
IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.4, April 2015 52

Automatic Discovery of Dependency Structures for Test Case
Prioritization

C. Prakasa Rao P.Govindarajulu

Research Scholar, Dept. of Computer Science, S.V.
University, Tirupati, India.

Retd. Professor , Tirupati, India Dept. of Computer Science,
S.V. University,

Abstract
In software engineering “testing” is one of the phases in system
development life cycle. Functional test suites are used to discover
bugs in Software Under Test (SUT) and improve its quality. A
good test suite uncovers more faults in the SUT. As test suite
contains many test cases, the order of their execution plays an
important role in increasing the rate of fault detection which can
provide early feedback to development team so as to help them to
improve the quality of the software. Therefore it is very useful to
prioritize test cases that will lead to the increase in the rate of
fault detection. However, prioritization of functional test suites is
a challenging problem to be addressed. Recently Haidry and
Miller proposed a family of test case prioritization techniques
that use the dependency information from a test suite to prioritize
that test suite. The nature of the techniques preserves the
dependencies in the test ordering. Dependencies in test cases can
have their impact on the discovery of faults in software. This
hypothesis has been proved by these authors as their empirical
results revealed it. However, they do not automate the extraction
of dependency structures among the test suits that can help in
effective prioritization of functional test suites. In this paper we
propose a methodology that automates the process of extraction
of dependency structures from the test cases that will result in the
increase the rate of fault detection. Thus the number of bugs
uncovered from the software under test is improved. This leads to
the improvement of quality of the software.
Index Terms
Software engineering, testing, test case prioritization,
dependency structures

1. Introduction

Test suites can help detect faults in SUT. Provided this
goal is achieved, there are many issues with it. For
instance test suites when executed in particular sequence
can provide chances to unearth more faults. It does mean
that test suite prioritization can be used to optimize testing
results or to uncover more hidden faults. In order to
achieve this, it is possible to find dependency structure
that can be used to priorities test suites. The functional test
suites when subjected to prioritization can give effective
test results that can help developers to rectify problems in
SUT. Haidry and Miller [1] focused on the process of test
suit prioritization. They used a hypothesis “dependencies
among test cases can have their influence on the rate of
fault detection”. Thus the test case prioritization is given

importance. It is a process of ensuring that the test cases
are executed in proper sequence in order to achieve high
rate of fault detection. The rate of fault detection is
measured using the number of faults detected. As some
tests should occur before other tests, it is essential to
prioritize test cases so as to achieve optimal results [1].
Sample dependency structure can be visualized in Figure 1.

Fig.1 – Sample dependency structure

As seen in Figure 1, it is evident that the root nodes are
independent of other nodes and they do not have
dependencies. Dependencies are of two types namely
direct and indirect. For example in Fig.2 D6 is a direct
dependent of D3 and indirectly dependent on I1. Yet in
another classification, dependency is of two types namely
open dependency and closed dependency. Open
dependency is the fact that a test case is executed before
another one but need not be necessarily just immediately
before the test case. The closed dependency is opposite to
it where a test case needs to be executed immediately
before the other test case. The combination of open and
closed dependencies is also possible for optimal results. To
measure dependencies, two measures are used. They are
known as DSP height and DSP volume. Dependency
Structure Prioritization volume refers to the count of
dependencies while the DSP height indicates the depth in
dependency levels. Direct and indirect dependencies are
considered while computing DSP volume. On the other
hand, the height of all test paths is considered for
computing DSP height. The two graph measures are used
for best ordering of test cases for optimal results.
Experiments are made with open dependencies and closed
dependencies. Many real time projects were considered for
experiments. Out of them Bash is recorded to have highest
dependencies and CRM1 and CRM2 recorded the lowest.
Many SUTs were tested with prioritization of test cases.

Manuscript received April 5, 2015
Manuscript revised April 20, 2015

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.4, April 2015 53

The experiments are useful to know the fault detection rate
when dependency structures are used for prioritization. A
measure used in [6] is known as Average Percentage of
Faults Detected (APFD) for fault detection. The more
APFD value is the more in the rate of detection of faults in
SUT. All SUTs are tested with APFD measures under
open and closed dependencies. Many DSP prioritization
methods were considered and some other methods that do
not use DSP measures can also be used in the process. The
experimental results showed that DSP prioritization
methods achieved higher results while non-DSP
prioritization methods could not achieve high rate of fault
detection. The empirical results proved the fact that DSP
measures were able to increase the rate of fault detection
for any given SUT. As explored in [1] there are many test
case prioritization techniques. They are model – based [12],
history – based [11] and knowledge-based [2]. The first
one uses model of the system, second one uses past
execution cycles, and third one uses human know how of
the task for the purpose of test case prioritization. Our
contributions in this paper are as follows.
We proposed a methodology for automatic discovery of
dependency structures from SUIT. This methodology
guides the program to obtain dependency structures and
help in prioritization of test cases.
We proposed an algorithm that makes use of discovered
dependency structures and prioritizes test cases
automatically.
 We evaluate the functions such as automatic discovery of
dependency structures and also the test case prioritization
with empirical study using the tool built to demonstrate the
proof of concept.
The remainder of the paper is structured as follows.
Section II reviews literature on the prior works. Section III
presents the proposed methodology for automatic
discovery of dependency structures and algorithm for
prioritizing test cases. Section IV presents evaluation of
the proposed work while section V provides conclusions
and recommendations for future work.

2. Related Works

This section provides review of literature on prior works.
In 1997 Wong et al. [1] proposed a hybrid approach for
regression testing which uses the combination of
approaches like minimization, modification, and
prioritization-based selection. The purpose of regression
testing is to ensure that changes made to software, such as
adding new features or modifying existing features, have
not adversely affected features of the software that should
not change. Regression testing is usually performed by
running some, or all, of the test cases created to test
modifications in previous versions of the software. Many
techniques have been reported on how to select regression

tests so that the number of test cases does not grow too
large as the software evolves. Our proposed hybrid
technique combines modification, minimization and
prioritization-based selection using a list of source code
changes and the execution traces from test cases run on
previous versions. This technique seeks to identify a
representative subset of all test cases that may result in
different output behavior on the new software version [1].
Ryser and Glinz [6] discussed about scenarios or use cases
that can be used to capture requirements. The modeling
tools such as UML also do not have scenario based
dependencies. They opined that verification and validation
are important activities in software development process.
It is true in the case of test case generation and execution
as well. They proposed a new model to find dependencies
between scenarios. In this paper we focused on the
dependencies among methods while [6] explored
dependencies among the scenarios. Dependency charts
were built in order to help test engineers to test the SUT in
systematic fashion so as to discover more bugs. Elbaum et
al. [11] focused on test case prioritization by considering
fault severities and varying test costs. The regression
testing can take the help of prioritization results in order to
improve the possibilities of finding and fixing bugs. APFD
measure is used to know the rate of fault detection. The
previous uses of APFD were made when severities and test
costs are uniform. In [11] a new technique is proposed in
order to assess the rate of fault detection with prioritized
test cases. Thus priority based reuse of test suits save more
time to software engineers besides helping them in
discovering more bugs. The new technique was an
improved form of APFD that is based on test costs and the
severities.
Rothermel et al. [2] focused on cost-effectiveness of
regression testing with respect to test suite granularity.
Since regression testing is an expensive test process, the
cost can be reduced with the methods that are cost-
effective. Towards this prioritization of test cases play an
important role in order to make it less costly besides being
able to discover more bugs. The bottom line of the
research is to reduce the cost and also increase the rate of
fault detection. Elbaum et al. [12] made a empirical study
on test case prioritization. The aim of their research is to
reduce the cost of regression testing. The end result
expected is the same “increasing the rate of fault
detection”. One potential goal of test case prioritization is
that of increasing a test suite’s rate of fault detection—a
measure of how quickly a test suite detects faults during
the testing process. An improved rate of fault detection can
provide earlier feedback on the system under test, enable
earlier debugging, and increase the likelihood that, if
testing is prematurely halted, those test cases that offer the
greatest fault detection ability in the available testing time
will have been executed [12].

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.4, April 2015 54

Peirce’s criterion is a rigorous method based on
probability theory that can be used to eliminate data
“outliers” or spurious data in a rational way. Currently,
another method called Chauvenet’s criterion is used in
many educational institutions and laboratories to perform
this function. Although Chauvenet’s criterion is well
established, it makes an arbitrary assumption concerning
the rejection of the data. Peirce's criterion does not make
this arbitrary assumption . In addition, Chauvenet's
criterion makes no distinction between the case of one or
several suspicious data values whereas Peirce's criterion is
a rigorous theory that can be easily applied in the case of
several suspicious data values. In this paper, an example is
given showing that Peirce’s and Chauvenet’s criterion give
different results for the particular set of data presented.[13]
Code prioritization for testing promises to achieve the
maximum testing coverage with the least cost. This paper
presents an innovative method to provide hints on which
part of code should be tested first to achieve best code
coverage. This method claims two major contributions.
First it takes into account a “global view” of the execution
of a program being tested, by considering the impact of
calling relationship among methods/functions of complex
software. It then relaxes the “guaranteed” condition of
traditional dominator analysis to be “at least” relationship
among dominating nodes, which makes dominator
calculation much simpler without losing its accuracy. It
also then expands this modified dominator analysis to
include global impact of code coverage, i.e. the coverage
of the entire software other than just the current function.
We implemented two versions of code prioritization
methods, one based on original dominator analysis and the
other on relaxed dominator analysis with global view.[4].

Software engineers often save the test suites they develop
so that they can reuse those test suites later as their
software evolves. Such test suite reuse, in the form of
regression testing, is pervasive in the software industry.
Running all of the test cases in a test suite, however, can
require a large amount of effort: for example, one of our
industrial collaborators reports that for one of its products
of about 20,000 lines of code, the entire test suite requires
seven weeks to run. In such cases, testers may want to
order their test cases so that those with the highest priority,
according to some criterion, are run earlier than those with
lower priority.[10].
Test case prioritization techniques have been shown to be
beneficial for improving regression-testing activities. With
prioritization, the rate of fault detection is improved, thus
allowing testers to detect faults earlier in the system-
testing phase. Most of the prioritization techniques to date
have been code coverage-based. These techniques may
treat all faults equally. We build upon prior test case
prioritization research with two main goals: (1) to improve
user perceived software quality in a cost effective way by

considering potential defect severity and (2) to improve
the rate of detection of severe faults during system level
testing of new code and regression testing of existing code.
We present a value-driven approach to system-level test
case prioritization called the Prioritization of
Requirements for Test (PORT). PORT prioritizes system
test cases based upon four factors: requirements volatility,
customer priority, implementation complexity, and fault
proneness of the requirements. We conducted a PORT
case study on four projects developed by students in
advanced graduate software testing class. Our results show
that PORT prioritization at the system level improves the
rate of detection of severe faults. Additionally, customer
priority was shown to be one of the most important
prioritization factors contributing to the improved rate of
fault detection [3].
Test engineers often possess relevant knowledge about the
relative priority of the test cases. However, this knowledge
can be hardly expressed in the form of a global ranking or
scoring. In this paper, we propose a test case prioritization
technique that takes advantage of user knowledge through
a machine learning algorithm, Case-Based Ranking (CBR).
CBR elicits just relative priority information from the user,
in the form of pair wise test case comparisons. User input
is integrated with multiple prioritization indexes, in an
iterative process that successively refines the test case
ordering. Preliminary results on a case study indicate that
CBR overcomes previous approaches and, for moderate
suite size, gets very close to the optimal solution [7].
Regression testing is an expensive part of the software
maintenance process. Effective regression testing
techniques select and order (or prioritize) test cases
between successive releases of a program. However,
selection and prioritization are dependent on the quality of
the initial test suite. An effective and cost efficient test
generation technique is combinatorial interaction testing,
CIT, which systematically samples all t-way combinations
of input parameters. Research on CIT, to date, has focused
on single version software systems. There has been little
work that empirically assesses the use of CIT test
generation as the basis for selection or prioritization. In
this paper we examine the effectiveness of CIT across
multiple versions of two software subjects. Our results
show that CIT performs well in finding seeded faults when
compared with an exhaustive test set. We examine several
CIT prioritization techniques and compare them with a re-
generation/prioritization technique [14].
Test case prioritization techniques have been empirically
proved to be effective in improving the rate of fault
detection in regression testing. However, most of previous
techniques assume that all the faults have equal severity,
which dose not meets the practice. In addition, because
most of the existing techniques rely on the information
gained from previous execution of test cases or source
code changes, few of them can be directly applied to non-

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.4, April 2015 55

regression testing. In this paper, aiming to improve the rate
of severe faults detection for both regression testing and
non-regression testing, we propose a novel test case
prioritization approach based on the analysis of program
structure. The key idea of our approach is the evaluation of
testing-importance for each module (e.g., method) covered
by test cases. As a proof of concept, we implement A pros,
a test case prioritization tool, and perform an empirical
study on two real, non-trivial Java programs. The
experimental result represents that our approach could be a
promising solution to improve the rate of severe faults
detection.[15]
Regression testing assures changed programs against
unintended amendments. Rearranging the execution order
of test cases is a key idea to improve their effectiveness.
Paradoxically, many test case prioritization techniques
resolve tie cases using the random selection approach, and
yet random ordering of test cases has been considered as
ineffective. Existing unit testing research unveils that
adaptive random testing (ART) is a promising candidate
that may replace random testing (RT). In this paper, we
not only propose a new family of coverage-based ART
techniques, but also show empirically that they are
statistically superior to the RT-based technique in
detecting faults [5]. Pair-wise comparison has been
successfully utilized in order to priorities test cases by
exploiting the rich, valuable and unique knowledge of the
tester. However, the prohibitively large cost of the pair
wise comparison method prevents it from being applied to
large test suites. In this paper, we introduce a cluster-based
test case prioritization technique. By clustering test cases,
based on their dynamic runtime behavior, we can reduce
the required number of pair-wise comparisons
significantly. The approach is evaluated on seven test
suites ranging in size from 154 to 1,061 test cases. We
present an empirical study that shows that the resulting
prioritization is more effective than the existing coverage-
based prioritization techniques in terms of rate of fault
detection [8].

3 . Methodology For Automatic Discovery Of
Dependency Structures

The research on test case prioritization focused on various
approaches as found in the previous section. For instance,
they are based on execution traces [1], dependency charts
that are derived through scenario-based testing [6], test
costs and fault severities [11], test suite granularity and its
impact on cost-effectiveness on regression testing [2],
comparator techniques, statement level techniques and
function level techniques [12], cost prioritization [4], fine
granularity and coarse granularity [9], Prioritization of
Requirements for Test (PORT) which is a value-driven
approach [3], use case based ranking methodology [7],

combinatorial interaction testing [14], analysis of program
structure [15], adaptive random test case prioritization [5]
and clustering test cases [9]. More recently Haidry and
Miller [15] used dependency structures for test case
prioritization. In this paper, we improve the approach used
in [15] by discovering dependency structures
automatically. The architecture of the proposed
methodology is as shown in Figure 2.

Figure 2. Proposed methodology

As can be seen in Figure 2, it is evident that the proposed
methodology depends on program execution traces and the
actual program. The method discovery process makes a list
of all methods available and in fact the methods are
discovered using reflection API. The call processing
component is responsible to use traces and have some
meta data associated with calls. This meta data is used
later for test case prioritization. The test case prioritization
component is responsible to understand the meta data
associated with all calls and also considers test suite. It
makes the final and best ordering of test cases. The
prioritized test cases are thus produced by the proposed
approach.

TCP (Test Case Prioritization) Algorithm

Input : Execution traces (ET) and program (P), Test Suite
(TS)
Output: Prioritized test cases (PT)

1. Initialize a vector (M)
2. Initialize another vector (MM)
3. Discover methods from P and populate M
4. for each method m in M

a. scan TS
b. associate meta data with calls
c. add method m to vector MM

5. end for
6. for each mm in MM

a. analyze TS
b. correlate with mm
c. add corresponding m to PT

7. return PT
Algorithm for test case prioritization

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.4, April 2015 56

 As can be seen in listing 1, it is evident that the proposed
method takes traces, program and test suite as input. It
performs discovery of methods and automatic discovery of
dependencies in the form of methods associated with meta
data and finally performs prioritization of test cases in the
given test suite.

4. Experimental Results

The tool implemented in our previous work has been
extended to incorporate the functionality of the proposed
methodology in this paper. The tool demonstrates the
proof of concept and discovers dependency structures from
given program. The tool can distinguish between open and
closed dependencies as described earlier in this paper. The
inputs and outputs are presented in this section besides the
results of experiments. Open dependency related input
program is as shown in Listing 2.

Figure3-Visualization of closed dependencies for given input file

As can be seen in Figure 3, it is evident that the closed
dependencies are presented graphically. The closed
dependencies as per the given input file are shown. The
application can work for any input file so as to discover
closed dependencies.

Figure 4 – Visualization of open dependencies for given input file

As can be seen in Figure 4, it is evident that the open
dependencies are presented graphically. The open
dependencies as per the given input file are shown. The
application can work for any input file so as to discover
open dependencies.

Figure 5 – Dependency discovery results

As can be seen in Figure 5, it is evident that the open and
closed dependencies are presented graphically. The
dependencies as per the given input file are shown. The
application can work for any input file so as to discover
open dependencies. The source code of these dependencies
is found in appendix.

5. Evaluation

For evaluating our work specific procedure is followed as
described here. First, the discovery of dependencies is
done manually by human experts. The input file is shared
with expert software engineers who have testing knowhow.
The human experts studied the given inputs and provided
their results which are done manually. Their results are
saved and they reflect the ground truth. Later on our
application is tested with same inputs. This process is
continued for many Java applications to be tested. The
results of manual discovery of dependencies (closed and
open) are compared with the results discovered by our
application. Around 100 times this evaluation of the
application results by comparing with ground truth
consistently resulted in the same. Thus 100% accuracy has
been recorded by the application. When time is compared,
human experts took 10 to 15 minutes to discovery
dependencies in average while our application takes
negligible time to show the dependencies.

Figure 6– Performance comparison with ground truth

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.4, April 2015 57

Many experiments proved that the automatic discovery of
dependency structures do match with the ground truth and
the tool has been extended to prioritize test cases
automatically. In our previous paper we focused on test
suite generation while this paper while this paper focused
on automatic discovery of dependency structures for test
case prioritization. More details on our tool will be
presented in our next paper.

6. Conclusions and Future Work

Test case prioritization has its utility in improving the rate
of fault detection in SUT. As test suite contains many test
cases, the order of their execution plays an important role
in increasing the rate of fault detection which can provide
early feedback to development team so as to help them to
improve the quality of the software. Therefore it is very
useful to prioritize test cases that will lead to the increase
in the rate of fault detection. In this paper we proposed a
novel mechanism to discover dependency structures from
SUT automatically and use them for prioritization of test
cases. This work is very closer to that of Haidry and Miller.
However, they did not automate the discovery of
dependency structures. Dependencies are of two types
namely direct and indirect. Both types are considered in
this paper. We built a prototype application that
demonstrates the proof of concept. The empirical results
reveal that the automatic discovery of dependency
structures can help in complete automation of test case
prioritization. In future we integrate the whole test suite
generation and test suite prioritization into a single tool
that will help software engineering domain for automatic
test case generation and test case prioritization.

REFERENCES
[1] W. Eric Wong, J. R. Horgan, Saul London, Hira Agrawal.

(1997). A Study of Effective Regression Testing in
Practice. IEEE. 8 (1), p 264-274.

[2] Greegg Rothermel, Sebastian Elbaum, Alexey Malishevsky,
Praveen Kallakrui and Brian Davia (2011), The impact of
test suite granularity on the cost-effectiveness of Regression
Testing, University of Nebraska – Lincoln, p1-12.

[3] Hema Srikanth, Laurie Williams, Jason Osborne. (2000).
System Test Case Prioritization of New and Regression Test
Cases. Department of Computer Science. 2 (4), p1-23.

[4] J. Jenny Li. (2001). Prioritize Code for Testing to Improve
Code Coverage of Complex Software. CID. p1-18..

[5] Jiang, B; Zhang, Z; Chan, WK; Tse, TH. (2009). Adaptive
random test case prioritization. International Conference On
Automated Software Engineering. 4 (24), p233-244

[6] Johannes Ryser. (2000). Using Dependency Charts to
Improve Scenario-Based Testing. International Conference
on Testing Computer Software TCS. 18 (3), p1-10.

[7] Paolo Tonella, Paolo Avesani, Angelo Susi. (1997). Using
the Case-Based Ranking Methodology for Test Case
Prioritization. IEEE.p1-10.

[8] C. Prakasa Rao, P. Govindarajulu. (2015). Genetic
Algorithm for Automatic Generation of Representative Test
Suite for Mutation Testing. IJCSNS International Journal of
Computer Science and Network Security. 15 (2), p11-17.

[9] Shin Yoo & Mark Harman. (2003). Clustering Test Cases to
Achieve Effective & Scalable Prioritisation Incorporating
Expert Knowledge.ISSTA. 19 (23), p1-20.

[10] Sebastian Elbaum. (2000). Prioritizing Test Cases for
Regression Testing. International Symposium of Software
Testing and Analysis. p102-112

[11] Sebastian Elbaum. (2001). Incorporating Varying Test Costs
and Fault Severities into Test Case
Prioritization. Proceedings of the 23rd International
Conference on Software Engineering. 23 (5), p1-10.

[12] Sebastian Elbaum. (2002). Test Case Prioritization: A
Family of Empirical Studies. CSE Journal Articles. 2 (1),
p157-182.

[13] Stephen M. Ross, Ph.D.. (2003). Peirce's criterion for the
elimination of suspect experimental data. Journal of
Engineering Technology, p1-23.

[14] Xiao Qu, Myra B. Cohen, Katherine M. Woolf. (2006).
Combinatorial Interaction Regression Testing: A Study of
Test Case Generation and Prioritization. Department of
Computer Science and Engineering, p149-170.

[15] Zengkai Ma. (2001). Test Case Prioritization based on
Analysis of Program Structure. Department of Computer
Science, p149-170.

Prakasa Rao Chapati received Master of
Computer Applications degree from
Madras University and Master of
Technology degree in Computer Science &
Engineering from Acharya Nagarjuna
University. He is a research scholar in the
department of Computer Science, Sri
Venkateswara University. His research
focus is on Software Testing to improve

the Quality under Software Project Management perspective.

P.Govindarajulu, Professor at Sri
Venkateswara University, Tirupathi, has
completed M.Tech., from IIT Madras
(Chennai),Ph.D from IIT Bombay
(Mumbai), His area of research are
Databases, Data Mining, Image processing
and Software Engineering

