
IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.5, May 2015

32

Manuscript received May 5, 2015
Manuscript revised May 20, 2015

Enhanced Analysis Method for Suspicious PDF Files

Suleiman J. Khitan, Ali Hadi, Jalal Atoum

Computer Science Dept., Princess Sumaya University for Technology, Amman, Jordan

Summary
This paper presents an enhanced method for analyzing suspicious
PDF files. Since recently these files are considered as common,
reliable and secure documents used by attackers as a container to
attack users. Attackers have shifted their methods from server-
side to client-side attacks. The attackers used them to carry out
malicious code on the computer systems of the users. This attack
makes a threat to the institution’s asset that could be exploited.
The enhanced method is based on scan the PDF file structure
according to predefined set of keywords together with the new
defined keywords. Also define the vulnerabilities and the most
common techniques the attackers use to be protected from
discovery. The new defined keywords are identified as objects,
have been used by attackers, recently embedded in the PDF files.
The enhanced method identifies malicious PDF documents by
searching for embedded objects that are considered as suspicious
keywords in the documents. The importance of this paper lies on
develop a method to detect suspicious PDF files which depends
on extracting and pointing out malicious objects that are often
used for attacks. This enhanced method will be of great
importance to users who deal with threat every day.
Key words:
Malware analysis, PDF documents, Malicious PDF, Suspicious
PDF, Structure Scan.

1. Introduction

The feature of PDF file, especially the dynamic content
may lead to several security issues that can be used to hold
malicious elements to install malware and steal data, these
features may contain code written in JavaScript. This will
allow the attacking persons to insert advanced features as
multimedia files, to connect with outside sites.
Unfortunately the attacker can use the features provided by
JavaScript to exploit the vulnerabilities in the PDF viewer
applications. By using JavaScript the attacker can be able
to do two things: trigger the vulnerable code and then
point the execution to arbitrary code of his choice to gain
privileges of the user to run or stop the application, deny
service to legitimate user as heap-spraying [1], or other
memory manipulation techniques.
Attackers have shifted their methods from server-side to
client-side attacks which take advantages of social
engineering, non-technical techniques and applications
that are not up-to-date where the goal is to deceive the less
awareness users into opening PDF file content using
applications found on most personal computers [2].

One group of client applications is PDF documents that
have become the most common in exchanging the
documents. PDF documents are used in many sectors like
business proposals, product manuals and legal documents.
This is referred to because of the advantages it offers as a
portable document, visually appealing and interactive, as
well it contains text and images in addition to the ability to
embed JavaScript, Flash and to open external sites locally
from the computer, or the internet [3] which referred as
static and dynamic contents.
In addition to the vulnerabilities on the PDF viewer, the
attackers also took the advantages of the advanced PDF
features as /Launch option which execute an embedded
script automatically, or the/URI and /GoTo options which
can open external resources from the same computer [4].
Client-side attack focuses on the weakness in applications
and resumes rising in away faster than the server-side
attack, which is used in online crime like identity theft and
creation botnet.

2. Background

PDF is a file format developed by Adobe in 1993 and
released as an open standard by the International
Organization for Standardization in 2008 as ISO 32000-1
[5] to enable individuals to easily transfer electronic
documents in trusted ways without depending on a specific
platform.
Regarding to the PDF specification, PDF file contains
mainly four sections: the header, the main body, the
cross-reference table and the trailer [5].
The Header: It is a single line every PDF file must have at
somewhere within the first 1024 bytes of the file, called
magic number that specifies the version of PDF
programming language.
The body: Contains a list of objects (data, text streams,
images, fonts, etc.) that form the most part of the PDF file.
It will be discussed in more details in next section.
Cross-reference table (xref table): It’s a table that works as
a pointer for each object in the PDF file to determine its
location, so the PDF viewer application can identify the
position of an object randomly without needing to scan the
whole file to find that object. The position is identified as a
byte offset which is the number of bytes from the
beginning of the file to the beginning of the object.

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.5, May 2015

33

Trailer: Identify the location of the of the cross-reference
table (byte position) besides to some certain objects like
root object, as the PDF render check at first the version
number in the header to identify it as a PDF file and use
the trailer to find the cross-reference table and some
objects such as catalog object. The last line of the file
contains a label %%EOF that identifies the end of the
document.
The basic format of PDF is made up of objects as a type of
data. There exist nine different types of objects:
Boolean Object: Can be represented by the keywords “true”
or “false”.
Numeric Object: PDF uses numbers as integers and real’s.
String Object: It is set of bytes used to represent text data,
which is either as “literal” characters enclosed within
parentheses or as “hexadecimal” characters enclosed
within angle brackets.
Name Object: It is defined by a slash (/) followed by a set
of strings in which the slash is not part of the name but it
works as an identifier to this object.
Array Object: It is a one dimensional array of any other
types of objects in addition to other arrays enclosed
between square brackets ordered one after another.
Dictionary Object: It’s the main component of a PDF
document which is a key-value pairs. The key is always a
name object and the value is any other objects in addition
to another dictionary. Dictionary object in enclosed within
double brackets (<< … >>).
Stream Object: It is a set of bytes like string object but the
only thing that they differ from each other that stream
object is not limited so it can be used to hold large data
like images. The general form for the stream object is that
it begins with a dictionary object that indicate the size of
the stream followed by the data of the stream which is
placed between the two keywords ‘stream’ and
‘endstream’.
The Null Object: As the name implies there is no existence
object, or having no value in a dictionary.
Indirect Object: It is possible to point to an object from the
other location in the file by other one and this is can be
done by labeling the object with an identifier that
composed of the object number which should be unique
and a generation number.

3. Literature Review

There are number of studies that are related to detecting
malicious PDF files. one of the related work depend on
JavaScript code within PDF file [6]. They present the tool
PJScan which is able to detect malicious PDF with
JavaScript related malware which relies on extraction the
JavaScript from the malicious files to obtain lexical
properties of the Script by the tokenizer. The output which
is the token sequence is fed as input to the learning

algorithm machine; this one is learned on known malicious
PDF file to produce a model which is used for
classification of unknown malicious files. In the second
stage every unknown malicious PDF file will pass in the
same stages from extracting of JavaScript, tokenize it and
apply the token sequence to the learning algorithm in
which the detector compare this output with a learned
model to measure the deflection from a predefined
threshold so values that are close to a learned model are
considered as malicious and else they are benign. Other
work depends on static and dynamic analysis like
Wepawet which is a web-based service implements a
dynamic analysis for malware of PDF documents depends
on JavaScript contained within it [7]- [8], which utilize
JSAND to detect malicious JavaScript code based on
lexical analysis.
Uploading a PDF file for analysis gives a report which
contains details about the files that flagged as malicious
like MD5 of the file, exploits, detection results if the file is
malicious or suspicious or benign, malwares and shellcode.
The detection results are identified based on the usage of
well-known vulnerabilities to classify a file as a malicious
PDF file while suspicious files are identified based on the
existence of shellcode and JavaScript which is obfuscated.
Didier Steven has developed some utilities for analyzing
PDF documents and one of these utilities is PDFiD which
searches for 21 keywords [9], which enable you to
determine if there is a JavaScript embedded in the file or
there is an action when the file is opened. PDFiD searches
for the keywords presented in Table 1:

Table 1 Features Extracted using PDFiD
obj
endobj
stream
endstream
xref
trailor
startxref
/Page
/Encrypt
/ObjStm
/JS
/JavaScript
/AA
/OpenAction
/AcroForm
/JBIG2Decode
/RichMedia
/Colors>2^24
/Launch
/EmbeddedFile

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.5, May 2015 34

4. Enhanced Analysis Method

The overall design of the method is illustrated in Fig. 1.
Given a PDF file as input file for analysis, the user selects
the structure scan to be performed on the PDF file.
Structure scan requires the keywords used for scanning
that are available within keywords file identified by the
user. Then the PDF file and the keywords file are read to
calculate the hash values for them.
The hash value of the PDF file is checked if it is available
in hash value database. If no the hash value is added to the
hash value database, then structure scan is performed to
add the output to output database folder to display the
output to the user. If the hash value of the PDF file is
included in the hash database, the PDF file is checked if it
has been analyzed with the keywords file before. If it is,
the output is displayed. If no the scan is performed using
this keywords files, then the output is added to the output
database and finally the output is displayed to the user.

Fig.1 System Architecture

4.1 Structure Scan

The objective of this phase is inspecting the PDF
document and searching for features which are important
for labeling PDF documents as suspicious. PDF contains
data represented in ASCII and binary format, therefore the
PDF document is read as a byte sequence to easily parse it.
The method does the scan on the chosen document and
searches for keywords that help in giving a brief idea
about the structure of the document like number of pages,
and list possibly suspicious objects in it. On basis of
Didier Steven’s work [10], his suspicious keywords had
been chosen in the method as they are the most significant
features when scanning malicious PDF files [11] in
addition to some more, with the ability of the analyst to
search for another keywords as these keywords are
presented in a text file and identified by the user.
The PDF structure enables encoding and compressing data
within PDF files like images, for that attackers use filters
to obfuscate JavaScript. From the filters used in PDF
format, six of them are used for the objective of
maliciousness [12]. In addition to the filters which are
used for images compression (i.e. CCITTFaxDecode,
DCTDecode) [3]. These filters which have been added as
another set of keywords in the proposed method are:

- /FlateDecode
- /LZWDecode
- /RunLengthDecode
- /JBIG2Decode
- /ASCII85Decode
- /ASCIIHexDecode
- /CCITTFaxDecode
- /DCTDecode
As a JavaScript is found in a PDF file directly, it can be
exist in another file or may be called from remote sites
through the two keywords [6], which are used in the
proposed method as a further set of keywords:
- /URI
- /GoTo

4.2 Calculate Hash value

The first action that should be performed is to calculate the
hash value for the PDF document in addition to the
keywords file, which will be used to identify and classify
the malware samples as well as the elements inside PDF
documents. It can be used when inquiring for documents
that have been already analyzed which can save the user’s
time if the document has been analyzed before.

http://www.collinsdictionary.com/dictionary/english-thesaurus/significant%23significant_1

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.5, May 2015

35

4.3 Reporting

This phase enables the user to choose how to display the
output of the scan either on the console or copy the output
to text file named by the name of the scanned PDF
document.

5. Results and Analysis

The experiment was implemented using Windows 8 in
Hyper-V virtual machine. The virtual machine has been
configured to use one virtual processor and 1GB RAM
with Python 2.7.8. The Hyper-V virtual machine has been
used for the static analysis of PDF documents and to keep
the host operating system safe from malicious dataset.
To test the method, an experiment was performed using a
dataset which consists of 19593 benign and malicious PDF
documents with total size of 918 MB, downloaded from
the site; Contagiodump [13] which is a website contains
up-to-date malware samples, threats and tests. Table 2
shows the properties of the dataset used in the experiment.

Table 2 PDF Documents collected
for the experiment

Category # of files Size of files

Benign Files 8800 761 MB

Malicious Files 10793 157 MB

Total 19593 918 MB

When gathering samples from intermediary websites, to
some extent it is not assured that some of them are
malicious. The presence of malicious files in benign
samples or contrariwise will produce negative results on
the studied experiment. For that a copy of all documents in
the malicious as well as in benign dataset was scanned
using Kaspersky Endpoint security 10 antiviruses in a
Hyper-V virtual machine.

5.1 Experiment

In this experiment regular expression (RegEx) in Python
are used to search for the suspicious features and compute
their frequencies in both the malicious and benign dataset.
After running the scan over the provided dataset, the
results were achieved as shown in Table 3. The
Percentages are calculated by dividing the number of files
with a certain feature over the total number of sample.

Table 3 Structure Scan Results

Malic-
ious Clean

%Malic
-

ious
%Clean

JavaScript 2766 298 14.12% 1.52%
JS 2758 290 14.08% 1.48%

mismatched objects 58 0 0.30% 0.00%
mismatched
streams 29 7 0.15% 0.04%

PDFs with no
Cross
reference table

647 1560 3.30% 7.96%

PDFs with no
Startxref 284 0 1.45% 0.00%

FlateDecode 3067 8597 15.65% 43.88%
LZWDecode 58 359 0.30% 1.83%
ASCII85Decode 205 57 1.05% 0.29%
ASCIIHexDecode 402 408 2.05% 2.08%
RunLengthDecode 53 0 0.27% 0.00%
JBIG2Decode 3 143 0.02% 0.73%
DCTDecode 96 1672 0.49% 8.53%
Encrypt 5 58 0.03% 0.30%
CCITTFaxDecode 1 471 0.01% 2.40%
OpenAction 1762 610 8.99% 3.11%
Launch 68 12 0.35% 0.06%
AA 89 352 0.45% 1.80%
Acroform 1714 2658 8.75% 13.57%
URI 1 1241 0.01% 6.33%
RichMedia 2 0 0.01% 0.00%
ObjStm 34 2924 0.17% 14.92%
EmbeddedFile 908 979 4.63% 5.00%
Page = 1 3144 3406 16.05% 17.38%
%EOF missing 6394 0 32.63% 0.00%
Bad Header 718 0 3.66% 0.00%
XFA 906 2 4.62% 0.01%
GoTo 8 485 0.04% 2.48%

Total Dataset = 19593

After rerunning the scan on the same dataset to find how
the features present in the dataset and their relationships,
the results presented in Table 4. Each feature has a symbol
to simplify its representation.

Table 4 Features Presence in the files

Features Symbol
Frequency

in
Malicious

Frequency
in

Clean
Bad Header H 718 0

%%EOF missing E 6394 0
JavaScript 2766 298

JS 2758 290

OpenAction 1762 610
XFA 906 2
(JavaScript ∩ JS) –
(OpenAction ∪ XFA) L 998 250

(JavaScript ∩ JS ∩
OpenAction) – XFA R 1754 7

JavaScript – (JS ∪
OpenAction ∪ XFA)

Y 8 39

JS – (JavaScript ∪
OpenAction ∪ XFA)

Z 0 31

OpenAction – (JavaScript
∪ JS ∪ XFA) V 5 603

JavaScript ∩ JS ∩
OpenAction ∩ XFA J 3 0

(JavaScript ∩ JS ∩ XFA) O 3 2

http://www.wordhippo.com/what-is/another-word-for/intermediary.html

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.5, May 2015 36

– OpenAction
XFA – (JavaScript ∪ JS
∪ OpenAction)

X 900 0

According to the results presented in Table 4, the predicted
number of suspicious files (P.Fs) are calculated as
following:

 P. Fs = H + E + L + R + Y + Z + V + J + O + X (1)

By applying Eq.(1) on the results of the malicious files
listed in Table 4, predicted number of suspicious files are:

P.Fs = 10783 suspicious files in malicious dataset

By applying Eq.(1) on the results of clean files listed in
Table 4, predicted number of suspicious files are:

P.Fs = 932 suspicious files in clean dataset

5.2 Detection Accuracy

Prior to explaining the detection rates detected through the
experiment, number of terms are presented here [14]:
True Positive (TP): The number of files detected as
malicious from malicious samples.
True Negative (TN): The number of files detected as
benign from benign samples.
False Positive (FP): The number of files detected as
malicious from benign samples.
False Negative (FN): The number of files classified as
benign from malicious samples.

In the experiment, the performance of the method is
evaluated with regard to false positive and true positive
rate:

True Positive Rate (TPR) = TP
TP+FN

∗ 100% (2)

False Positive Rate (FPR) = FP
TN+FP

∗ 100% (3)

The false positive and true positive rates of the method
were evaluated regarding to the presence of JavaScript, JS,
OpenAction and XFA tags and to the missing of the
keyword (%%EOF) and missing the PDF header within
the first 1024 bytes of the file, as shown in Table 5.

Table 5 Detection Results for Structure Scan
 Known Samples
 Benign Malicious

Detected Samples
Benign TN =

7868 FN = 10

Suspicious FP = 932 TP = 10783

Regarding to Eq.(2) and Eq.(3) and Table 5, the true
positive and the false positive rates are :

True Positive Rate (TPR) = 99.91%

False Positive Rate (FPR) = 10.59%

From the results above the method detected 10783
(99.90%) as suspicious files from the 10793 malicious
files, and falsely detected 932 (10.59%) as suspicious from
8800 benign files.
To evaluate the method and how it can detect suspicious
PDF files, it is compared with Wepawet. Wepawet
analyzes PDF files by using interpreter to run JavaScript
[15]-[8].
The comparison is conducted on 5000 known malicious
PDF files regarding false negative which means the dataset
is known to be malicious. To carry out the comparison, the
experiment was performed using the keywords that were
used in the authors’ hypothesis mentioned in experiments
results section. The relationship between the keywords
used in the experiment is shown in Table 6 and the results
of comparison are shown in Table 7.

Table 6 Keywords relationship - Structure Scan
Features Frequency in

Malicious
Bad Header 347
%%EOF missing 3010
JavaScript 1236
JS 1232
OpenAction 755
XFA 404
(JavaS1811+cript ∩ JS) – (OpenAction ∪ XFA) 478
JavaScript ∩ JS ∩ OpenAction ∩ XFA 2
(JavaScript ∩ JS ∩ OpenAction) – XFA 749
(JavaScript ∩ JS ∩ XFA) – OpenAction 3
JavaScript – (JS ∪ OpenAction ∪ XFA) 4
JS – (JavaScript ∪ OpenAction ∪ XFA) 0
OpenAction – (JavaScript ∪ JS ∪ XFA) 4
XFA – (JavaScript ∪ JS ∪ OpenAction) 399

Table 7 Comparison with Wepawet

Detected
Suspicious

Detected
Benign

False
Negative
 (FN)

Wetawet 4859 4693 166 3.41%
Proposed method
using Structure Scan 5000 4996 4 0.08%

Regarding the analysis of the results presented in the table
above, Wepawet missed 3.41% of the known malicious
PDF files compared to the authors’ method where the false
negative rate is 0.08% using structure scan.
From the method evaluation with Wepawet, it can be seen
that the results support the authors’ hypothesis in selecting
six features from 28, which are presented in Table 3, to be
used as a significant features in detecting suspicious PDF

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.5, May 2015

37

files which have a positive results on the performance of
the classification method.

6. Conclusion

While the PDF documents are used by many users
nowadays as stable and reliable document exchange
technique format, it is highly used by hackers to run
harmful code on computers. As the structure of PDF gives
the ability to embed codes like JavaScript and
communicate with outside sites.
In this paper, the structure format of PDF has been studied
in addition to the techniques which are used by hackers to
keep their harmful code away, and hidden from security
specialist and security software like antivirus.
Enhanced analysis method was presented to detect
suspicious PDF files via choosing the significant features
that commonly found in malicious PDF files. As an
additional step, an experiment was implemented to classify
the PDF documents based on these keywords.
It can be notice from the results that missing the (%%EOF)
is only in malicious file, which can be used as an
indication for maliciousness.
The continuation of this paper is to utilize the proposed
method to use YARA tool in order to scan PDF files
looking for the keywords that have been used within
them.in addition to use learning machine technique to
classify PDF files as suspicious or benign.
Adobe needs to rethink about and limiting the features
which are used to execute malware and adds a sandbox
container that opens the PDF file and id any malicious
activity is detected alerts the user and stop the execution.

7. Future Work

There are many fields that can be added to improve our
work regarding to the PDF analysis process and its
function.
- Enhance the analysis method
The system doesn't contain any JavaScript analysis
functionality so applying a deobfuscation on JavaScript
would further extend the analysis approach and to be able
to extract the encrypted or encoded JavaScript.
- Apply Fuzzy Hashing
Using fuzzy hashing as another way to check for
previously analyzed documents, in which the traditional
hashes are often used to match the identical files and are
unsuitable to match the files if one bit is changed.
- Using Dynamic Analysis
To create a module that analyzes PDF files using dynamic
analysis by running them in a monitored virtual machine
and analyzing it for any vulnerable behavior. The system
presents detailed information about the files and their
execution in the virtual machine.

8. Limitations

Even many malicious PDF files use the suspicious
keywords mentioned in the experiments, there are also
many benign PDF files use them, which make the method
unable to differentiate between malicious and benign PDFs.
The authors’ method cannot detect any malicious PDF
files that don’t use these keywords as attack vector.

References
[1] M. Egele, P. Wurzinger, K. Christopher and E. Kirda,

"Defending browsers against drive-by
downloads:Mitigating Heap-Spraying Code Injection
Attacks" Springer, pp. 88-106, 2009. doi: 10.1007/978-3-
642-02918-9_6.

[2] Symantec, "Malware security report: Protecting your
business, customers, and the bottom line," Symantec, 2010.

[3] Z. Tzermias, G. Sykiotakis, M. Polychronakis and E. P.
Markatos, "Combining Static and Dynamic Analysis for the
Detection of Malicious Documents", ACM, in In
Proceedings of the Fourth European Workshop on System
Security,No. 7, 2011. doi: 10.1145/1972551.1972555.

[4] F. Eric, A. Blonce and F. ,. L. Frayssignes, "Portable
Document Format (PDF) Security Analysis and Malware
Threats," 2008.

[5] Adobe, "PDF Reference and Adobe Extensions to the PDF
Specification," 2008. [Online]. Available:
www.adobe.com/devnet/pdf/pdf_reference.html
http://www.adobe.com/devnet/pdf/pdf_referece.html.
[Accessed 16 Fabruary 2014].

[6] P. Laskov and N. Šrndi´c, "Static Detection of Malicious
JavaScript-Bearing PDF documents" , ACM, in Annual
Computer Security Applications Conference, pp. 373-382,
2011. doi: 10.1145/2076732.2076785.

[7] M. Cova, C. Kruegel and G. Vigna, "Detection and analysis
of drive-by-download attacks and malicious javascript
code", ACM, in In Proceedings of the 19th international
conference on World wide web ,pp. 281-290, 2010. doi:
10.1145/1772690.1772720.

[8] S. Ford, M. Cova, C. Kruegel and a. G. Vigna, "Wepawet,"
[Online]. Available: http://wepawet.cs.ucsb.edu/. [Accessed
8 December 2014].

[9] D. Steven, "PDF Tools," [Online]. Available:
http://blog.didierstevens.com/programs/pdf-tools/.
[Accessed 21 February 2015].

[10] D. Stevens, "Didier Stevens," 29 March 2010. [Online].
Available: http://blog.didierstevens.com/2010/03/29/escape-
from-pdf/. [Accessed 13 December 2014].

[11] Stevens, D. Malicious-pdf-analysis-ebook.pdf.
http://didierstevens.com/files/data/malicious-pdf-analysis-
ebook.zip. [Accessed 21December 2014].

[12] K. Itabashi, "Portable Document Format Malware,"
Symantec Security Response, 2010.

[13] Mila, "CVE-2013-0640 samples listing," 24 April 2013.
[Online]. Available: http://contagiodump.blogspot.com.
[Accessed 21 November 2014].

http://www.collinsdictionary.com/dictionary/english-thesaurus/specialist%23specialist_1
http://dx.doi.org/10.1007/978-3-642-02918-9_6
http://dx.doi.org/10.1007/978-3-642-02918-9_6
http://dx.doi.org/10.1145/1972551.1972555
http://dx.doi.org/10.1145/2076732.2076785
http://dx.doi.org/10.1145/1772690.1772720

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.5, May 2015 38

[14] S. Sayed, R. R. Darwish and S. A. Salem, "A Real-Time
Approach for Detecting Malicious," Springer, in Advances
in Intelligent Systems and Computing, Vol. 240, pp. 355-
364. 2014 doi: 10.1007/978-3-319-01857-7_34.

[15] M. Cova, C. Kruegel, Vigna and a. G., "Detection and
analysis of drive-by-download attacks and malicious
javascript code", ACM, in International World Wide Web
Conference (WWW),pp. 281-290, 2010. doi:
10.1145/1772690.1772720.

Suleiman J. Khitan received the B.S. in
Computer Engineering from Mutah
University, Jordan in 2006. He is currently
pursuing Final year M.Sc. Information
System Security and Criminology from
Princess Sumaya University for
Technology, Jordan. His area of interest
includes PDF analysis and network
security.

Dr. Ali Hadi received the B.S. degree in
computer science from Philadelphia
University, Jordan, in 2002 and the M.Sc.
and Ph.D. degree in computer information
system from University of Banking and
Financial Sciences, College of Information
Technology, Jordan, in 2004 and 2010,
respectively. He's a Senior Level
Information Security Officer with 14+ years
of professional experience working for

different high-reputed companies. Since 2011 he's been teaching
different computer security, digital forensics, and networking
courses. He's also an author, speaker, and freelance instructor.
His research interests include digital forensics, operating systems
internals, malware analysis, and network security.

Prof. Jalal Atoum is currently the Vice
President at Princess Sumaya University for
Technology (PSUT). He had received his B.S.
degree in computer science from Yarmouk
university-Jordan in 1984. He had received
his Master degree in computer science from
University of Texas at Arlington-USA in
1987. He had received his PhD in computer
science from University of Houston-USA in

1993. He had worked as an assistant professor at Yarmouk
University from 1993 to 1995. He had been appointed as the
Computer Science department Chairman at PSUT. He has
supervised or co-supervised several students on their Ph.D.
dissertations and several M.S. theses and has supervised
numerous undergraduate graduation projects. Finally, he have
been involved in several committees for degree plans, proposed
and developed the Master program in Information System
Security and Digital Criminology at PSUT.

http://dx.doi.org/10.1145/1772690.1772720

