
IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.5, May 2015

1

Manuscript received May 5, 2015
Manuscript revised May 20, 2015

Analyzing Homomorphic Encryption Schemes in Securing
Wireless Sensor Networks (WSN)

Levent Ertaul†, Johan Hadiwijaya Yang†, and Gokay Saldamli††

† Department of Mathematics & Computer Science, CSU East Bay, Hayward, CA, USA
†† MIS Department, Bogazici University, Bebek, Istanbul, Turkey

Summary
Data aggregation in WSN (Wireless Sensor Networks) is
substantial in increasing the network lifetime by eliminating the
information redundancy. However, in current practice,
aggregation data is transmitted in clear hence the whole process
is prone to various attacks. In the past, this unwanted pitfall was
mostly due lack of efficient encryption technology suited for
limited WSN nodes; however, relatively lightweight HES
(Homomorphic Encryption Schemes) allowing operations on the
encrypted data is considered as a promising solution in securing
such constrained devices. In this study, we carry out a
comprehensive performance analysis of the most popular HES,
particularly targeting limited WSN nodes. To our measurements:
the implemented HES primitives match the performance and low
power requirements; are feasible to be deployed inside the
current widely deployed sensor nodes, and are scalable to
thousands of sensor nodes without straining the lifetime of the
whole network.
Key words:
WSN, data aggregation, homomorphic encryption.

1. Introduction

The development of tiny electronic devices has
reached to a new era that it is possible to have mechanical
elements, like cantilevers or membranes, to be
manufactured at a scale more akin to microelectronics
circuit than to lathe machining [1]. This technology,
MEMS (Micro Electro Mechanical Systems), in turn is
aiding the birth of WSN [2][3] consists of individual nodes
that are able to interact with their environment by sensing
or controlling physical parameters; these nodes have to
collaborate in order to fulfill their tasks as, usually, a single
node is incapable of doing so; and they use wireless
communication to enable this collaboration.

The sensor node by itself has limited capabilities:
limited computing resource (limited computing ability,
small storage, and limited power source), unreliable type
of communication (unreliable data transfer, limited data
rate, and limited communication range) and unattended
operation (limited trust, complex remote management).
However, by adding more and more nodes, these
seemingly limited devices can create a powerful

infrastructure for a particular application sensing the wide
area environment [2][3][4].

Due to their inherent limitations, WSN poses new
challenges not present in traditional networks. Therefore,
to develop useful mechanisms--- while borrowing the ideas
from existing approaches--- it is necessary to identify and
to understand those challenges. Regarding various possible
critical applications, security is one of the most important
aspects of the technology. The security needs to begin at
the design stage because once we mass to deploy them it is
impossible/infeasible to retrieve the nodes [5][6].

The two most pressing issues on securing WSN are
node capture and power conservation. Node capture is
most likely to happen for WSN since most of WSN nodes
are deployed in an open area; hence are prone to attacks.
Power conservation is critical to WSN lifetime. Since most
of the nodes are battery-bound, once deployed, it is
virtually impossible to replace/recharge the battery.
Although other alternative energy source have been
proposed [7], the developments are still in their infancy to
be considered as a total battery replacement. Approaching
the problem in a different manner, i.e. data aggregation [8]
technique solves the power conservation issue; however, it
does not provide data confidentiality. Therefore, using
HES we intent to secure the data aggregation process
which implicitly solves both of the mentioned pressing
issues.

To be more specific; we implement four of the most
well-suited HES [9][10][11][12] on WSN nodes and
perform a comprehensive analysis focusing performance,
feasibility and scalability. Performance is measured by
how fast our algorithms perform on constrained WSN
nodes which in turn determine the quality of service of the
security realization. Feasibility is measured by contrasting
several algorithms parameters to determine if the
implementation is feasible; this knowledge aids the
developer to make better a decision before the actual WSN
deployment. Scalability of WSN implies the lifetime of
WSN which is measured by how long the network can
provide its service in the scale of thousands of nodes [13].

In the next two sections, we discuss the preliminaries.
After giving main characteristics of WSN which are unique
in the computing industry, we cover the main aspect of the

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.5, May 2015

2

targeted HES i.e. given in [9][10][11][12]. A brief
description is followed by a known security related issues.
In Sec. 4, we study the simulation aspects. After setting the
basic requirements for simulation; we compare several
simulator frameworks and choose OMNet++ as our main
development platform. Using OMNet++, we formulate
simulation goals, focus, and limitations. A steady state
simulation is formed on three implementation levels: node,
cluster, and network level. By profiling these three levels,
we get a better understanding of power usage for each
WSN device when performing the HES implementation.
We further explore different alternative scenarios which
show the effect of different parameters to test the solution's
upper bounds. Knowing the upper bounds enables the
WSN developers to make better decisions in deploying
WSN in real world applications. In Sec. 5, we summarize
the HES performance, feasibility and scalability on WSN.
The optimal parameters in implementing HES on WSN are
also presented. Last, we mention further research that
needs to be done for making the implementation more
feasible.

2. WSN security and data aggregation

In the nutshell, the wireless sensor network (WSN) is
the combination of a CPU, a sensor, a radio, and is
powered by a battery. Due to its rapid development from
advancements in electronics, mechanics, computing and
networking; especially of the breakthroughs in
miniaturization technology called MEMS [1]. It is
envisioned that WSN consisting of thousands to millions
of tiny sensor nodes will change the way we obtain
information from the physical environment. A node by
itself is rather limited; however, when networked together,
these devices can provide high resolution information
about sensed phenomena. Possible applications of WSN
range from natural habitat sensing, to structural monitoring,
to emergency response, and to military application [3][4]
[14][15]. Reasonably, there has been a great surge of
interest in WSN focused on developing hardware, software
and networking architecture needed to enable such
applications.

Like any other constrained environment, WSN poses
new challenges not present in traditional networks. To be
more informative; Fig. 1 compares WSN with other
technologies, from the most to least restricted, in terms of
computing power and price per unit. Observe that, RFID
(Radio Frequency Identification) [16] having only the
object identification functionality has both the lowest
computing power and price per unit. Next token like
devices are smart cards, a step up from RFID with the
additional capability to process the data. WSN devices are

between smart cards and MANET (Mobile Ad-hoc
Network) technology [5].

RFID
Smart
Cards

WSN

MANET

Handheld
devices

Desktop

Price per unit

C
om

pu
tin

g
po

w
er

Fig. 1. WSN compared with other technologies.

Although WSN node could be considered cheap in
terms of price per node, the information in each node
might be many more times more valuable. Traditionally,
security is considered as an add-on to existing
arrangements. However, having such a huge variety of
potential applications, WSN needs to have security in
place. This is due to the fact that in many application
scenarios, once a node is deployed, it is virtually
impossible to change the settings afterwards [14].
Therefore, WSN security solution needs to be implemented
during design development

Because of being a of a data driven network, WSN
raises new threats that are different from what we have
faced before. WSN allows massive data collection,
coordinated analysis, and automated event correlation. For
instance, consider a sensor network used for tracking
people and vehicles over long periods of time, with
troubling implications [13]. Facing such implications,
WSN is required to have security in place to ensure
confidentiality, authenticity, integrity, availability,
reliability, and scalability. In providing the above security
requirements, there has been a great effort in security
community. Among these studies, some of the key
solutions could be pointed as follows: cryptography
[5][6][17]; key management [18][19]; authentication [20];
secure routing [21]; location aware security (Key
establishment [22], privacy aware [23], location
verification [24]) and data aggregation [8][25][26][27]
[28][29][30][31][32].

In this study, we focus on data aggregation using HES
primitives. In a network of thousands of sensor nodes, the
data from an individual node is not meaningful when
compared to the aggregated data from clusters of nodes. In
this case, the raw data from several nodes will be buffered
and aggregated in one node acting as aggregator before

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.5, May 2015

3

sending a single message representing the aggregate of
values to nodes upstream. Data aggregation substantially
cuts down the transmission costs and in turn keeps the
network available for a longer time and provides optimal
bandwidth usage [8][29].

S S

A A

No aggregation, S(ink) can
be overwhelmed with data

With aggregation, S(ink) will get
less data, because A(ggregator)

aggregates data

Fig. 2. Comparing the network traffic with and without data aggregation.

In Fig. 2, the effect of data aggregation to WSN
traffic is illustrated. On the left, WSN operation without
data aggregation is seen. Observe that since the middle
nodes are not aggregating the data but just relaying the
messages, as the network tree level gets deeper, the sink
node gets more overwhelmed. On the other hand, shown
on the right, the middle nodes acting as an aggregator
summarize the data from lower nodes and hence the sink
has lesser data to process [8][33].

Data aggregation solves the power conservation issue.
However, in its implementation, the information flow
through the network is mostly insecure. On top of that, any
implemented security solution is added to the power
consumption overhead, quickly depletes the sensor node
power supply, and hence defeats the purpose of power
conservation.

Since HES allows operation on ciphertext as if it was
done on plaintext, it is an ingenious method of solving
WSN data (aggregation) confidentiality. Being different
from the other cryptographic security measures, HES
requires only light computing demand and only use small
amount of memory.

3. Homomorphic encryption schemes

Homomorphic Encryption Schemes (HES) offers
significant advantages in securing WSN data aggregation,
such as: low computational demand, long network lifetime,
allowing distributed computing using untrusted nodes, not
revealing sensitive information, and end-to-end security.
Conventional cryptography can not solve the security
problems due to the limitation of WSN. The HES has a

great potential to solve data confidentiality requirement,
because it allows computation on encrypted data as if on
the plaintext data. If HES is not used to secure data
aggregation, the intermediate nodes need to have the
knowledge of secret keys to perform the decryption on the
data before being able to do operation on them, and to re-
encrypt the data; which are prone to attacks.

From the five types of HES operations: additive,
subtractive, multiplicative, inverse multiplicative and
mixed multiplicative; we found four HES [9][10][11][12]
suitable to be implemented on WSN. In terms of
computing demand, additive and subtractive
homomorphism are lighter than the rest. In this study, we
only apply the additive homomorphism (decrypting the
sum of two ciphertexts is the same as addition of two
plaintexts; E(x+y) = E(x) + E(y) because it performs well
on WSN and provides sufficient security for WSN data
aggregation.

Next, we discuss Domingo-Ferrer schemes with the
explanation of encryption and decryption process, the
discussion of its security level, and the simple example that
illustrate how the algorithm works.

3.1 Domingo-Ferrer a new privacy homomorphism

Domingo-Ferrer a new privacy homomorphism
(DFPH) [9] is a HES which operates by splitting the
message and encrypting the splits. The splits can be added
or subtracted on the way to the destination. On the
destination, the message is then decrypted. This way the
data is concealed from source to destination. Let d and m
be the public parameters of the scheme where d is the
number of plaintext splits and m = pq for some secret large
primes p and q. In addition to p and q, the scheme has two
more secret parameters xp in Zp and xq in Zp. Even though,
the modulus m is assigned as the public parameter, it could
also be kept secret to increase the security. Alg. 1 gives the
basics of encryption/decryption functions.

Algorithm 1: DFPH
Encryption

1.

Choose a in Zm, such that a < min(p, q), (observe
that a = a mod m = a mod p = a mod q)

2. Split a into secret numbers a1, a2, …, ad; such that
a=

3.

Compute Ek() = ([a1 xp mod p, a1 xq mod q], [a2
xp

2 mod p, a2 xq
2 mod q], …, [an xp

n mod p, an xq
n

mod q])

Decryption
1.

Compute scalar product of the j-th pair [mod p,
mod q] by [x -jp mod p, x –j

q mod q]
2. add them up to get [aj mod p, a j mod q];
3.

use CRT (Chinese remainder theorem) to get a
mod m

∑
j = 1

n

a j modm

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.5, May 2015

4

Note that this scheme is known to be secure against to

known-ciphertext attacks, but not to the known-plaintext
attacks [34].

3.2 Domingo-Ferrer allowing field operations on
encrypted data (DFFO)

DFFO [10] generates secret random numbers and hide
those numbers from the intermediate nodes. This scheme
conceals the data from source to destination like as the
previous DF method. Alg. 2 shows how the scheme works.
Note that the public parameter m = pq (p and q are large
primes) is available for every sensor node where the secret
parameters p and q are only available for the sensor nodes
at the boundary of the network and the sink node.

Algorithm 2: DFFO
Encryption

1. Qp is defined as Qp = {a/b | a, b in Zp}
2.

Select a value x in Zp, a random fraction a/b in Qp,
such that x = ab -1 mod p

3.

The ciphertext is computed as y = Ep(x) = ab -1
mod m

Decryption
1.

Pick any fraction A/B in Qp, such that y = AB -1
mod m

2. compute plaintext x = Dp(y) = AB -1 mod p using p.
This scheme is secure against to chosen-ciphertext

attacks, but not to known-plaintext attacks [35]. In other
words; if (x, y) is a known plaintext-ciphertext pair, finding
key p is relatively easy. The cryptanalyst can determine a
set of AiBi-1 such that AB -1 = y mod m. We know x = Dp(y)
= AB -1 mod p, where p is the prime key and x ≤ p. We
also know that, p | (A - xB), that is p divides A - xB. Here
x, A and B -1 are known, so finding p is relatively easy.

3.3 Domingo-Ferrer additive and multiplicative
privacy homomorphism (DFAM)

Likewise DFPH, DFAM [11] also operates on the
splits of the message but the public and secret parameters
are slightly different. While the public parameter d still
represents the number of plaintext splits, modulus m
should not be a product of large primes. In fact m should
have small divisors and many integers less than m have to
be invertible modulo m. On the other hand, there are three
private parameters: m' (an integer where m/m' has 0
remainder), r and r inv where m' < r in Zm such that r r inv
mod m = 1. The detail of DFAM is given in Alg. 3.

Algorithm 3: DFAM
Encryption

1.

Split a into secret numbers a1, a2, …, ad ; such
that
a = (a1 + a2+ a3+ ... + ad) mod m'

2. E(a) = (a1r mod m, a2r2 mod m, … ,adrd mod m

Decryption
1.

Compute scalar product of the j-th pair r -j mod m
to retrieve aj mod m

This scheme is secure against to chosen-ciphertext
attacks, but not to chosen-plaintext attacks. Wagner [35]
showed an efficient way to recover m' with a small pool
say n, of known plaintexts. He proposed several ways to
recover r', where r' ≡ r mod m'. One possibility is
exhaustive search, that works whenever m' is small.
Another possible attack is based on linear algebra, which
works with reasonable success probability whenever n ≥ d.
A third possibility is an attack based on polynomial root-
finding, which applies m' can be factored and there are a
few known plaintexts.

Cheon et. al [34] proposed a plaintext attack, such
that if the attacker can guess several plaintexts, the key can
be broken in polynomial time. The plaintext guessing in
the context of WSN is easy to do, since the data collected
on the nodes can yield the plaintext already. For example,
the attacker can just measure the temperature and use it as
the plaintext.

This fact should not hinder the usefulness of the
scheme. Implemented properly, Ferrer’s scheme is enough
to increase the effort for the intruder to a degree that makes
the attack uninteresting. The drawback of this approach is
the size of the data is tremendously increased by the
number of summands, the upper bound for range of
numbers to be encrypted is g', but the actual components of
the encrypted values can be as large as g-1 which is waste
of bits since g' divides g without remainder.

There is no multiplicative inverse makes it we have to
take care not to exceed the limit g'. After reaching the limit
g', the problem called wrap around would happen which
decreases the value by g'. The only solution if to decrypt a
value, do the division and encrypt it again. The wrap
around problem exists on additions though additions are
less prone to exceed the limit. The non deterministic nature
of Ferrer’s scheme, such that the same number can map to
many different ciphered words, provides a solid advantage
over the intruders [35].

3.4 Mixed Multiplicative Homomorphism (MMH)

MMH [12] is similar to DFFO, it generates random
numbers and it security depends on hiding those numbers
from the intermediate nodes. Moreover, modulus m is
public and its large factors p and q are secret parameters.
Alg. 4. gives the details of the encryption and decryption
functions.

Algorithm 4: MMH
Encryption

1. Qp is defined as Qp = {a/b | a, b in Zp}

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.5, May 2015

5

2.

Given x in Zp, pick a random number a in Qp such
that x = a mod p

3. The ciphertext is computed as Ep(x) = a mod m.
Decryption

1.

Given y = Ep(x) in Zm. Use p to recover x. i.e. x =
Dp(y) = y mod p.

This scheme is secure against to known-ciphertext
attacks, but not to known-plaintext attacks [12]. Let us
look into the known-plaintext and known-ciphertext
attacks in more detail regarding this cryptosystem.
1. Known plaintext attacks: If (x, y) are the known

plaintext ciphertext pair, finding key p is relatively
easy. We know x = Dp (y) = y mod p, where p is the
prime key and p ≥ x. We know that p | (y - x), that is p
completely divides y - x. Here x and y are known, so
finding p is relatively easy as p is the divisor of (y - x).

2. Known ciphertext attacks: We know x = y mod p and
if y is known, x and p are still unknown. We know, y =
x + rp and it is difficult to determine y as x and p are
unknown.
Table 1 gives the summary of the four chosen DF

algorithms. Observe that all of the algorithms can perform
the additive homomorphism which in fact is the basis of
our work. Additive homomorphism needs relatively
lightweight computations and all of today’s chips have the
addition operator as their primitive function. Although
multiplicative homomorphism might offer higher security,
it requires more space and produces longer encrypted
messages; hence it is not favorable for WSN use.

Table 1: Overview of the HES Algorithms.

 Services Against
Secure

Against
Unsecure

DFPH S(d1,d2) = d1 + d2
S(d1,d2) = d1 × d KCP KPA

DFFO
S(d1,d2) = d1 ± d2
S(d1,d2) = d1 × d2
S(d1,d2) = d1 / d2

CCA KPA

DFAM S(d1,d2) = d1 ± d2
S(d1,d2) = d1 × d2

CCA CPA

MMH S(d1,d2) = d1 + d2
S(d1,d2) = d1 × d2

CCA KPA

Note that schemes other than DFAM are insecure

against KPA. The attacker does not need to feed the data
into the captured device, only to know what kind of data is
being fed. This is a serious weakness for WSN application
which sense natural data, since the attackers can easily
fabricated the value. However, this type of attack can be
minimized in WSN because it is widely deployed and in
order for attackers to succeed, they need to capture the
majority of the nodes.

4. Simulation

In order to see the action of HES for data aggregation
on WSNs, we need to model the real world implementation
of sensor networks as approximately as possible. We
simply manifest our simulation goals, focus, limitations,
tools and possible scenarios in this section.

4.1 The simulation goals

The primary focus of this study is to analyze the
performance, feasibility and scalability of four of HES
[9][10][11][12] implementations on WSN. We compare
the performance and the lifetime of the sensor nodes on the
basis of how much the power usage and the execution time
that a sensor node used in performing the security
algorithm implementations. The CPU, memory, and the
radio usage are the components of the measurements on
power usage and execution time.

Feasibility is the other phenomena that we drill
through the simulation by having a better understanding of
the impact of different security algorithms parameters to
the overall network lifetime. By looking at the simulation
results, designers would be able to make decisions on their
hypothesis. For instance, the implementation might use
small CPU resource; but if it requires several transmissions
to send because of some longer message; it will quickly
drain power hence infeasible.

Having a large number of nodes heavily impacts
simulation performance and scalability. Second, credible
results demand an accurate characterization of the sensor
radio channel. There is an increasing concern about the
simulation methodology and assumptions used in
simulation of WSN. Idealized hardware, simplified
protocols, and unrealistic radio models too often lead to
mistaken results.

4.2 The simulation focus

This is a steady state simulation which focuses in
measuring the long term average behavior of WSN when
executing the security algorithms. We do not focus on the
behavior of WSN nodes at the starting point and assume
the sensor nodes were already in a ready state, with
network topology already defined, and all the
bootstrapping processes done. While it is true that the
bootstrapping process consumes energy, it is only done
sparingly and will not have an impact on WSN long term
performance. On the other hand, our security
implementations are done repeatedly and hence greatly
impact the network lifetime [7][36].

For WSN communication we focus on the reverse
multicast communication. Most of WSN application is of
the many to one communication pattern where many

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.5, May 2015

6

sensors at the edge of perimeter will report back to one
root point. The other types of communication patterns are
temporal and therefore negligible for the long run [8][25].

4.3 Tools and framework

To understand the dynamic behavior of WSN mass
deployment (in the order of thousands of nodes), we devise
a robust simulation model based on an open source
framework called OMNet++ (Objective Modular Network
in C++). After researching several simulation options,
OMNet++ fulfilled our basic requirements because of its
extensibility, scalability, true imitation of real hardware
and software and being easy to analyze and install [37].

We develop the WSN simulation on an Intel Pentium
Xeon dual-core 2GHz, 2GB RAM and running Ubuntu
Linux 9.10. Due to the in depth research and the wide
adoption on current WSN applications, we based the
simulation on MICA2 sensor nodes [38]. The success and
the validity of the simulation relied heavily on the many
additional contributing packages including: mobility
framework (MF), Castalia, INET, and NesCT [37][38].

4.3 Simulation limitations

We do not focus on secure routing [21], key management
[18][19] for authentication, dynamic aggregator node
election, and the environmental effects. Even though all of
those processes are important for WSN applications, they
are temporal events hence negligible in impacting the
network lifetime in the long run [8][25]. Instead, we use
ready-made solutions provided by other research or from
default settings provided by OMNet++.

4.3 WSN Simulation Design

We discuss the events that happened at sensor nodes
and aggregator nodes. However, we do not focus on the
events that happened at sink node because it is irrelevant to
the long term performance of WSN.

The simulation process is a combination of event and
unit time advance. Event advance focuses on a general
view of the state changes each time an event occurs. On the
other hand, when the simulation needs to capture more
details of events that happened at the same time or close to
each other; it changes to unit time advance. The simulation
alternates between event advance and unit time advance,
where event advance is active the time when nodes spend
most of their time in the IDLE/SLEEP state and unit time
advance actives during the time when nodes are in the
ACTIVE state [38][39]. To keep track of the events, the
simulation uses a data structure called future event list
(FEL) to track two things: the time of occurrence of an
event and the type of event.

The event advance of sensor node FEL is responsible
to trigger an event which simulates a sensor node capturing
the environmental value and to trigger an aggregator node
to get ready to perform its task. On the other hand, the unit
time advance captures more details of the sensor node
activities by changing the simulation time from ms to µs. It
captures the CPU, memory, and radio activities of the
sensor node. After completing its tasks, the sensor node
goes to IDLE/SLEEP state and the event advance takes
over.

On the aggregator node, a similar alternating process
goes on. There are two states of the aggregator node which
will greatly determine its lifetime. The first is LISTEN
state when the aggregator node spends most of its time
waiting for sensor nodes to complete their data
transmissions. The second is the IDLE state, when the
aggregator node cannot get into SLEEP state because it has
to relay messages from the aggregator nodes located below
of the network tree. Since its activity depends on the
completion of the other nodes, the longer it has to wait, the
more it consumes the power source

4.3 Profiling

To measure the performance of the sensor nodes
while performing HES algorithms, we profile them on two
measurements: the execution time and the power usage.
Since the measurement components are simply the sensor
node's CPU, memory usage and radio, the simulation
reveals the dynamics of execution time and energy usage
within a node, a cluster, and a network.

We perform the profiling on the node, cluster, and
network level. The node level profiling gives the power
consumption details of the sensor node devices.
Throughout this research, we model the sensor nodes
based on MICA2 [38] specifications. According to this
model, there are five WSN major activities: TX-
transmitting, RX-receiving, COMPUTE, IDLE, and
SLEEP. In case of TX-transmitting there are four devices
on WSN sensor node that are active: the CPU is ACTIVE;
the memory is ACTIVE; the radio is transmitting; and the
sensor board is ON.

In Table 2, the snapshot of the consumed energy of
WSN device per activity is given. For instance, on
COMPUTE, the CPU consumed 8.93 mA, the memory
consumed 12.3 mA, the radio consumed 3.7 mA, and the
sensor board consumed 1.7 mA, for a total of 26.63 mA.
After adding the subtotals of energy consumed per WSN
activity, the grand total is 101.53 mA.

Once the sensor nodes are being deployed into one
area, they begin to form a cluster which consists of several
sensor nodes and one aggregator node. The sensor nodes
are usually located at the edge where aggregator node is
located in the middle of the network tree (see Fig. 3).

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.5, May 2015

7

Table 2: Total amount of energy used per WSN device per activity (mA).

Devices TX RX Compute Idle Sleep
CPU 8.93 8.93 8.93 1.04 4.13

Memory 12.3 12.3 12.3 0 0
Radio 10.07 7 3.7 3.7 3.7
Sensor 0.7 0.7 1.7 0.7 0.7

Subtotal 32 28.9 26.63 5.44 8.53
Total: 101.53 mA (100%)

Aggregator node's main function is to aggregate the
information from children nodes and to do operation on the
information before sending the aggregated value upstream
towards the sink/base station node.

r = 25m

Aggregator

 Sensor

Sink

Fig. 3. Cluster level simulation configuration.
Cluster level profiling aims to reveal the interaction

dynamics between the sensor and aggregator nodes within
one cluster. Even though both devices consist of the same
hardware specifications, each performs different
functionality. For instance; the sensor nodes perform the
encryption algorithms where the aggregator nodes, in our
model, perform the operations (add, subtract, etc) on the
encrypted values. The following gives the basic
assumptions that we carry during our cluster profiling.
a) The sensor nodes are randomly distributed over an

area with maximum radius of 25 meters based on an
effective inter-nodes communication distant [36].

b) The aggregator node is located in the middle of the
cluster and all the sensor nodes are reporting their data
to the aggregator node acting as the cluster head.

c) The cluster uses a star shape network topology to
share a common wireless radio communication
channel.

d) After the event that triggers the sensor nodes, the data
is being pushed to the aggregator node once in every
sampling time interval. To see the effects to the
performance and the lifetime of the sensor nodes,

three different; i.e. 1, 2 and 4 minutes time intervals
are used.

e) After the aggregator node polled the data, it sends the
aggregated data to the sink node. The sink decrypts
the data to reveal the actual message.
Lastly, the network level profiling gives the

saturation details of the different sensor nodes to the
performance and lifetime of the aggregator node. The
network level FEL where many sensor nodes are
simultaneously monitored, is the most complicated one to
simulate.

The following procedure gives our simulation setup.
Notice that the focus is more on performance of the
aggregator nodes since they determine the lifetime of the
network.

a) The network level simulation consists of clusters of

nodes and one sink node.
b) The clusters are randomly distributed over (500×500)

m2 area.
c) The sink node is located in the middle of network.
d) Each cluster is headed by the aggregator node. The

focus is on the aggregator node performance.
e) The network uses the fixed Star shape topology to

share the wireless radio communication channels.
f) the sampling is carried in 1, 2 and 4 minutes time

intervals where we see the effects to the lifetime of the
aggregator node.

In our model, the simulation is built upon the previous
cluster level profiling where we put clusters of nodes
within one sensing area. In our measurements, we run-
though two alternative scenarios; a network in which we
gradually increase the number of clusters having fixed
sensor nodes and a network in which we gradually
increased the number of sensors within its fixed number of
clusters.

Sink
Last aggregator

Fig. 4. Straight line (left), Balance Tree (middle), and

Concentrated (right).
Another important concern is profiling the last

aggregator node since it is directly connected to the sink.
The last aggregator node --sometimes also called as the
traffic concentrator--- drives the upper bound for the
aggregator node's power usage and lifetime. There are
three cases on profiling the last aggregator node as seen in
Fig. 4:

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.5, May 2015

8

i. Straight line -- the clusters form a straight line: the
last aggregator node has to IDLE for long time
because it has to wait all values from the edge of the
network to reach the last aggregator node.

ii. Balanced tree -- the clusters are spread evenly to
make a balanced tree: the last aggregator node has a
shorter IDLE time.

iii. Concentrated -- the clusters are spread and each
aggregator concentrates its data to the last aggregator.
Observe that the network of clusters forming a

straight line gives the worst case scenario since the last
aggregator node has to wait for all of the messages to reach
it. In other words, the longer the aggregator node is active,
the more of the power consumed. Thus, this would
severely decrease the lifetime of the aggregator node. In
the next section, we present the simulation results.

4.7 Simulation results

We start with the sensor profiling in performing the HES
implementation on different key sizes, message sizes, and
message splits. Our findings showing the node lifetime of
ten encryption alternatives on comparable 512/512 bits
(msg/key) parameters are presented in Fig. 5.

4min

1min

D
FP

H
 5

12
/5

12

D
FP

H
 5

00
/5

12

D
FP

H
 (s

pl
it

=
3)

51
2/

51
2

D
FF

O
 5

12
/5

12

D
FF

O
 5

12
/5

00

D
FA

M
 5

12
/5

12

D
FA

M
 5

00
/5

12

D
FA

M
 (s

pl
it=

3)
51

2/
51

2

M
M

H
 5

12
/5

12

M
M

H
 5

12
/5

12

0

50

100

150

200

250

300

node
lifetime
(days)

Fig. 5 Comparing lifetime of sensor nodes performing

HES.

To be more informative, y-axis (in Fig. 5) shows the

number of days the sensor survives; where x-axis gives the
encryption schemes and z-axis shows three different
sampling intervals: i.e. 1, 2, and 4 minutes sampling time
intervals. Notice from the figure that MMH has the longest
lifetime, followed by DFFO, DFAM, and DFPH. Both of
MMH and DFFO use random values as secret keys and do
not split the message; hence, they have a less computing
overhead.

Note that DFPH on average has a shorter lifetime;
particularly, whenever the message split is 3. The overhead

of splitting the message is the need for bigger data
structures to store and operate on the data splits. Observe
that there is a significant increase in the lifetime when the
sampling interval is increased. This is directly proportional
to the amount of time a sensor is in SLEEP state which in
fact, determine the lifetime of the node.

A reasonable comparison would be keeping the ratio
of key and message size constant for all HES
implementations. Fig. 6 depicts the lifetime of a sensor on
4 minutes of sampling interval in performing different HES
implementations with the same key to message size ratio
(128/128bits, 256/256 bits, 512/512 bits, etc). Observe that
in such a setting, MMH and DFFO show no/slight change
in the node lifetime regardless the size increase of both key
and message. Nevertheless, both implementations serve
better solution for their fast performance and longer
lifetime. Meanwhile, DFPH gives a graph of a step
function; the same lifetime for 128/128 and 256/256, and
the same lifetime for 512/512 and 1000/1024 (msg/key).
On the other hand, DFAM shows the rounder curve graph;
which show that the lifetime of sensor node correlates with
the message/key size.

128/256
256/512

512/1024
1000/1024

2000/2048

DFPH

DFFO

DFAM

MMH

0

50

100

150

200

250

300

node
lifetime
(days)

msg/key size (bits)
Fig. 6. Comparing lifetime of sensor nodes for HES

deployments having the key and message size ratio equal
to one.

To be more specific, we compare the node lifetime of

two encryption schemes which use the message splits,
DFPH and DFAM, in order to effect of different message
splits to node lifetime.

In Fig. 7, we give three different msg/key ratios:
512/512, 512/1024 and 512/2048 on sensor node
performing 4 minutes sampling time interval. The best
lifetime is MMH, followed by DFFO. The worst lifetime is
DFPH with message split 3 for msg/key: 512/2048. The
effect of different message split to the node lifetime is
substantial when the msg/key ratio is great; for instance, if
we compare DFAM 512/512 split 2 and split 3 with
DFAM 512/2048 split 2 and split 3; there is a
substantial % difference for the latter scheme. We

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.5, May 2015

9

postulate more message split require bigger data structure
and longer ACTIVE CPU.

once/4min

D
FP

H
 (s

pl
it

2)
 5

12
/5

12

D
FP

H
 (s

pl
it

3)
 5

12
/5

12

D
FA

M
 5

00
/5

12

D
FA

M
 (s

pl
it

2)
 5

12
/5

12

D
FA

M
 (s

pl
it

3)
 5

12
/5

12

M
M

H
 5

12
/5

12

D
FP

H
 (s

pl
it

2)
 5

12
/1

02
4

D
FP

H
 (s

pl
it

3)
 5

12
/1

02
4

D
FA

M
 5

00
/1

02
4

D
FA

M
 (s

pl
it

2)
 5

12
/1

02
4

D
FA

M
 (s

pl
it

3)
 5

12
/1

02
4

M
M

H
 5

12
/1

02
4

D
FP

H
 (s

pl
it

2)
 5

12
/2

04
8

D
FP

H
 (s

pl
it

3)
 5

12
/2

04
8

D
FA

M
 5

00
/2

04
8

D
FA

M
 (s

pl
it

2)
 5

12
/2

04
8

D
FA

M
 (s

pl
it

3)
 5

12
/2

04
8

M
M

H
 5

12
/2

04
8

0

50

100

150

200

250

300

node
lifetime
(days)

Fig. 7. Comparing node lifetime on 512/512,

512/1024, and 512/2048 (msg/key).

Next, we show the performance of an aggregator node

in processing the aggregated data from its sensor nodes.
These readings are important to formulate the baseline
performance of one cluster. We show that the optimal
solution is to increase the sampling interval time. The next
solution is to decrease the number of sensors within one
cluster; however, this solution might be infeasible for
WSN applications that need higher sensing ability from
higher node saturation per cluster. We observe from Fig. 8
that decreasing number of sensors within a cluster by half
increases lifetime by average 70%. Decreasing number of
sensors within a cluster by quarter increases lifetime by
181.95%. Increasing sampling time interval by factor of
two (example from 1, 2, and 4 minutes sampling time
intervals) increases lifetime by 300%.

5
Sensors

1min

5
Sensors

2min

5
Sensors

4min

10
Sensors

1min

10
Sensors

2min

10
Sensors

4min

20
Sensors

1min

20
Sensors

2min

20
Sensors

4min

0

20

40

60

80

100

120

140

160

node
lifetime
(days)

Fig. 8 Comparing aggregator lifetime on different

number of sensors in a cluster and different sampling
interval.

In order to see the effect of different number of

clusters within one network to the power usage and the
lifetime of the aggregator node. Since the last aggregator
node drives the upper bound for the aggregator node's
power usage and lifetime, we simulate the last aggregator
node under the topologies seen in Fig. \ref{sec5_1:fig0}.
The simulation parameters are: (i) All the nodes are
performing DFPH with message split 2, 512/512 (msg/key),
the sensing area is 500×500 square meters. (ii) Each
cluster consists of 10 sensor nodes and one aggregator
node, sampling time interval is 4 minutes. This sampling
time interval is chosen to make an easier performance
comparison, since the other sampling time interval results
are too close to compare.

We give the result of this simulation focusing the last
aggregator node in Fig. 9. On concentrated case, the last
Aggregator spends most its time IDLE waiting for all data
from the other aggregators to reach it. On average, adding
more clusters to the network will reduce the Aggregator
lifetime by 87.42% on worst case, as opposed to only
39.08% on best case scenario.

10
100

1000

concentrated

straightline

balanced tree0

10

20

30

40

50

60

node
lifetime
(days)

clusters
network

configuration

Fig. 9 Comparing different number of clusters within

a Network to the last Aggregator node lifetime.

From the over all simulation results, it is clear that

MMH is the fastest HES on the sensor node in comparison
with the other three schemes. However, MMH is
susceptible to known-plaintext attack. DFPH and DFAM
share the worst performance (in terms of speed) because
they split the value before encrypting each split. This
requires more time to execute, more memory to process the
bigger data, and consequently more power consumption.
However, both schemes might provide a higher security
level than MMH and DFFO because of the same reason
that make them disadvantaged.

On the aggregator node, regardless of the schemes
used, its performance depends on the number of sensor

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.5, May 2015

10

nodes within its cluster and the network configuration. The
more the sensor nodes are in the cluster, the more RX-
Receiving operations the aggregator node is required to
carry. The more unbalanced the network (not distributed
evenly), the more time the aggregator node is required to
wait for others to finish their operations. Both conditions
reduce the aggregator node lifetime.

4. Conclusion

In this study, we have proven that all of the chosen
HES algorithms can be implemented on and a good
candidate in securing WSN's data aggregation despite of
WSN's limitations. These algorithms do not require
intensive calculations like in other conventional symmetric
encryptions and public key cryptography. The maximum
and minimum calculations can be done by randomize the
pre-encrypted values; eliminate the encryption needs in
sensor nodes. This will further prolong the lifetime of the
sensor nodes. By prolonging the sensor nodes, in turn will
prolong the whole network lifetime. We also have shown
the direct correlations between the power usage and the
execution time. The CPU, memory, and radio as the
components of the power usage and the execution time;
play the big role in determining the lifetime of the sensor
node. The faster the execution of the algorithm, the longer
the lifetime of the node for it can preserve much of its
energy in the SLEEP state.

Acknowledgments

G. Saldamli is partially funded by TUBITAK research
project 109E180.

References
[1] F. Chollet and H. Liu, “A (not so) short intro- duction to

MEMS,” Nanyang Technology Univer- sity,MicroMachines
Center, School of MAE, Singa- pore, Tech. Rep. 2.5, 2008.

[2] S. Megerian, F. Koushanfar, G. Qu, G. Veltri, and M.
Potkonjak, “Exposure in wireless sensor networks: theory
and practical solutions,” Wireless Networks, vol. 8, pp. 443–
454, September 2002.

[3] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J.
Anderson, “Wireless sensor networks for habitat
monitoring,” in Proceedings of the 1st ACM international
workshop on Wireless sensor networks and applications, ser.
WSNA ’02. New York, NY, USA: ACM, 2002, pp. 88–97.

[4] K. Romer and F. Mattern, “The design space of wire- less
sensor networks,” Wireless Communications, IEEE [see
also IEEE Personal Communications], vol. 11, pp. 54–61,
2004.

[5] S. Schmidt, H. Krahn, S. Fischer, and D. Watjen, “A
security architecture for mobile wireless sensor networks.”
 in ESAS’ 04, 2004, pp. 166–
177.

[6] V. C. Giruka, M. Singhal, J. Royalty, and S. Varanasi,
“Security in wireless sensor networks,” Wireless
Communications and Mobile Computing, vol. 8, no. 1, pp.
1–24, 2008.

[7] S. Roundy, D. Steingart, L. Frechette, P. Wright, and J.
Rabaey, Power sources for wireless sensor networks.
 Springer, 2004, vol. 2920.

[8] J. Girao, D. Westhoff, and M. Schneider, “Cda: con- cealed
data aggregation for reverse multicast traffic in wireless
sensor networks,” in Communications, 2005. ICC 2005.
2005 IEEE International Conference on, vol. 5, may 2005,
pp. 3044 – 3049 Vol. 5.

[9] J. Domingo-Ferrer, “A new privacy homomorphism and
applications,” Inf. Process. Lett., vol. 60, no. 5, pp. 277–282,
1996.

[10] J. Domingo-Ferrer and J. Herrera-Joancomart, “A privacy
homomorphism allowing field operations on encrypted
data,” in I Jornades de Matematica Discreta i Algorismica,
Universitat Politecnica de Catalunya, 1998, pp. 1–3.

[11] J. Domingo-Ferrer, “A provably secure additive and
multiplicative privacy homomorphism,” in Proceedings of
the 5th International Conference on Information Security,
ser. ISC ’02. Springer-Verlag, 2002, pp. 471–483.

[12] H. Lee, J. Alves-Foss, and S. Harrison, “The use of
encrypted functions for mobile agent security,” in
Proceedings of the Proceedings of the 37th Annual Hawaii
International Conference on System Sciences, ser.
HICSS ’04. IEEE Computer Society, 2004, pp. 297–306.

[13] J. P. Walters, Z. Liang, W. Shi, and V. Chaudhary,
“Wireless sensor network security: A survey,” in ”book
chapter of Security in Distributed, Grid, and

[14] J. A. Stankovic, Q. Cao, T. Doan, L. Fang, Z. He, R. Kiran,
S. Lin, S. Son, R. Stoleru, and A. Wood, “Wireless sensor
networks for in-home healthcare : Potential and challenges,”
Sensors Peterborough NH, pp. 7–10, 2005.

[15] M. Li, W. Lou, and K. Ren, “Data security and privacy in
wireless body area networks,” Wireless Communications,
IEEE, vol. 17, no. 1, pp. 51–58, february 2010.

[16] K. Finkenzeller, RFID Handbook: Fundamentals and
Applications in Contactless Smart Cards and Identification,
2nd ed. New York, NY, USA: John Wiley & Sons, Inc.,
2003.

[17] W. Hu, P. Corke, W. C. Shih, and L. Overs, “Secfleck: A
public key technology platform for wireless sensor
networks,” in Wireless Sensor Networks, 6th European
Conference, EWSN 2009, 2009, pp. 296– 311.

[18] D. Liu, P. Ning, and R. Li, “Establishing pairwise keys in
distributed sensor networks,” ACM Trans. Inf. Syst. Secur.,
vol. 8, no. 1, pp. 41–77, 2005.

[19] Q. Mi, J. A. Stankovic, and R. Stoleru, “Secure walk- ing
gps: a secure localization and key distribution scheme for
wireless sensor networks,” in Proceedings of the Third
ACM Conference on Wireless Network Security, WISEC
2010, 2010, pp. 163–168.

[20] D. Liu and P. Ning, “Multilevel μtesla: Broadcast
authentication for distributed sensor networks,” ACM Trans.
Embed. Comput. Syst., vol. 3, pp. 800–836, November 2004.

[21] C. Karlof and D. Wagner, “Secure routing in wireless sensor
networks: attacks and countermeasures,” Ad Hoc Networks,
vol. 1, no. 2-3, pp. 293–315, 2003.

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.5, May 2015

11

[22] D. Huang, M. Mehta, D. Medhi, and L. Harn, “Location-
aware key management scheme for wire- less sensor
networks,” in Proceedings of the 2nd ACM workshop on
Security of ad hoc and sensor networks, ser. SASN ’04.
 New York, NY, USA: ACM, 2004, pp. 29–42.

[23] M. Gruteser, G. Schelle, A. Jain, R. Han, and D. Grunwald,
“Privacy-aware location sensor net- works.” in HotOS’03,
2003, pp. 163–168.

[24] L. Lazos and R. Poovendran, “Serloc: secure range-
independent localization for wireless sensor networks,” in
Proceedings of the 2004 ACM Workshop on Wireless
Security, 2004, pp. 21–30.

[25] D. Westhoff, J. Girao, and M. Acharya, “Concealed data
aggregation for reverse multicast traffic in sensor networks:
Encryption, key distribution, and routing adaptation,” IEEE
Transactions on Mobile Computing, vol. 5, pp. 1417–1431,
October 2006. [Online].
Available: http://dx.doi.org/10.1109/TMC.2006.144

[26] L. Ertaul and V. Vaidehi, “Computing aggregation function
minimum/maximum using homomorphic encryption
schemes in wireless sensor networks (WSNs),” in
Proceedings of the 2007 International Conference on
Wireless Networks, ICWN 2007, 2007, pp. 186–192.

[27] M. Manulis and J. Schwenk, “Security model and
framework for information aggregation in sensor networks,”
ACM Transactions on Sensor Networks (TOSN), vol. 5, no.
2, pp. 13:1–13:28, 2009.

[28] C. Castelluccia, A. C.-F. Chan, E. Mykletun, and G. Tsudik,
“Efficient and provably secure aggregation of encrypted
data in wireless sensor networks,” ACM Transactions on
Sensor Networks (TOSN), vol. 5, no. 3, pp. 20:1–20:36,
2009.

[29] A. C.-F. Chan, “Concealed data aggregation for wireless
sensor networks.” in Security in RFID and Sensor Networks,
Y. Zhang and P. Kitsos, Eds. CRC Press, 2009, pp.
399–416.

[30] H. Alzaid, E. Foo, and J. M. G. Nieto, “Rsda: Reputation-
based secure data aggregation in wireless sensor networks,”
in 9th International Conference on Parallel and Distributed
Computing, Applications and Technologies, PDCAT 2008,
2008, pp. 419–424.

[31] J. Albath and S. Madria, “Secure hierarchical data
aggregation in wireless sensor networks,” in Proceedings of
the 2009 IEEE conference on Wireless Communications &
Networking Conference, ser. WCNC’09. IEEE Press,
2009, pp. 2420–2425.

[32] Z. Peng and Y. Jian-ping, “Secure data aggregation for
sensor networks,” in Signal Processing (ICSP), 2010 IEEE
10th International Conference on. IEEE Press, 2010, pp.
1853–1856.

[33] L. Hu and D. Evans, “Secure aggregation for wireless
networks,” in Workshop on Security and Assurance in Ad
hoc Networks. IEEE Computer Society, 2003, pp. 384–392.

[34] J. H. Cheon, W.-H. Kim, and H. S. Nam, “Known-plaintext
cryptanalysis of the domingo- ferrer algebraic privacy
homomorphism scheme,” Information Processing Letters,
vol. 97, no. 3, pp. 118–123, 2006.

[35] D. Wagner, “Cryptanalysis of an algebraic privacy
homomorphism,” in Proceedings of 6th International
Conference Information Security, ISC 2003, ser. Lecture

Notes in Computer Science, vol. 2851. Springer, 2003, pp.
234–239.

[36] V. Shnayder, M. Hempstead, B.-r. Chen, G. W. Allen, and
M. Welsh, “Simulating the power consumption of large-
scale sensor network applications,” in Proceedings of the
2nd international conference on Embedded networked
sensor systems, ser. SenSys ’04. New York, NY, USA:
ACM, 2004, pp. 188–200. [Online].
Available: http://doi.acm.org/10.1145/1031495.1031518

[37] C. Mallanda, A. Suri, V. Kunchakarra, S. S. Iyengar, R.
Kannan, A. Durresi, and S. Sastry, “Simulating wireless
sensor networks with OMNeT++,” Dept. of Computer
Science, Louisiana State Univ., 2006.

[38] J. H. Yang, “Performance, feasibility & scalibility of
hommorphic encryption schemes in securing wireless sensor
networks,” Master’s thesis, California State University, East
Bay, May 2008.

[39] C. Singh, O. Vyas, and M. Tiwari, “A survey of simulation in
sensor networks,” in Computational Intelligence for Modelling
Control Automation, 2008 International Conference on, dec.
2008, pp. 867–872.

Levent Ertaul received B.Sc. from Anatolia University Turkey,
in 1984, M.Sc. from Hacettepe University, Turkey, in 1987, and
PhD degree from Sussex University, UK, in 1994. He is currently
a full time Professor at California State University Eastbay, USA
in the department of Math & Computer Science. He is actively
involved in security projects nationally and internationally. His
current research interests are Wireless Security, Ad Hoc Security,
Security in WSNs and Cryptography. He has numerous
publications in security issues.

Johan Hadiwijaya Yang graduate student in CSU East Bay,
USA.

Gokay Saldamli, He is an assistant professor in Bogazici
University, Turkey

http://dx.doi.org/10.1109/TMC.2006.144
http://doi.acm.org/10.1145/1031495.1031518

