condition.
Finally, our diagram supports Failsafe testing through
MBT. The model using this diagram would be more
sophisticated if mitigation patterns are applies in weaving
normal behavioral layers and failsafe behavior layers.

Acknowledgments

This research was supported by Basic Science Research
Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Science, ICT &
Future Planning (NRF-2014R1A1A3051827).

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.4, April 2015 47

References

[1] Broy, M., von der Beeck, M., Krüger, I.: Softbed:
Problemanalyse für ein Großverbundprojekt,
“Systemtechnik Automobil – Software für eingebettete
Systeme”. Ausarbeitung für das BMBF. 1998 (in German).

[2] Lazić, Lj., Velašević, D.: Applying simulation and design of
experiments to the embedded software testing process. In
Software Testing, Verification & Reliability, Volume 14,
Issue 4, Pages: 257 – 282, ISSN: 0960-0833. John Wiley
and Sons Ltd. Chichester, UK, UK, 2004.

[3] Encontre, V.: Testing embedded systems: Do you have the
GuTs for it?. IBM, 2003. http://www-
128.ibm.com/developerworks/rational/library/459.html
[04/18/2008].

[4] Helmerich, A., Koch, N. and Mandel, L., Braun, P.,
Dornbusch, P., Gruler, A., Keil, P., Leisibach, R., Romberg,
J., Schätz, B., Wild, T. Wimmel, G.: Study of Worldwide
Trends and R&D Programmes in Embedded Systems in
View of Maximising the Impact of a Technology Platform
in the Area, Final Report for the European Commission,
Brussels Belgium, 2005.

[5] Utting M. Model-Based Testing. In Proceedings of the
Workshop on Verified Software:Theory, Tools, and
Experiments VSTTE 2005. 2005.

[6] Pretschner, A., Prenninger, W., Wagner, S., Kühnel, C.,
Baumgartner, M., Sostawa, B., Zölch, R., Stauner, T.: One
evaluation of model-based testing and its automation. In
Proceedings of the 27th International Conference on
Software Engineering, St. Louis, MO, U.S.A., Pages: 392 –
401, ISBN: 1-59593-963-2. ACM New York, NY, USA,
2005.

[7] Brökman, B., Notenboom, E.: Testing Embedded Software.
ISBN: 978-0-3211-5986-1. Addison-Wesley International,
2002.

[8] Schäuffele, J., Zurawka, T.: Automotive Software
Engineering, ISBN: 3528110406. Vieweg, 2006.

[9] V-Modell® XT, version 1.2.1, 2006,
ftp://ftp.tuclausthal.de/pub/institute/informatik/v-modell-
t/Releases/1.2.1/Documentation/VModell-XT-Complete.pdf
[07/05/08].

[10] Justyna Zander, Ina Schieferdecker, Pieter J. Mosterman,
Model-Based Testing for Embedded Systems, CRC press,
2011

[11] Mosterman, P. J.: Hybrid dynamic systems: a hybrid bond
graph modeling paradigm and its application in diagnosis,
PhD thesis, Faculty of the Graduate School of Vanderbilt
University, Electrical Engineering. 1997.

[12] Mission Planner Home, http://planner.ardupilot.com/
[13] “Pixhawk Autopilot,” http://pixhawk.org/modules/pixhawk
[14] Alan Dennis, Barbara Haley Wixom, David Tegarden,

Systems Analysis and Design with UML: An Object-
oriented Approach, Wiley, 2010

Hoijin Yoon received the B.S., M.S.
and Ph.D in Computer Science from
Ewha Womans University in 1993, 1998,
and 2004 respectively. During 2004-
2007, she stayed in Ewha Womans
University as a full time lecturer. She
has been working as a faculty at
Hyupsung Univeristy since 2007. Her
research interests are Software Testing
and Safety Critical System.

http://www-128.ibm.com/developerworks/rational/library/459.html
http://www-128.ibm.com/developerworks/rational/library/459.html
https://www.google.co.kr/search?tbo=p&tbm=bks&q=inauthor:%22Alan+Dennis%22
https://www.google.co.kr/search?tbo=p&tbm=bks&q=inauthor:%22Barbara+Haley+Wixom%22
https://www.google.co.kr/search?tbo=p&tbm=bks&q=inauthor:%22David+Tegarden%22

