
IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.4, April 2015 75

Overcoming Trial Version Software Cracking Using a Hybridized
Self-Modifying Technique

C. K. Oputeh
Department of Computer Science

University of Port Harcourt,
Port Harcourt, Nigeria.

E. E. Ogheneovo
Department of Computer Science

University of Port Harcourt,
Port Harcourt, Nigeria.

Abstract
Information exchange has become an essential component in
modern society. Vendors provide content to consumers, while
consumers exchange information using e-mail, peer-to-peer
systems, social networks, or other network applications. We rely
on embedded software in our cars, the domotics, built into our
homes, and other electronic devices on a daily basis. Obviously,
all these applications rely on the correct functioning of software
and hardware components. Often, software which is the driving
force of computer hardware are usually subjected to cracking, a
condition whereby hackers bypassing the registration and
payments options on a software product to remove copyright
protection safeguards or to turn a demo version of software into
a fully functioning version by manipulating information such as
the serial number, hardware key, dates, etc., without actually
paying for the software. In this paper, we proposed a hybridized
self-modifying technique for checking against cracking. Our
technique combines obfuscation and hashing mechanisms to
resist attackers from cracking software. The key idea is to hide
the code using hashing by transforming it such that it becomes
more difficult to understand the original source code and using
obfuscation to resist software reverse engineering. The result
shows that our technique is able to block hackers and thus
prevent code cracking.
Keywords:
Software cracking, reverse engineering, code obfuscation, self-
modification, encryption.

1.0 Introduction

Information exchange has become an essential component
in modern society. Vendors provide content to consumers,
while consumers exchange information using e-mail, peer-
to-peer systems, social networks, or other network
applications. We rely on embedded software in our cars,
we trust the domotics (Home Automation) built into our
homes, and we use electronic devices on a daily basis.
Hence, the usage of software applications has become one
of the corner stone of our lives. Obviously, all these
applications rely on the correct functioning of software
and hardware components [6]. According to Howard and
LeBlanc [13], in the 1980s, application security was
achieved through secure hardware, such as ATM terminals

or set-top boxes. Since the 1990s, however, software
protection has gained much interest due to its low cost and
flexibility. Nowadays, we are surrounded by software
applications, e.g., for online payments, social networking,
games, etc. As a result, threats such as piracy, reverse
engineering, and tampering have emerged. These threats
are exacerbated by poorly protected software [5-7].
Therefore, it is important to have a thorough threat
analysis as well as software protection schemes.
Today, the revenues of software companies are huge. Not
only operating systems, but also professional applications
(e.g. graphics software) can be very expensive. As a
consequence, illegal use of software emerged [10] [17].
With just a few mouse clicks, people can download
software; apply a downloaded patch to it, and start using it
without payment. Vendors realized that protecting
software against malicious users is a hard problem [9]. The
user is in control of his machine: he has physical access to
the hardware; he controls the network connectivity, etc.
Nevertheless, software owners also manage to arm
themselves against these threats. Examples include popular
applications such as Apple’s media player - iTunes, the
voice-over-IP application - Skype, or online games such as
World of Warcraft [11]. These applications have been
exposed to attacks over the years. Nevertheless, they still
withstand the major problems caused by software threats
such as reverse engineering, tampering, cracking or piracy
[6] [8].
Software cracking is on the rampant due to the increase
use of the Internet technology. Software cracking is the
process of bypassing the registration and payments options
on a software product to remove copyright protection
safeguards or to turn a demo version of software into a
fully function version without paying for it [3]. It involves
the modification of software to remove or disable features
which are considered undesirable by the person cracking
the software, usually related to protection methods: copy
protection (protection against the manipulation of
software), trial/demo version, serial number, hardware key,
date checks, CD check or software annoyances like nag
screens and adware [9] [14]. Software cracking is a serious
problem that and it possess a great danger to computer

Manuscript received April 5, 2015
Manuscript revised April 20, 2015

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.4, April 2015 76

security. Therefore, there is need to provide protection to
software in order to reduce in incidence of cracking.
In this paper, we study software cracking in relation to
self-modification of programs. We proposed a hybridized
self-modifying technique for overcoming trial version
software cracking. First, we develop a framework for
preventing code cracking, then we develop a model that
can disguise the nature of code using self-modification. In
section 2, we discuss related work. Section 3 discusses the
methodology used. In section 4, we introduce our findings
and the discussion of results. Finally, section 5 draws
conclusion.

2.0 Related Work

Collberg and Thomborson [5] proposed software
watermarking technique for preventing cracking.
Watermarking is a compact outline of the approaches to
protect against these threats. Software watermarking for
instance focuses on protecting software reactively against
piracy. It usually implants hidden, distinctive data into an
application in such a way that it can be guaranteed that a
particular software instance belongs to a particular
individual or company. When this data is distinctive for
each example, one can mark out copied software to the
source unless the watermark is smashed. The second group,
code obfuscation, protects the software from reverse
engineering attacks. This approach comprises of one or
more program alterations that alter a program in such a
way that its functionality remains identical but analyzing
the internals of the program becomes very tough. A third
group of approaches focuses on making software “tamper-
proof”, also called tamper-resistant.
Protecting the reliability of software platforms, particularly
in unmanaged customer computing systems is a tough task.
Attackers may try to carry out buffer overflow attacks to
look for the right of entry to systems (access to system),
steal secrets and patch on the available binaries to hide
detection. Every binary has intrinsic weakness that
attackers may make use of at any point in time. Srinivasan
et al. [18] proposed three orthogonal techniques; each of
which offers a level of guarantee against malware attacks
beyond virus detectors. The techniques can be
incorporated on top of normal defenses and can be
integrated for tailoring the level of desired protection. The
author tries to identify alternating solutions to the issue of
malware resistance. The techniques used involve adding
diversity or randomization to data address spaces, hiding
significant data to avoid data theft and the utilization of
distant evidence to detect tampering with executable code.
Protecting code against tampering can be regarded as the
issue of data authenticity, where ‘data’ refers to the
program code. Aucsmith [1] explained an approach to

implement tamper resistant software. The approach
protects against analysis and tampering. The author
utilizes small, armored code segments, also called Integrity
Verification Kernels (IVKs), to validate code integrity.
These IVKs are protected via encryption and digital
signatures in such a way that it is tough to modify them.
Moreover, these IVKs can communicate with each other
and across applications via an integrity verification
protocol. Chang et al. [3] proposed an approach that
depends on software guards. This protection technique is
based on a composite network of software guards which
mutually validate each other's consistency and that of the
program's critical sections. A software guard is a small
segment of code carrying out particular task, e.g. check
summing or repairing. When check summing code
discovers a modification; repair code is capable to undo
this malevolent tamper challenge. The security of the
approach depends partly on hiding the obfuscated guard
code and the complexity of the guard network.
Horne et al. [12] using the same ideas as Chang et al. [3]
proposed `testers', small hashing functions that validate the
program at runtime. These testers can be integrated with
embedded software watermarks to result in a unique,
watermarked, self checking program. Other related
research is unconscious hashing [4], which interweaves
hashing instructions with program instructions and which
is capable of proving whether a program is operated
correctly. The approach used stochastic maintenance
approach for software protection through the closed
queuing system with the untrustworthy backups. The
technique shows the theoretical software protection
approach in the security viewpoint. If software application
modules are denoted as backups under proposed structural
design, the system can be overcome through the stochastic
maintenance model with chief untrustworthy and random
auxiliary spare resources with replacement strategies.
Recently, Ge et al. [8] presented a research work on
control flow based obfuscation. Although the authors
contributed to obfuscation, the control flow data is
protected with an Aucsmith-like tamper resistance
approach.
Cappaert et al. [2] presented a partial encryption approach
depending on a code encryption approach. In order to
utilize the partial encryption approach, binary codes are
partitioned into small segments and encrypted. The
encrypted binary codes are decrypted at runtime by users.
Thus, the partial encryption overcomes the faults of
illuminating all of the binary code at once as only the
essential segments of the code are decrypted at runtime.
Jung et al. [16] presented a code block encryption
approach to protect software using a key chain. Jung’s
approach uses a unit block, that is, a fixed-size block,
rather than a basic block, which is a variable-size block.
Basic blocks refer to the segments of codes that are

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.4, April 2015 77

partitioned by control transformation operations, such as
“jump” and “branch” commands, in assembly code [3]
[15]. Jung’s approach is very similar to Cappaert’s scheme.
Jung’s approach tries to solve the issue of Cappaert’s
approach. If a block is invoked by more than two
preceding blocks, the invoked block is duplicated.

3.0 Methodology

The software to be cracked must be a to be cracked must
be a trail version that requires the use of serial number to
unlock the software from a trail version software with
limited features to a full version software with all the
functionalities. Our sample software to be cracked is
crackme.cpp. It is C++ program that displays the DOS
environment screen that requires a serial key to unlock the
software. At compilation time, an executable file version
of the C++ source code is generated known as
crackme.exe. If the serial key entered is valid, it displays
correct key but if the key is invalid, it displays wrong key.
The valid serial number 123 is used. Any other serial
number entered apart from 123 will prompt the text string
“wrong key”. The objective is to crack the software so that
any key entered as serial number will unlock the software
and display correct key.
3.1 Materials
We used four major software in this paper. They are:

• Code::Blocks 13.12
• MinGW Installer
• Hacker Disassembler (HDasm)
• Hex Editor (Hacker’s View-Hiew)

Code::Blocks is a free and open source, cross-platform
IDE which supports multiple compilers including GCC
and Visual C++. It is developed in C++ using wxWidgets
as the GUI toolkits. Using a plugin architecture, its
capabilities and features are defined by the provided
plugins. Currently, Code::Blocks is oriented towards C,
C++, and Fortran. Code::Blocks is being developed for
Windows, Linux, and Mac OS X and has been ported to
FreeBSD, OpenBSD, and Solaris. We used the
Code::Blocks C++ compiler to compile the source code.

MinGW Installer formerly mingw32, is a free and open
source development environment for native Microsoft
Windows applications. It includes a port of the GNU
Compiler Collection (GCC), GNU Binutils for Windows

(assembler, linker, archive manager), a set of freely
distributed Windows specific header files and static import
libraries which enable the use of the Windows API, a
Windows native built of the GNU debugger, and other
utilities. The MinGW installer has all the runtime libraries
needed by the Code::Blocks 13.12 in order to have access
to all the runtime libraries available during compilation of
the source code.

Hacker’s Disassembler (HDasm) is a disassembler, for
computer software which automatically generates
assembly language source code from machine-executable
code. It supports a variety of executable formats for
different processors and operating systems. HDasm
performs automatic code analysis, using cross-references
between code sections, knowledge of parameters of API
calls, and other information.

Hex Editor (or binary file editor or byte editor) is a type
of computer program that allows for manipulation of the
fundamental binary data that constitutes a computer file.
The name ‘hex’ comes from ‘hexadecimal’: the standard
numerical format for editing binary data. It contains
hacker’s view (Hiew) which has the ability to view files in
text, hex, and disassembly modes. The program is
particularly useful for editing executable files.

3.2 Method
Our model is a hybridized method to protect software
against illegal acts of hacking. We examine software
protection through code obfuscation and encryption
technique, known as one - way hashing, which resists
reverse engineering attacks. Our model is a code
transformation technique in which functionality of original
code is maintained while obfuscated and one - way hashed
code is made difficult to reverse engineer. The key idea is
to hide the code. In our technique, the application is
transformed so that it is functionally identical to the
original but it is much more difficult to understand. This
is done by adding a mechanism of self-modification,
known as obfuscation mechanism, to the original program,
so that it becomes hard to be analyzed. In the binary
program obtained by the proposed method, the original
code fragments we want to protect are obfuscated so that
the hackers would not be able to understand the real
source code. Then, we use an encryption technique, known
as one - way hashing, to generate our application licenses.

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.4, April 2015 78

Fig. 1: Architecture of our Hybridized Self-modifying Mechanism

Our approach primarily consists of two parts: First, we
hide our target instructions. Target instructions are the
essential parts of the source code that we intend hiding. In
this technique, the target instructions are the code segment
of the serial number/password generation scheme. We
introduce an encryption mechanism, known as one - way
hashing, to hide the password of the application within the
program code. This is done by hashing the password to
generate a hashed version of the password. If a hacker
obtains access to the password file, all he or she would see
would be a collection of mashed data. Secondly, to ensure
that reverse engineering or analysis is not performed on
the source code, we add obfuscating instructions that
obfuscates both the hashed password and the remaining
segments of the source code.
Thus, by using the hybridized self-modification
mechanism, we used one - way hash the password to hide
the password and obfuscate the original source code. A
cracker with the intention of cracking software would not
be able to crack it because the sight of the obfuscated
source code does not look like a conventional written
program. We believe that the program protected by our
method is quite hard to be understood, and that it is
difficult for crackers to cancel the protection, since the
program is both obfuscated and one - way hashed.
3.2.1 Obfuscation Mechanism
Our obfuscation mechanism utilizes an algorithm for the
obfuscation of the serial number generation code segment

and the other code segment. The algorithm is written
below:
Algorithm 1: Obfuscation Mechanism
 1. Init sl = strings[]
 2. Init ia = address of sl
 3. Init al = argument list of recursive function
 4. FOR x = 1 to length of al
 5. al = al + sl[x]
 6. END FOR
 7. Insert 3 lower case l's into a Boolean statement
 8. FOR x = 1 to length of al
 9. IF x is at the proper position of sl, then
10 print 'l'
11. END IF
12. Init al[x+1] = printed "l"
13. SUBTRACT n from x to get element of sl
14. SWAP conditional operators
15. WHILE (Swapping between integers and
characters) DO
16. RENAME variables
17. END WHILE
18. END FOR
19. RENAME functions to look like variable names
20. ELIMINATE argument type specifiers

3.2.2 One - Way Hashing Mechanism
In the one - way hashing mechanism module, we are
interested in the password generation code segment. This
is because this code segment is responsible for generating
the serial number/password of the software. Thus we must

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.4, April 2015 79

hide or conceal it so it will not be visible for the hacker or
cracker to see. When this code segment is one - way
hashed, the cracker will not be able to see the password,
rather, what will be visible is be mashed data. This implies
that the cracker may not even know that the software
requires a serial number to have access to the full
functionality of the software. We only subject the serial
number generation code segment to one - way hashing
mechanism while the other code segments are neither

encrypted nor one - way hashed. Figure 2 shows a one-way
hashing mechanism also referred to as encryption. First,
the obfuscated password is generated from the code
segment and secondly, the other code segment is also
produced. Both processes are then used in the hashing
function to encrypt the code and prevent it from being
understood by a cracker who wants to crack the code and
use it for personal purpose.

Fig. 2: Encryption (One - Way Hashing) Mechanism Module

The one - way hashing mechanism utilizes an algorithm
(algorithm 1) for the hashing of the serial number
generation code segment and the other code segment. The
algorithm is written below:
Algorithm 2: One - way hashing Mechanism
 1: DECLARE hash, file_size
 2: Open file for reading and writing in binary mode
 3: Init file pointer to beginning of file
 4: Init f = file current read position
 5: Reset file pointer to beginning of file
 6: Init hash = f
 7: Init i = 0, tmp = 0,
 8: FOR j = 1 to 10
 9: WHILE 65536/(size of tmp) DO
10: Read characters from file

11: Store characters in tmp location
12: WHILE (not eof) DO
13: Read characters from file
14: END WHILE
15: END WHILE
16: Init file pointer to 65536 - 1
17: Init hash = tmp + hash
18: increment i
19: END FOR // end the for loop
20: RETURN hash

Our hybridized self - modifying mechanism is designed
using UML (Unified Modeling Language) diagram. An
activity diagram of our mechanism is shown in figure 2.

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.4, April 2015 80

Fig. 3: An activity diagram showing the hybridized self - modifying mechanism

Figure 3 shows the activity diagram for modeling the
hybridized self-modifying technique used employed. There
are two files needed to run this application software. The
application executable file and the configuration file.
When you run the application (the executable file) for the
first time, you are prompted to enter the serial number.
Then the serial number is entered in the application
interface. The application then checks if the serial number
is valid. If the serial number is invalid, then the application
stops running. If the serial number is valid, an hash value
is computed and compared with the existing hash value in
the configuration file. If the hash values are different,
application stops running. If the hash values are the same,
then a new hash value is computed using the system mac
address and the serial number. These new computed hash
value and serial number are then stored in the
configuration file and an update of the present run - state

of the application software is stored in the configuration
file.

4.0 Results and Discussions

We used sample software to be cracked called
crackme.cpp. It is C++ program that displays the DOS
environment screen that requires a serial key to unlock the
software. At compilation time, an executable file version
of the C++ source code is generated known as
crackme.exe. If the serial key entered is valid, it displays
correct key but if the key is invalid, it displays wrong key.
The valid serial number 123 is used. Any other serial
number entered apart from 123 will prompt the text string
“wrong key”. The objective is to crack the software so that
any key entered as serial number will unlock the software
and display correct key. Figure 4 shows a Hiew
(Hexadcimal view) displaying crackme.exe in text format.

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.4, April 2015 81

Fig. 4: Hiew displaying crackme.exe in text format

Figure 5 shows Hiew displaying crackme.exe in
hexadecimal format which is the assembly language format

representing the both the OPCODE, the hexadecimal
representation and the text formats.

Fig. 5: Hiew displaying crackme.exe in Hexadecimal format

Using the same cracking rules as crackme.exe software
that has a serial key authentication attribute, we generated
some program outputs to show the result as we undergo
the cracking process. We compiled the self-modifying
code and the executable named ObfusSec.exe is then
generated at compile time. We then run the source code to
check the serial number parameters. If we enter the serial
number “123” it will indicate that the key is valid and we

can then crack the code. However, if we enter any other
key, it will indicate “invalid” showing that that is not the
correct serial number (key). Figure 6 shows the assembly
language representation of the obfusSec.exe trying to
search for offset address. This is the part we are more
interested in because it shows that the source code can be
generated in assembly language and it show the offset
addresses.

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.4, April 2015 82

Fig. 6: Assembly language format of obfusSec.exe searching for offset address

The program was later run as an update of the one in
figure 6 when we search for the offset address. This is
shown in figure 7.

Fig. 7: Offset address spotted with the OPCODE and assembly command jz

We search for the offset address down initially and then
type the offset address without the two zero at the
beginning of the offset address and then edited the code.
As shown in figure 7, we edited the OPCODE by changing

the 74 to 75, then we observed that the assembly command
changes from jz to jnz. We the run the program and then
insert serial number of our choice. If any serial key entered
grants us access, then the software has been cracked.

Fig. 8: The source code of the obfuscated.exe

In Figure 8, the C++ source code of our model is opened
using the Code::Blocks 13.12 IDE. This code shows that
the source code has been obfuscated and cannot be

understood by a software cracker even though the code
remains the same as the original code written in C++.

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.4, April 2015 83

 Fig. 9: An invalid result when a wrong serial key is entered.

Figure 9 shows the DOS version where we entered a key
different from the serial key. Since the result is “invalid”,

it means that the source code remains uncracked after
using all the normal cracking routine.

5.0 Conclusion

In this paper, we proposed a hybridized self-modifying
technique for checking against cracking. Our technique
combines obfuscation and code encryption techniques to
resist attackers from cracking software. The key idea is to
hide the code using obfuscation by transforming it such
that it becomes more difficult to understand the original
source code. Target instructions are the essential parts of
the source code that we intend hiding. In this technique,
the target instructions are the code segment of the serial
number/password generation scheme. We introduce an
encryption mechanism, known as one - way hashing, to
hide the password of the application within the program
code. This is done by hashing the password to generate a
hashed version of the password. If a hacker obtains access
to the password file, all he or she would see would be a
collection of mashed data. Secondly, to ensure that reverse
engineering or analysis is not performed on the source
code, we add obfuscating instructions that obfuscates both
the hashed password and the remaining segments of the
source code. Thus, by using the hybridized self-
modification mechanism, a cracker with the intention of
cracking software would not be able to crack it because the
sight of the obfuscated source code does not look like a
conventional written program. We believe that the program
protected by our method is quite hard to be understood,
and that it is difficult for crackers to cancel the protection,
since the program is both one - way hashed and obfuscated.
References
[1] A. Aucsmith. Tamper-Resistance Software: An

Implementation. In Ross Anderson, Editor, Information

Hiding, Proceedings of the First International Workshop,
volume 1174 of LNCS, pp. 317 – 333.

[2] J. Cappaert, N. Kisserli, D. Schellekens and B. Preneel.
Self-Encrypting Code to Protect Against Analysis and
Tampering, 1st Benelux Workshop Inf. Syst. Security, 2006.

[3] H. Chang and M. Atallah. Protecting Software Codes by
Guards, ACM Workshop on Digital Rights Management
(DRM 2001), LNCS 2320, pp. 160-175, 2001.

[4] Y. Chen, R. Venkatesan, M. Cary, R. Pang, S. Sinha and M.
Jakubowski. Oblivious Hashing: A Stealthy Software
Integrity Verification Primitive, Proc. 5th Information
Hiding Workshop (IHW), Netherlands (October 2002),
Springer LNCS 2578, pp. 440 – 414, 2002.

[5] C. Collberg and C. Thomborson. Watermarking, Tamper-
Proofing, And Obfuscation - Tools for Software Protection,
IEEE Transactions on Software Engineering, Vol. 28, Issue:
8, pp. 735 – 746, 2002.

[6] S. Debray and J. Patel. Reverse Engineering Self-Modifying
Code: Unpacker Extraction. In Antoniol G., Pinzger, M. and
Chikofsky, E. J., Editors, WCRE, IEEE Computer Society,
pp. 131-140, 2010.

[7] P. Djekic, and C. Loebbecke. Preventing Application
Software Piracy: An Empirical Investigation of Technical
Copy Protections. The Journal of Strategic Information
Systems, Vol. 16, No. 2, pp. 173-186, 2007.

[8] J. Ge, S. Chaudhuri and A. Tyagi. Control Flow Based
Obfuscation. In DRM '05: Proceedings of the 5th ACM
workshop on Digital rights management, pp. 83-92, 2005.

[9] S. Goode and S. Cruise. What Motivates Software
Crackers? Journal of Business Ethics, vol. 65, pp. 173-201,
2006.

[10] R. Gopal and G. Snaders. International Software Piracy:
Analysis of Key Issues and Impacts. Info. Sys. Research,
Vol. 9, No. 4, pp. 380-397, 1998.

[11] Y. Gu, B. Wyseur and B. Preneel. Software-Based
Protection is Moving to the Mainstream, IEEE Software,
Special Issue on Software Protection, Vol. 28, No. 2, pp.
56-59, 2011.

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.4, April 2015 84

[12] B. Horne, L. Matheson, C. Sheehan and R. Tarjan. Dynamic
Self-Checking Techniques for Improved Tamper Resistance,
Proc. 1st ACM Workshop on Digital Rights Management
(DRM 2001), Springer LNCS 2320, pp.141–159, 2002.

[13] M. Howard and D. LeBlanc. Writing Secure Code, Second
Edition. Microsoft Press, 2002

[14] A. Jain, K. Jason, S. Jordan and T. Brian (2007). Software
Cracking (April 2007) website

[15] M. Jakobsson and M. Reiter. Discouraging Software Piracy
Using Software Aging, Proc. 1st ACM Workshop on Digital
Rights Management (DRM 2001), Springer LNCS 2320,
pp.1–12, 2002.

[16] D. Jung, H. Kim and J. Park. A Code Block Cipher Method
to Protect Application Programs From Reverse Engineering,
Korea Inst. Inf. Security Cryptology, Vol. 18, No. 2, pp. 85-
96, 2008.

[17] M. Kammerstetter, C. Platzer and G. Wondracek. Vanity,
Cracks and Malware: Insights into the Anti-Copy
Protection Ecosystem, Proceedings of The 2012 ACM
Conference On Computer And Communications Security,
pp. 809-820, .2012

[18] R. Srinivasan, P. Dasgupta, V. Iyer, A. Kanitkar, S. Sanjeev
and J. Lodhia. A Multi-factor Approach to Securing
Software on Client Computing Platforms, 2010 IEEE
Second International Conference on Social Computing
(SocialCom), pp. 993 – 998, 2010.

