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Summary 
Data aggregation in WSN (Wireless Sensor Networks) is 
substantial in increasing the network lifetime by eliminating the 
information redundancy. However, in current practice, 
aggregation data is transmitted in clear hence the whole process 
is prone to various attacks. In the past, this unwanted pitfall was 
mostly due lack of efficient encryption technology suited for 
limited WSN nodes; however, relatively lightweight HES 
(Homomorphic Encryption Schemes) allowing operations on the 
encrypted data is considered as a promising solution in securing 
such constrained devices. In this study, we carry out a 
comprehensive performance analysis of the most popular HES, 
particularly targeting limited WSN nodes. To our measurements: 
the implemented HES primitives match the performance and low 
power requirements; are feasible to be deployed inside the 
current widely deployed sensor nodes, and are scalable to 
thousands of sensor nodes without straining the lifetime of the 
whole network. 
Key words: 
WSN, data aggregation, homomorphic encryption. 

1. Introduction 

The development of tiny electronic devices has 
reached to a new era that it is possible to have mechanical 
elements, like cantilevers or membranes, to be 
manufactured at a scale more akin to microelectronics 
circuit than to lathe machining [1]. This technology, 
MEMS (Micro Electro Mechanical Systems), in turn is 
aiding the birth of WSN [2][3] consists of individual nodes 
that are able to interact with their environment by sensing 
or controlling physical parameters; these nodes have to 
collaborate in order to fulfill their tasks as, usually, a single 
node is incapable of doing so; and they use wireless 
communication to enable this collaboration.  

The sensor node by itself has limited capabilities: 
limited computing resource (limited computing ability, 
small storage, and limited power source), unreliable type 
of communication (unreliable data transfer, limited data 
rate, and limited communication range) and unattended 
operation (limited trust, complex remote management). 
However, by adding more and more nodes, these 
seemingly limited devices can create a powerful 

infrastructure for a particular application sensing the wide 
area environment [2][3][4].  

Due to their inherent limitations, WSN poses new 
challenges not present in traditional networks. Therefore, 
to develop useful mechanisms--- while borrowing the ideas 
from existing approaches--- it is necessary to identify and 
to understand those challenges. Regarding various possible 
critical applications, security is one of the most important 
aspects of the technology. The security needs to begin at 
the design stage because once we mass to deploy them it is 
impossible/infeasible to retrieve the nodes [5][6]. 

The two most pressing issues on securing WSN are 
node capture and power conservation. Node capture is 
most likely to happen for WSN since most of WSN nodes 
are deployed in an open area; hence are prone to attacks. 
Power conservation is critical to WSN lifetime. Since most 
of the nodes are battery-bound, once deployed, it is 
virtually impossible to replace/recharge the battery. 
Although other alternative energy source have been 
proposed [7], the developments are still in their  infancy to 
be considered as a total battery replacement. Approaching 
the problem in a different manner, i.e. data aggregation [8] 
technique solves the power conservation issue; however, it 
does not provide data confidentiality. Therefore, using 
HES we intent to secure the data aggregation process 
which implicitly solves both of the mentioned pressing 
issues. 

To be more specific; we implement four of the most 
well-suited HES [9][10][11][12] on WSN nodes and 
perform a comprehensive analysis focusing performance, 
feasibility and scalability. Performance is measured by 
how fast our algorithms perform on constrained WSN 
nodes which in turn determine the quality of service of the 
security realization. Feasibility is measured by contrasting 
several algorithms parameters to determine if the 
implementation is feasible; this knowledge aids the 
developer to make better a decision before the actual WSN 
deployment. Scalability of WSN implies the lifetime of 
WSN which is measured by how long the network can 
provide its service in the scale of thousands of nodes [13]. 

In the next two sections, we discuss the preliminaries. 
After giving main characteristics of WSN which are unique 
in the computing industry, we cover the main aspect of the 
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targeted HES i.e. given in [9][10][11][12]. A brief 
description is followed by a known security related issues. 
In Sec. 4, we study the simulation aspects. After setting the 
basic requirements for simulation; we compare several 
simulator frameworks and choose OMNet++ as our main 
development platform. Using OMNet++, we formulate 
simulation goals, focus, and limitations. A steady state 
simulation is formed on three implementation levels: node, 
cluster, and network level. By profiling these three levels, 
we get a better understanding of power usage for each 
WSN device when performing the HES implementation. 
We further explore different alternative scenarios which 
show the effect of different parameters to test the solution's 
upper bounds. Knowing the upper bounds enables the 
WSN developers to make better decisions in deploying 
WSN in real world applications. In Sec. 5, we summarize 
the HES performance, feasibility and scalability on WSN. 
The optimal parameters in implementing HES on WSN are 
also presented. Last, we mention further research that 
needs to be done for making the implementation more 
feasible. 

2. WSN security and data aggregation  

In the nutshell, the wireless sensor network (WSN) is 
the combination of a CPU, a sensor, a radio, and is 
powered by a battery. Due to its rapid development from 
advancements in electronics, mechanics, computing and 
networking; especially of the breakthroughs in 
miniaturization technology called MEMS [1]. It is 
envisioned that WSN consisting of thousands to millions 
of tiny sensor nodes will change the way we obtain 
information from the physical environment. A node by 
itself is rather limited; however, when networked together, 
these devices can provide high resolution information 
about sensed phenomena. Possible applications of WSN 
range from natural habitat sensing, to structural monitoring, 
to emergency response, and to military application [3][4] 
[14][15]. Reasonably, there has been a great surge of 
interest in WSN focused on developing hardware, software 
and networking architecture needed to enable such 
applications.  

Like any other constrained environment, WSN poses 
new challenges not present in traditional networks. To be 
more informative; Fig. 1 compares WSN with other 
technologies, from the most to least restricted, in terms of 
computing power and price per unit. Observe that, RFID 
(Radio Frequency Identification) [16] having only the 
object identification functionality has both the lowest 
computing power and price per unit. Next token like 
devices are smart cards, a step up from RFID with the 
additional capability to process the data. WSN devices are 

between smart cards and MANET (Mobile Ad-hoc 
Network) technology [5].  
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Fig. 1. WSN compared with other technologies. 

Although WSN node could be considered cheap in 
terms of price per node, the information in each node 
might be many more times more valuable. Traditionally, 
security is considered as an add-on to existing 
arrangements. However, having such a huge variety of 
potential applications, WSN needs to have security in 
place.  This is due to the fact that in many application 
scenarios, once a node is deployed, it is virtually 
impossible to change the settings afterwards [14]. 
Therefore, WSN security solution needs to be implemented 
during design development 

Because of being a of a data driven network, WSN 
raises new threats that are different from what we have 
faced before. WSN allows massive data collection, 
coordinated analysis, and automated event correlation. For 
instance, consider a sensor network used for tracking 
people and vehicles over long periods of time, with 
troubling implications [13]. Facing such implications, 
WSN is required to have security in place to ensure 
confidentiality, authenticity, integrity, availability, 
reliability, and scalability. In providing the above security 
requirements, there has been a great effort in security 
community. Among these studies, some of the key 
solutions could be pointed as follows: cryptography 
[5][6][17]; key management [18][19]; authentication [20]; 
secure routing [21]; location aware security (Key 
establishment [22], privacy aware [23], location 
verification [24]) and data aggregation [8][25][26][27] 
[28][29][30][31][32]. 

In this study, we focus on data aggregation using HES 
primitives. In a network of thousands of sensor nodes, the 
data from an individual node is not meaningful when 
compared to the aggregated data from clusters of nodes. In 
this case, the raw data from several nodes will be buffered 
and aggregated in one node acting as aggregator before 
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sending a single message representing the aggregate of 
values to nodes upstream. Data aggregation substantially 
cuts down the transmission costs and in turn keeps the 
network available for a longer time and provides optimal 
bandwidth usage [8][29].  
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aggregates data  

Fig. 2. Comparing the network traffic with and without data aggregation. 

In Fig. 2, the effect of data aggregation to WSN 
traffic is illustrated. On the left, WSN operation without 
data aggregation is seen. Observe that since the middle 
nodes are not aggregating the data but just relaying the 
messages, as the network tree level gets deeper, the sink 
node gets more overwhelmed. On the other hand, shown 
on the right, the middle nodes acting as an aggregator 
summarize the data from lower nodes and hence the sink 
has lesser data to process [8][33].  

Data aggregation solves the power conservation issue. 
However, in its implementation, the information flow 
through the network is mostly insecure. On top of that, any 
implemented security solution is added to the power 
consumption overhead, quickly depletes the sensor node 
power supply, and hence defeats the purpose of power 
conservation.  

Since HES allows operation on ciphertext as if it was 
done on plaintext, it is an ingenious method of solving 
WSN data (aggregation) confidentiality. Being different 
from the other cryptographic security measures, HES 
requires only light computing demand and only use small 
amount of memory.  

3. Homomorphic encryption schemes 

Homomorphic Encryption Schemes (HES) offers 
significant advantages in securing WSN data aggregation, 
such as: low computational demand, long network lifetime, 
allowing distributed computing using untrusted nodes, not 
revealing sensitive information, and end-to-end security. 
Conventional cryptography can not solve the security 
problems due to the limitation of WSN. The HES has a 

great potential to solve data confidentiality requirement, 
because it allows computation on encrypted data as if on 
the plaintext data. If HES is not used to secure data 
aggregation, the intermediate nodes need to have the 
knowledge of secret keys to perform the decryption on the 
data before being able to do operation on them, and to re-
encrypt the data; which are prone to attacks. 

From the five types of HES operations: additive, 
subtractive, multiplicative, inverse multiplicative and 
mixed multiplicative; we found four HES [9][10][11][12] 
suitable to be implemented on WSN. In terms of 
computing demand, additive and subtractive 
homomorphism are lighter than the rest. In this study, we 
only apply the additive homomorphism (decrypting the 
sum of two ciphertexts is the same as addition of two 
plaintexts; E(x+y) = E(x) + E(y) because it performs well 
on WSN and provides sufficient security for WSN data 
aggregation. 

Next, we discuss Domingo-Ferrer schemes with the 
explanation of encryption and decryption process, the 
discussion of its security level, and the simple example that 
illustrate how the algorithm works. 

3.1 Domingo-Ferrer a new privacy homomorphism  

Domingo-Ferrer a new privacy homomorphism 
(DFPH) [9] is a HES which operates by splitting the 
message and encrypting the splits. The splits can be added 
or subtracted on the way to the destination. On the 
destination, the message is then decrypted. This way the 
data is concealed from source to destination. Let d and m 
be the public parameters of the scheme where d is the 
number of plaintext splits and m = pq for some secret large 
primes p and q. In addition to p and q, the scheme has two 
more secret parameters xp in Zp and xq in Zp. Even though, 
the modulus m is assigned as the public parameter, it could 
also be kept secret to increase the security. Alg. 1 gives the 
basics of encryption/decryption functions. 

Algorithm 1: DFPH 
Encryption 

1. 
 

Choose a in Zm, such that a < min(p, q), (observe 
that a = a mod m = a mod p = a mod q) 

2. Split a into secret numbers a1, a2, …, ad; such that 
a=    

 
3. 
 
 

Compute   Ek() = ([a1 xp mod p, a1 xq mod q], [a2 
xp

2 mod p, a2 xq
2 mod q], …, [an xp

n mod p, an xq
n 

mod q]) 

Decryption 
1. 
 

Compute scalar product of the j-th pair [mod p, 
mod q] by [x -jp mod p, x –j

q mod q] 
2. add them up to get [aj mod p, a j mod q];  
3. 
 

use CRT (Chinese remainder theorem) to get a 
mod m 

∑
j = 1

n

a j modm
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Note that this scheme is known to be secure against to 

known-ciphertext attacks, but not to the known-plaintext 
attacks [34]. 

3.2 Domingo-Ferrer allowing field operations on 
encrypted data (DFFO) 

DFFO [10] generates secret random numbers and hide 
those numbers from the intermediate nodes. This scheme 
conceals the data from source to destination like as the 
previous DF method. Alg. 2 shows how the scheme works. 
Note that the public parameter m = pq (p and q are large 
primes) is available for every sensor node where the secret 
parameters p and q are only available for the sensor nodes 
at the boundary of the network and the sink node. 

Algorithm 2: DFFO 
Encryption 

1. Qp is defined as Qp = {a/b | a, b in Zp}  
2. 
 

Select a value x in Zp, a random fraction a/b in Qp, 
such that x = ab -1 mod p  

3. 
 

The ciphertext is computed as y = Ep(x) = ab -1 
mod m  

Decryption 
1. 
 

Pick any fraction A/B in Qp, such that y = AB -1 
mod m  

2. compute plaintext x = Dp(y) = AB -1 mod p using p.  
This scheme is secure against to chosen-ciphertext 

attacks, but not to known-plaintext attacks [35]. In other 
words; if (x, y) is a known plaintext-ciphertext pair, finding 
key p is relatively easy. The cryptanalyst can determine a 
set of AiBi-1 such that AB -1 = y mod m. We know x = Dp(y) 
= AB -1 mod p, where p is the prime key and x ≤ p.  We 
also know that,  p | (A - xB), that is  p divides A - xB. Here 
x, A and B -1 are known, so finding p is relatively easy. 

3.3 Domingo-Ferrer additive and multiplicative 
privacy homomorphism (DFAM) 

Likewise DFPH, DFAM [11] also operates on the 
splits of the message but the public and secret parameters 
are slightly different. While the public parameter d still 
represents the number of plaintext splits, modulus m 
should not be a product of large primes. In fact m should 
have small divisors and many integers less than m have to 
be invertible modulo m. On the other hand, there are three 
private parameters: m' (an integer where m/m' has 0 
remainder), r and r inv where m' < r in Zm such that r r inv 
mod m = 1. The detail of DFAM is given in Alg. 3.  

Algorithm 3: DFAM 
Encryption 

1. 
 

Split a into secret numbers a1, a2, …, ad ; such 
that 
a = (a1 + a2+ a3+ ... + ad) mod m' 

 
2. E(a) = (a1r  mod m, a2r2  mod m, … ,adrd mod m 

Decryption 
1. 
 

Compute scalar product of the j-th pair r -j mod m 
to retrieve aj mod m 

This scheme is secure against to chosen-ciphertext 
attacks, but not to chosen-plaintext attacks. Wagner [35] 
showed an efficient way to recover m' with a small pool 
say n, of known plaintexts.  He proposed several ways to 
recover r', where r' ≡ r mod m'. One possibility is 
exhaustive search, that works whenever m' is small.  
Another possible attack is based on linear algebra, which 
works with reasonable success probability whenever n ≥ d.  
A third possibility is an attack based on polynomial root-
finding, which applies m' can be factored and there are a 
few known plaintexts.  

Cheon et. al [34] proposed a plaintext attack, such 
that if the attacker can guess several plaintexts, the key can 
be broken in polynomial time. The plaintext guessing in 
the context of WSN is easy to do, since the data collected 
on the nodes can yield the plaintext already. For example, 
the attacker can just measure the temperature and use it as 
the plaintext. 

This fact should not hinder the usefulness of the 
scheme. Implemented properly, Ferrer’s scheme is enough 
to increase the effort for the intruder to a degree that makes 
the attack uninteresting. The drawback of this approach is 
the size of the data is tremendously increased by the 
number of summands, the upper bound for range of 
numbers to be encrypted is g', but the actual components of 
the encrypted values can be as large as g-1 which is waste 
of bits since g' divides g without remainder. 

There is no multiplicative inverse makes it we have to 
take care not to exceed the limit g'. After reaching the limit 
g', the problem called wrap around would happen which 
decreases the value by g'. The only solution if to decrypt a 
value, do the division and encrypt it again. The wrap 
around problem exists on additions though additions are 
less prone to exceed the limit. The non deterministic nature 
of Ferrer’s scheme, such that the same number can map to 
many different ciphered words, provides a solid advantage 
over the intruders [35]. 

3.4 Mixed Multiplicative Homomorphism (MMH)  

MMH [12] is similar to DFFO, it generates random 
numbers and it security depends on hiding those numbers 
from the intermediate nodes. Moreover, modulus m is 
public and its large factors p and q are secret parameters. 
Alg. 4. gives the details of the encryption and decryption 
functions. 

Algorithm 4: MMH 
Encryption 

1. Qp is defined as Qp = {a/b | a, b in Zp}  
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2. 
 

Given x in Zp, pick a random number a in Qp such 
that x = a mod p  

3. The ciphertext is computed as Ep(x) = a mod m.  
Decryption 

1. 
 

Given y = Ep(x) in Zm. Use p to recover x. i.e. x = 
Dp(y) = y mod p. 

This scheme is secure against to known-ciphertext 
attacks, but not to known-plaintext attacks [12]. Let us 
look into the known-plaintext and known-ciphertext 
attacks in more detail regarding this cryptosystem. 
1. Known plaintext attacks: If (x, y) are the known 

plaintext ciphertext pair, finding key p is relatively 
easy. We know x = Dp (y) = y mod p, where p is the 
prime key and p ≥ x. We know that p | (y - x), that is p 
completely divides y - x. Here x and y are known, so 
finding p is relatively easy as p is the divisor of (y - x). 

2. Known ciphertext attacks: We know x = y mod p and 
if y is known, x and p are still unknown. We know, y = 
x + rp and it is difficult to determine y as x and p are 
unknown. 
Table 1 gives the summary of the four chosen DF 

algorithms. Observe that all of the algorithms can perform 
the additive homomorphism which in fact is the basis of 
our work. Additive homomorphism needs relatively 
lightweight computations and all of today’s chips have the 
addition operator as their primitive function. Although 
multiplicative homomorphism might offer higher security, 
it requires more space and produces longer encrypted 
messages; hence it is not favorable for WSN use. 

Table 1: Overview of the HES Algorithms. 
 

 Services Against 
Secure 

Against 
Unsecure 

DFPH S(d1,d2) = d1 + d2 
S(d1,d2) = d1 × d KCP KPA 

DFFO 
S(d1,d2) = d1 ± d2 
S(d1,d2) = d1 × d2 
S(d1,d2) = d1 / d2 

CCA KPA 

DFAM S(d1,d2) = d1 ± d2 
S(d1,d2) = d1 × d2 

CCA CPA 

MMH S(d1,d2) = d1 + d2 
S(d1,d2) = d1 × d2 

CCA KPA 

 
Note that schemes other than DFAM are insecure 

against KPA. The attacker does not need to feed the data 
into the captured device, only to know what kind of data is 
being fed. This is a serious weakness for WSN application 
which sense natural data, since the attackers can easily 
fabricated the value. However, this type of attack can be 
minimized in WSN because it is widely deployed and in 
order for attackers to succeed, they need to capture the 
majority of the nodes. 

4. Simulation 

In order to see the action of HES for data aggregation 
on WSNs, we need to model the real world implementation 
of sensor networks as approximately as possible. We 
simply manifest our simulation goals, focus, limitations, 
tools and possible scenarios in this section. 

4.1 The simulation goals  

The primary focus of this study is to analyze the 
performance, feasibility and scalability of four of HES 
[9][10][11][12] implementations on WSN. We compare 
the performance and the lifetime of the sensor nodes on the 
basis of how much the power usage and the execution time 
that a sensor node used in performing the security 
algorithm implementations. The CPU, memory, and the 
radio usage are the components of the measurements on 
power usage and execution time. 

Feasibility is the other phenomena that we drill 
through the simulation by having a better understanding of 
the impact of different security algorithms parameters to 
the overall network lifetime. By looking at the simulation 
results, designers would be able to make decisions on their 
hypothesis. For instance, the implementation might use 
small CPU resource; but if it requires several transmissions 
to send because of some longer message; it will quickly 
drain power hence infeasible. 

Having a large number of nodes heavily impacts 
simulation performance and scalability. Second, credible 
results demand an accurate characterization of the sensor 
radio channel. There is an increasing concern about the 
simulation methodology and assumptions used in 
simulation of WSN. Idealized hardware, simplified 
protocols, and unrealistic radio models too often lead to 
mistaken results. 

4.2 The simulation focus  

This is a steady state simulation which focuses in 
measuring the long term average behavior of WSN when 
executing the security algorithms. We do not focus on the 
behavior of WSN nodes at the starting point and assume 
the sensor nodes were already in a ready state, with 
network topology already defined, and all the 
bootstrapping processes done. While it is true that the 
bootstrapping process consumes energy, it is only done 
sparingly and will not have an impact on WSN long term 
performance. On the other hand, our security 
implementations are done repeatedly and hence greatly 
impact the network lifetime [7][36]. 

For WSN communication we focus on the reverse 
multicast communication. Most of WSN application is of 
the many to one communication pattern where many 
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sensors at the edge of perimeter will report back to one 
root point. The other types of communication patterns are 
temporal and therefore negligible for the long run [8][25]. 

4.3 Tools and framework 

To understand the dynamic behavior of WSN mass 
deployment (in the order of thousands of nodes), we devise 
a robust simulation model based on an open source 
framework called OMNet++ (Objective Modular Network 
in C++). After researching several simulation options, 
OMNet++ fulfilled our basic requirements because of its 
extensibility, scalability, true imitation of real hardware 
and software and being easy to analyze and install [37].  

We develop the WSN simulation on an Intel Pentium 
Xeon dual-core 2GHz, 2GB RAM and running Ubuntu 
Linux 9.10. Due to the in depth research and the wide 
adoption on current WSN applications, we based the 
simulation on MICA2 sensor nodes [38]. The success and 
the validity of the simulation relied heavily on the many 
additional contributing packages including: mobility 
framework (MF), Castalia, INET, and NesCT [37][38]. 

4.3 Simulation limitations 

We do not focus on secure routing [21], key management  
[18][19] for authentication,  dynamic aggregator node 
election, and the environmental effects.  Even though all of 
those processes are important for WSN applications, they 
are temporal events hence negligible in impacting the 
network lifetime in the long run [8][25]. Instead, we use 
ready-made solutions provided by other research or from 
default settings provided by OMNet++. 

4.3 WSN Simulation Design 

We discuss the events that happened at sensor nodes 
and aggregator nodes. However, we do not focus on the 
events that happened at sink node because it is irrelevant to 
the long term performance of WSN. 

The simulation process is a combination of event and 
unit time advance. Event advance focuses on a general 
view of the state changes each time an event occurs. On the 
other hand, when the simulation needs to capture more 
details of events that happened at the same time or close to 
each other; it changes to unit time advance. The simulation  
alternates between event advance and unit time advance, 
where event advance is active the time when nodes spend 
most of their time in the IDLE/SLEEP state and unit time 
advance actives during the time when nodes are in the 
ACTIVE state [38][39]. To keep track of the events, the 
simulation uses a data structure called future event list 
(FEL) to track two things: the time of occurrence of an 
event and the type of event.  

  

The event advance of sensor node FEL is responsible 
to trigger an event which simulates a sensor node capturing 
the environmental value and to trigger an aggregator node 
to get ready to perform its task. On the other hand, the unit 
time advance captures more details of the sensor node 
activities by changing the simulation time from ms to µs. It 
captures the CPU, memory, and radio activities of the 
sensor node. After completing its tasks, the sensor node 
goes to IDLE/SLEEP state and the event advance takes 
over.  

On the aggregator node, a similar alternating process 
goes on. There are two states of the aggregator node which 
will greatly determine its lifetime. The first is LISTEN 
state when the aggregator node spends most of its time 
waiting for sensor nodes to complete their data 
transmissions. The second is the IDLE state, when the 
aggregator node cannot get into SLEEP state because it has 
to relay messages from the aggregator nodes located below 
of the network tree. Since its activity depends on the 
completion of the other nodes, the longer it has to wait, the 
more it consumes the power source 

4.3 Profiling 

To measure the performance of the sensor nodes 
while performing HES algorithms, we profile  them on two 
measurements: the execution time and the power usage. 
Since the measurement components are simply the sensor 
node's CPU, memory usage and radio, the simulation 
reveals the dynamics of execution time and energy usage 
within a node, a cluster, and a network. 

We perform the profiling on the node, cluster, and 
network level. The node level profiling gives the power 
consumption details of the sensor node devices. 
Throughout this research, we model the sensor nodes 
based on MICA2 [38] specifications. According to this 
model, there are five WSN major activities: TX-
transmitting, RX-receiving, COMPUTE, IDLE, and 
SLEEP. In case of TX-transmitting there are four devices 
on WSN sensor node that are active: the CPU is ACTIVE; 
the memory is ACTIVE; the radio is transmitting; and the 
sensor board is ON. 

In Table 2, the snapshot of the consumed energy of 
WSN device per activity is given. For instance, on 
COMPUTE, the CPU consumed 8.93 mA, the memory 
consumed 12.3 mA, the radio consumed 3.7 mA, and the 
sensor board consumed 1.7 mA, for a total of 26.63 mA. 
After adding the subtotals of energy consumed per WSN 
activity, the grand total is 101.53 mA. 

Once the sensor nodes are being deployed into one 
area, they begin to form a cluster which consists of several 
sensor nodes and one aggregator node. The sensor nodes 
are usually located at the edge where aggregator node is 
located in the middle of the network tree (see Fig. 3). 
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Table 2: Total amount of energy used per WSN device per activity (mA). 
 

Devices TX RX Compute Idle Sleep 
CPU 8.93 8.93 8.93 1.04 4.13 

Memory 12.3 12.3 12.3 0 0 
Radio 10.07 7 3.7 3.7 3.7 
Sensor 0.7 0.7 1.7 0.7 0.7 

Subtotal 32 28.9 26.63 5.44 8.53 
Total: 101.53 mA (100%) 

Aggregator node's main function is to aggregate the 
information from children nodes and to do operation on the 
information before sending the aggregated value upstream 
towards the sink/base station node.  

 

r = 25m 

Aggregator 

  

 Sensor 

Sink

 
 

Fig. 3. Cluster level simulation configuration. 
Cluster level profiling aims to reveal the interaction 

dynamics between the sensor and aggregator nodes within 
one cluster. Even though both devices consist of the same 
hardware specifications, each performs different 
functionality. For instance; the sensor nodes perform the 
encryption algorithms where the aggregator nodes, in our 
model, perform the operations (add, subtract, etc) on the 
encrypted values. The following gives the basic 
assumptions that we carry during our cluster profiling.  
a) The sensor nodes are randomly distributed over an 

area with maximum radius of 25 meters based on an 
effective inter-nodes communication distant [36]. 

b) The aggregator node is located in the middle of the 
cluster and all the sensor nodes are reporting their data 
to the aggregator node acting as the cluster head. 

c) The cluster uses a star shape network topology to 
share a common wireless radio communication 
channel. 

d) After the event that triggers the sensor nodes, the data 
is being pushed to the aggregator node once in every 
sampling time interval. To see the effects to the 
performance and the lifetime of the sensor nodes, 

three different; i.e. 1, 2 and 4 minutes time intervals 
are used. 

e) After the aggregator node polled the data, it sends the 
aggregated data to the sink node. The sink decrypts 
the data to reveal the actual message. 
Lastly, the network level profiling gives the 

saturation details of the different sensor nodes to the 
performance and lifetime of the aggregator node. The 
network level FEL where many sensor nodes are 
simultaneously monitored, is the most complicated one to 
simulate.  

The following procedure gives our simulation setup. 
Notice that the focus is more on performance of the 
aggregator nodes since they determine the lifetime of the 
network.  

 
a) The network level simulation consists of clusters of 

nodes and one sink node. 
b) The clusters are randomly distributed over (500×500) 

m2  area. 
c) The sink node is located in the middle of network. 
d) Each cluster is headed by the aggregator node. The 

focus is on the aggregator node performance. 
e) The network uses the fixed Star shape topology to 

share the wireless radio communication channels. 
f) the sampling is carried in 1, 2 and 4 minutes time 

intervals where we see the effects to the lifetime of the 
aggregator node. 

In our model, the simulation is built upon the previous 
cluster level profiling where we put clusters of nodes 
within one sensing area. In our measurements, we run-
though two alternative scenarios; a network in which we 
gradually increase the number of clusters having fixed 
sensor nodes and a network in which we gradually 
increased the number of sensors within its fixed number of 
clusters.  
 

 

Sink 
Last aggregator 

 
Fig. 4. Straight line (left), Balance Tree (middle),  and 

Concentrated (right). 
Another important concern is profiling the last 

aggregator node since it is directly connected to the sink. 
The last aggregator node --sometimes also called as the 
traffic concentrator--- drives the upper bound for the 
aggregator node's power usage and lifetime. There are 
three cases on profiling the last aggregator node as seen in 
Fig. 4: 
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i. Straight line -- the clusters form a straight line: the 
last aggregator node has to IDLE for long time 
because it has to wait all values from the edge of the 
network to reach the last aggregator node. 

ii. Balanced tree -- the clusters are spread evenly to 
make a balanced tree: the last aggregator node has a 
shorter IDLE time. 

iii. Concentrated -- the clusters are spread and each 
aggregator concentrates its data to the last aggregator. 
Observe that the network of clusters forming a 

straight line gives the worst case scenario since the last 
aggregator node has to wait for all of the messages to reach 
it. In other words, the longer the aggregator node is active, 
the more of the power consumed. Thus, this would 
severely decrease the lifetime of the aggregator node. In 
the next section, we present the simulation results. 

4.7 Simulation results 

We start with the sensor profiling in performing the HES 
implementation on different key sizes, message sizes, and 
message splits. Our findings showing the node lifetime of 
ten encryption alternatives on comparable 512/512 bits 
(msg/key) parameters are presented in Fig. 5.  
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Fig. 5 Comparing lifetime of sensor nodes performing 

HES. 
 
To be more informative, y-axis (in Fig. 5) shows the 

number of days the sensor survives; where x-axis gives the 
encryption schemes and z-axis shows three different 
sampling intervals: i.e. 1, 2, and 4 minutes sampling time 
intervals. Notice from the figure that MMH has the longest 
lifetime, followed by DFFO, DFAM, and DFPH. Both of 
MMH and DFFO use random values as secret keys and do 
not split the message; hence, they have a less computing 
overhead. 

Note that DFPH on average has a shorter lifetime; 
particularly, whenever the message split is 3. The overhead 

of splitting the message is the need for bigger data 
structures to store and operate on the data splits. Observe 
that there is a significant increase in the lifetime when the 
sampling interval is increased. This is directly proportional 
to the amount of time a sensor is in SLEEP state which in 
fact, determine the lifetime of the node. 

A reasonable comparison would be keeping the ratio 
of key and message size constant for all HES 
implementations. Fig. 6 depicts the lifetime of a sensor on 
4 minutes of sampling interval in performing different HES 
implementations with the same key to message size ratio 
(128/128bits, 256/256 bits, 512/512 bits, etc). Observe that 
in such a setting, MMH and DFFO show no/slight change 
in the node lifetime regardless the size increase of both key 
and message. Nevertheless, both implementations serve 
better solution for their fast performance and longer 
lifetime. Meanwhile, DFPH gives a graph of a step 
function; the same lifetime for 128/128 and 256/256, and 
the same lifetime for 512/512 and 1000/1024 (msg/key). 
On the other hand, DFAM shows the rounder curve graph; 
which show that the lifetime of sensor node correlates with 
the message/key size.  

 

128/256
256/512

512/1024
1000/1024

2000/2048

DFPH

DFFO

DFAM

MMH

0

50

100

150

200

250

300

node 
lifetime 
(days)

msg/key size (bits)  
Fig. 6. Comparing lifetime of sensor nodes for HES 

deployments having the key and message size ratio equal 
to one. 

 
To be more specific, we compare the node lifetime of 

two encryption schemes which use the message splits, 
DFPH and DFAM, in order to effect of different message 
splits to node lifetime.  

In Fig. 7, we give three different msg/key ratios: 
512/512, 512/1024 and 512/2048 on sensor node 
performing 4 minutes sampling time interval. The best 
lifetime is MMH, followed by DFFO. The worst lifetime is 
DFPH with message split 3 for msg/key: 512/2048. The 
effect of different message split to the node lifetime is 
substantial when the msg/key ratio is great; for instance, if 
we compare DFAM 512/512 split 2 and split 3  with 
DFAM 512/2048 split 2 and split 3; there is a 
substantial % difference for the latter scheme. We 
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postulate more message split require bigger data structure 
and longer ACTIVE CPU. 
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Fig. 7. Comparing node lifetime on 512/512, 

512/1024, and 512/2048 (msg/key). 
 
Next, we show the performance of an aggregator node 

in processing the aggregated data from its sensor nodes. 
These readings are important to formulate the baseline 
performance of one cluster. We show that the optimal 
solution is to increase the sampling interval time. The next 
solution is to decrease the number of sensors within one 
cluster; however, this solution might be infeasible for 
WSN applications that need higher sensing ability from 
higher node saturation per cluster. We observe from Fig. 8 
that decreasing number of sensors within a cluster by half 
increases lifetime by average 70%. Decreasing number of 
sensors within a cluster by quarter increases lifetime by 
181.95%. Increasing sampling time interval by factor of 
two (example from 1, 2, and 4 minutes sampling time 
intervals) increases lifetime by 300%. 
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Fig. 8 Comparing aggregator lifetime on different 

number of sensors in a cluster and different sampling 
interval. 

 
In order to see the effect of different number of 

clusters within one network to the power usage and the 
lifetime of the aggregator node. Since the last aggregator 
node drives the upper bound for the aggregator node's 
power usage and lifetime, we simulate the last aggregator 
node under the topologies seen in Fig. \ref{sec5_1:fig0}. 
The simulation parameters are: (i) All the nodes are 
performing DFPH with message split 2, 512/512 (msg/key), 
the sensing area is 500×500 square meters. (ii) Each 
cluster consists of 10 sensor nodes and one aggregator 
node, sampling time interval is 4 minutes. This sampling 
time interval is chosen to make an easier performance 
comparison, since the other sampling time interval results 
are too close to compare. 

We give the result of this simulation focusing the last 
aggregator node in Fig. 9. On concentrated case, the last 
Aggregator spends most its time IDLE waiting for all data 
from the other aggregators to reach it. On average, adding 
more clusters to the network will reduce the Aggregator 
lifetime by 87.42% on worst case, as opposed to only 
39.08% on best case scenario. 
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Fig. 9 Comparing different number of clusters within 

a Network to the last Aggregator node lifetime. 
 
From the over all simulation results, it is clear that 

MMH is the fastest HES on the sensor node in comparison 
with the other three schemes. However, MMH is 
susceptible to known-plaintext attack. DFPH and DFAM 
share the worst performance (in terms of speed) because 
they split the value before encrypting each split. This 
requires more time to execute, more memory to process the 
bigger data, and consequently more power consumption. 
However, both schemes might provide a higher security 
level than MMH and DFFO because of the same reason 
that make them disadvantaged. 

On the aggregator node, regardless of the schemes 
used, its performance depends on the number of sensor 
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nodes within its cluster and the network configuration. The 
more the sensor nodes are in the cluster, the more RX-
Receiving operations the aggregator node is required to 
carry. The more unbalanced the network (not distributed 
evenly), the more time the aggregator node is required to 
wait for others to finish their operations. Both conditions 
reduce the aggregator node lifetime. 

4. Conclusion 

In this study, we have proven that all of the chosen 
HES algorithms can be implemented on and a good 
candidate in securing WSN's data aggregation despite of 
WSN's limitations. These algorithms do not require 
intensive calculations like in other conventional symmetric 
encryptions and public key cryptography. The maximum 
and minimum calculations can be done by randomize the 
pre-encrypted values; eliminate the encryption needs in 
sensor nodes. This will further prolong the lifetime of the 
sensor nodes.  By prolonging the sensor nodes, in turn will 
prolong the whole network lifetime. We also have shown 
the direct correlations between the power usage and the 
execution time. The CPU, memory, and radio as the 
components of the power usage and the execution time; 
play the big role in determining the lifetime of the sensor 
node. The faster the execution of the algorithm, the longer 
the lifetime of the node for it can preserve much of its 
energy in the SLEEP state. 
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