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Summary 
We describe a method of performing modular multiplication that 
has various applications in the field of modern cryptography and 
coding theory. The proposed algorithm, which combines the 
Karatsuba-Ofman multiplier and bipartite modular reduction, 
presents an interleaved processing on the upper most level of 
Karatsuba-Ofman's recursion. The method provides an efficient 
and highly parallel modular arithmetic for both hardware and 
software realizations of public-key cryptosystems, such as today's 
dominating RSA and Diffie-Hellman algorithms. 
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1. Introduction 

Modular arithmetic has various applications in the 
field of applied sciences. This emerging trend is due to its 
exact integer arithmetic and the need for some advanced 
computations in certain mathematical structures such as 
finite fields, groups and rings. An apparent example is the 
practice of cryptography involving calculations requiring 
modular arithmetic. 

 
Excluding the lighter modular addition and 

subtraction, research on modular arithmetic is mainly 
concentrated on the modular multiplication. In the finite or 
more specifically modular world, multiplications are 
carried in two steps: namely a multiplication followed by a 
reduction step. Since multiplication and reduction are 
probably the most studied two subjects in computer 
arithmetic, methods for carrying modular multiplication 
can simply be generated by matching the algorithms from 
each algorithm class. Obviously, this would utilize 
separated multiplication and reduction stages. On the other 
hand, a more intelligent approach would be interleaving 
these two operations which has a further impact on 
compact and scalable hardware designs.  

  
Unfortunately, fast multipliers such as Karatsuba-

Ofman (KO) [1], Furer [3] and Schonhage-Strassen [2] 
could not be interleaved. Hence, these area hungry 
asymptotically faster multipliers have to be bundled with a 
separate reduction process in order to realize modular 

multiplication (see [4] and for a recent study, we refer the 
reader to [5]). 

 
Nevertheless, it is not correct to blame the fast 

multipliers for disabling the interleaved processing. In fact, 
the problem is the dependency issue of the reduction 
algorithms that does not permit parallel processing (i.e. 
parallel reduction). Bipartite modular multiplication 
(BMM) method introduced by Kaihara and Takagi in [6] 
and [7], presents a partial solution for this problem. It is 
based on an observation that a product could 
simultaneously be reduced from left and right without a 
dependency issue. Although, the dependency exists within 
each direction, BMM algorithm outlines a global method 
of parallel reduction.  

 
In this study, we present a partially interleaved 

modular Karatsuba-Ofman multiplier based on the ideas 
introduced in [6] and [7]. After giving a brief description 
of BMM and related preliminaries, in Section 3, we outline 
the proposed method that merges the KO multiplier with 
the bipartite reduction in the upper most level of KO's 
recursion. The method provides an efficient and highly 
parallel modular arithmetic for both hardware and software 
realizations of today's dominating RSA and Diffie-Hellman 
public-key cryptosystems. From this section, input the 
body of your manuscript according to the constitution that 
you had. For detailed information for authors, please refer 
to [1]. 

2. Modular Multiplication  

Being free from the round-off errors, modular arithmetic 
finds various applications and studies in the field of 
applied sciences. While modular addition and subtraction 
are considered lighter, modular multiplication involving 
products and reductions is considered complicated. In the 
literature, there are various proposals and enhancements 
for carrying modular multiplication. A simple 
classification of these methods is done with respect to their 
reduction approach; namely, algorithms reducing from left-
to-right and from right-to-left. In fact, for left-to-right 
approach, several proposals ([8], [9], [10], etc.) exist 
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whereas Montgomery multiplication [11] is the only 
example of right-to-left reduction.   

2.1 Left-to-right Modular Multiplication 

Algorithms including the standard division can be put 
into this category. Assume that a, b and n are positive 
numbers; division algorithm states that there exist positive 
integers q and t (namely quotient and remainder) such that 
ab = qn + t for 0 ≤ t <n.  

 
Let a, b and n are represented with k=2h bits for some 

positive integer h, the quotient q could also be considered 
as a k-bit number that will be written as q= q12h+q0 where 
q0 and q1 are the least and most significant h bits 
respectively. If the a and b are partitioned into their least 
and most significant h bits, we would get the illustration 
seen in Fig. 1. Notice that either the result of a full 
multiplication or some intermediate partial sum can be 
reduced from left-to-right. 

 

Fig. 1  Left-to-right modular multiplication. 

Hardware realizations of left-to-right multiplication 
favorably process bit-wisely. In other words bitwise 
multiplication follows bitwise reduction. In general, the 
reduction step could involve several subtractions. However, 
employing an estimation logic using the few most 
significant bits of the partial remainder and modulus 
reduces this overhead to a single subtraction ([12],[13]). 

 

2.2 Right-to-left Modular Multiplication 

Montgomery approach is the only method 
implementing a right to left reduction (see Fig. 2). In its 
reduction steps, firstly, a multiple of the modulus is 
determined by the least significant digit of the partial sum. 
This multiple is then added to the partial sum in order to 

annihilate the least significant digit after which a trivial 
right shift (i.e. a reduction) is applicable. 

 
We formally outline the Montgomery’s approach as 

follows: 
 
Definition 1: Let n be a positive integer, and R be 

an integer such that R > n, gcd(n,R) =1. We define 
the n-residue of an integer a (0 ≤ a <n∙R) with 
respect to R as 

naRa mod=   

Moreover we define the Montgomery reduction of a 
modulo n with respect to R as 

naR mod1−   

Observe that Montgomery reduction and n-residues 
are inverses of each other. Furthermore, multiplication of 
two residues followed by a reduction also gives an n-
residue. The following proposition describes a method of 
computing the Montgomery reduction carrying only trivial 
divisions. 

 

Fig. 2  Montgomery multiplication with r2 := R. 

Proposition 1: Let a be an integer with 0 ≤ a <n∙R 
and let n' = - n -1 mod R. If u =a n'  mod R then (a+ u n) / 
R is an integer and Montgomery reduction of a modulo n 
with respect to R is equivalent to 

(a+u n) / R modulo n.   

Proof :Let a and n' be as above and let u =a n'  mod 
R then there exist an integers k and l such that n'  n= -1 + 
kR and u= an' + lR. This implies 

knal
RkrnlRaa

RmlRanaRuna

+=
++−+=

++=+
/))1((

/))'((/)(
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The second one is easier; a ≡ (a+ u n)  mod n  => 
(a+un) / R ≡ aR-1  mod  n. 

 
The selection of R is very important in computations 

of n-residues and reductions. Assuming that n is an odd 
number, a suitable choice of R would be R = 2d for 

 )(log2 nd > . With such a choice aR -1 mod n can be 
computed with two multiplications u = a n' and un plus 
some shift of a+ n for divisions by R. 

 
Remark 1: In order to have consistent symbols in the 

sections, R = r2 is taken throughout the text for some 
positive integer r. 

 

2.3 Bipartite Modular Multiplication 

It is known that division has an intense sequential 
nature. This nature in the context of modular reduction 
comes from the dependency in determining which multiple 
of modulus would be added to the partial sum. Since this 
decision is dependent on the previously taken modulus 
multiples, unlike multiplication, we do not have parallel or 
lower complexity algorithms for reduction. 

 
BMM method introduced by Kaihara and Takagi in 

[6] and [7], presents a partial solution for this problem 
based on an observation that a product could 
simultaneously be reduced from left and right without a 
dependency issue. Although the dependency exists within 
each direction, BMM algorithm outlines a global method 
of parallel reduction. 

 
Assume that r = 2h and the modulus and the two 

respective quotients of left-to-right and right-to-left 
reductions are as follows; 

n := 2hn1 + n0 = rn1 + n0, (1) 

q := 2hq1 + q0 = rq1 + q0, (2) 

qʹ := 2hqʹ1 + qʹ0 = rqʹ1 + qʹ0 (3) 
 
The mentioned dependency is illustrated in Figs. 1 

and 2. Literally, q0n or qʹ1n are dependent to the previous 
reductions q1n or qʹ0n respectively. Moreover, notice from 
the figures that during left-to-right reduction, the shaded 
least significant bits of ab are not manipulated when q1n is 
added to the partial sum. Similarly, the shaded part is 
untouched with addition of qʹ0n in the right-to-left 
reduction. Since these two methods do not have any 
dependency during the first half of their reduction steps, 
they could be combined as seen in Fig. 3. In fact, the figure 
gives a sketch of the bipartite reduction. 

 

The strength of BMM is clear; since the reduction is 
split into two parts, it can be handled separately in parallel. 
Therefore, theoretically, BMM should shrink the reduction 
time by half. In [7], the authors report the performance 
figures of BMM realizations. According to their 
simulations, BMM perform about 1.8 and 1.3 times better 
than the standard and Montgomery multipliers respectively. 
Obviously, these outstanding performance figures come 
with an area cost as reduction goes in parallel. Again in [7], 
the authors report that BMM needs about 1.5 and 1.7 times 
more area compared to the standard and Montgomery 
implementations respectively. 

 

 

Fig.3  Bipartite reduction combining left-to-right and right-to-left 
reductions. 

Although it is reported in [14] that further speed up 
on BMM is possible, this is not in the scope of our 
discussion. In the next section, our focus is to embed the 
bipartite reduction into the Karatsuba-Ofman machinery 
and discuss the possibility of yielding an interleaved 
multiplier. In fact, we demonstrate such a multiplier that 
operates in the upper most layer of the KO’s recursion. 

2. Bipartite KO Multiplier  

The choice of a multiplier is subject to the application, 
mostly determined by the operand’s bit length. For small 
size operands, standard multiplication is mostly used. KO 
multiplier is the choice for the inputs having up to a couple 
of thousand bits whereas big and extremely big numbers 
are multiplied by so called FFT techniques ([15], [16]). 

 
On the other hand, when it comes to modular 

multiplication, asymptotically fast multipliers can only be 
utilized in a separated multiply and reduce fashion. In 
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reality, such a usage is not efficient as it increases the area 
and  the total complexity. Instead, a common practice to 
realize compact and scalable designs is to interleave these 
two operations. The methods of Montgomery and Blakley 
are the examples of such multipliers; interleaving the 
standard multiplication with their specific reductions. In 
fact, these multipliers are the most popular ones in practice, 
despite the existence of the faster multipliers. 

3.1 Bipartite Modular Multiplication 

KO algorithm introduced in 1962 presents a recursive 
method which requires asymptotically fewer bit operations 
than the standard multiplication. In-depth details of the 
algorithm can be found in their original paper [1] and in 
Knuth[17]. For a brief explanation, firstly, we decompose 
a and b into two equal-size parts: 

a := 2ha1 + a0,  

b := 2hb1 + b0,  
i.e., a1 and a0 represent the respective most and least 

significant h bits of a, assuming k is even and 2h = k. A 
natural way of breaking the multiplication of a and b into 
multiplications of the parts a0, a1, b0, and b1 follows: 

t := ab,  

   := (2ha1 + a0)( 2hb1 + b0),  

  := 22h(a1b1)+ 2h (a1b0+ a0b1) a0b0  

  := 22ht2+ 2h t1 + t0  
This formulation yields the standard recursive 

multiplication algorithm requiring O(k2) bit operations to 
multiply two k-bit numbers. The KO algorithm is based on 
the following observation that three half-size 
multiplications suffice to achieve the same purpose as seen 
in Fig. 4: 

t0 := a0b0,   

t2 := a1b1,  

t1 := (a1 + a0)(b1 + b0) – t0 – t2 = a1b0+ a0b1 ,  
This yields to the KO recursive multiplication 

algorithm which requires O(k1.58) bit operations in order to 
multiply two k-bit numbers. Thus, it is asymptotically 
faster than the standard (recursive as well as non-recursive) 
algorithm requiring O(k2) bit operations. Due to the 
recursive nature of the algorithm, there is some overhead 
involved. For this reason, KO algorithm starts paying off 
as k gets larger 

 
Note that, one has the option of stopping at any point 

during the recursion. For example, we may apply one level 
of recursion and then compute the required three 
multiplications using the standard non-recursive 
multiplication algorithm. 

 

Fig.4  Karatsuba-Ofman multiplication  

3.2 Interleaving modular KO multiplier 

In the absence of data dependency, multiplication 
enjoys the bit level parallelism. Fast multipliers including 
KO multiplier utilize this parallelism in order to beat the 
quadratic complexity. As mentioned earlier, general 
reduction routine is not lucky in terms of data dependency. 
As a result, it can not be parallelized and interleaved with 
fast multipliers. However, to an extend, bipartite reduction 
could be interleaved with KO multiplier. To be specific, 
BMM can be interleaved with KO on the uppermost layer 
of KO recursion. Let q, n and qʹ be as in (1), (2) and (3) 
respectively. We start by defining the following partial 
products; 

00000000 mqtmqbart ′+=+=′   

11211222 mqtmqbat +=+=′   
Using these, t'1 can be calculated as follows; 

rttrtt

mmqqbbaa

mqmqtrt

mqtmqrtbbaa

mqmqtrtttbbaa

mqmqrtttt

2200

10101010

011020

1120001010

011020201010

01102011

))(())((

)()())((

))((

′−′+′−′+

+++++=

+′+′+′+

−′−′−′−++=

+′+′+′+−−++=

+′+′+′+=′

 
In fact, tʹ1 gives the desired modular reduction, abr−1 

mod n. In Fig. 5, we further illustrate how the partial 
products could be added to get the modular multiplication. 

 
Proposed method’s efficiency could easily be seen by 

counting the number of half size multiplications as 
tabulated in Table I. Notice from Figs. 1 and 2 that, 
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neglecting the expenses of lighter adds and the decision 
logic, a standard non-interleaved multiplier needs 8 half-
size multiplications where 4 of them is for the ab 
generation and the other 4 is for qn calculation used in 
reduction. In case of interleaved multipliers, we still need 8 
half-size multiplications but this time they are paired where 
a pair consists of one multiplication for reduction and 
another one for multiplication. Therefore, the latency drops 
to delay of 4 paired half-size multipliers. In fact, because 
of this paired organization, interleaved multipliers have 
compact and scalable designs. 

 

Fig.5  Partially interleaved modular KO multiplier.  

On the other hand, if KO method requiring 3 half-size 
multiplications is used for multiplication, the number of 
halfsize multiplications drops to 7 for both modular 
multipliers bundling KO with Montgomery or BMM 
reductions. However, latencies differ in the existence of 
parallelism. First of all, since t0, t1 and t2 can all be 
computed in parallel, the latency for KO can be taken as 
the latency of a single half-size multiplication. As the 
standard Montgomery needs 4 sequential half-size 
multiplications whereas BMM parallelize these; the 
latency becomes approximately 5 for and 3 for if the 
additions and subtractions are neglected. 

Lastly, if the proposed method is considered, all we 
need to have are the following calculations: 

• two paired multiplications giving tʹ0, tʹ2, qʹ0 and 
also q1. 

• integer multiplications (a0 + a1)(b0 + b1) and (qʹ0 
+q1)(n0 + n1) 

  
Observe that, only 6 half-size multiplications are 

needed for tʹ1 = abr−1 mod n (i.e the modular 
multiplication) calculation. 

Table 1: A simple comparison for various modular multiplications. 
 
Algorithm 

# of halfsize  
Multiplications 
(mult. + red.) 

latency in 
halfsize 
multiplications 

Standard (4 + 4) = 8 8 

Interleaved (4 + 4) = 8 4* 
KO + Montgomery (3 + 4) = 7 (1 + 4) = 5 
grade school +BMM (4 + 4) = 8 (5 + 2) = 7 
KO +BMM (3 + 4) = 7 (1 + 2) = 3 
proposed (3 + 3) = 6 (1* + 1) ~ 2 
Standard (4 + 4) = 8 8 
Interleaved (4 + 4) = 8 4* 
KO + Montgomery (3 + 4) = 7 (1 + 4) = 5 

* – paired 

 

Fig.6  Block diagram of the proposed method.  
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As seen in the block diagram given in Fig. 6, the 
method can be realized in a highly parallel fashion having 
a delay of 1 paired and 1 half-size multiplication latency. 
The top block which consists of two paired multiplications 
(in case, able to work in parallel) implementing the idea of 
BMM but unlike BMM these multiplications are half-sized. 
Meanwhile, the block underneath implements two integer 
multiplications that can run in parallel. Moreover, since 
they are not modular, further KO recursion could be 
employed. 

4. Conclusion 

We describe a method of performing modular 
multiplication that combines the ideas of the bipartite 
modular reduction with the Karatsuba-Ofman multiplier. 
The method presents an interleaved processing on the 
upper most level of KO's recursion. However, it is not 
recursively applicable to the whole KO algorithm because 
of the sequential nature of reduction in the leaves. 

 
We reported that with the new method, 6 half-

size multiplications suffice to compute a modular 
multiplication of two numbers, where 8 of these are 
needed in case of a standard interleaved multiplier. 
Moreover, two of these half-sized multiplications are 
integer multiplications where further KO recursion 
could be employed. Therefore, we conclude that the 
presented method gives parallel architectures for 
hardware and software realizations of public-key 
cryptosystems involving modular arithmetic. 

Acknowledgments 

The author would like to thank Y. J. Baek from Samsung 
Electronics, Giheung, S. Korea for his valuable comments 
and discussions. G. Saldamli is partially funded by 
TUBITAK research project 109E180.  
 
References 
[1] A. Karatsuba, Y. Ofman, Multiplication of multidigit 

numbers by automata, Soviet Physics-Doklady 7 (1963) 
595–596. 

[2] A. Schonhage, V. Strassen, Schnelle multiplikation grafer 
zahlen, Computing 7 (1971) 281–292. 

[3] M. Furer, Faster integer multiplication, in: Proceedings of 
the thirty-ninth annual ACM symposium on Theory of 
computing, San Diego, California, USA, 2007. 

[4] C. K. Koc¸, High-Speed RSA Implementation, Tech. Rep. 
TR 201, RSA Laboratories, 73 pages (November 1994). 

[5] G. G.W. Hasenplaugh, V. Gopal, Fast modular reduction, 
in: Proceedings of the 18th IEEE Symposium on Computer 
Arithmetic 2007 (ARITH’07), 2007, pp. 225–229. 

[6] M. E. Kaihara, N. Takagi, Bipartite modular multiplication, 
in: Proceedings of 7th InternationalWorkshop on 
Cryptographic Hardware and Embedded Systems 
(CHES’05), 2005, pp. 201–210. 

[7] M. Kaihara, N. Takagi, Bipartite modular multiplication 
method, IEEE Transactions on Computers 57 (2) (2008) 
157–164.  

[8] P. Barrett, Implementing the Rivest Shamir and Adleman 
public key encryption algorithm on a standard digital signal 
processor, in: Advances in Cryptology CRYPTO’86, 1987, 
pp. 311–323. 

[9] G. R. Blakley, A computer algorithm for the product ab 
modulo m, IEEE Transactions on Computers 32 (5) (1983) 
497–500. 

[10] H. Sedlak, The RSA cryptography processor, in: Advances 
in Cryptology, EUROCRYPT’87, 1987, pp. 95–105. 

[11] P. L. Montgomery, Modular multiplication without trial 
division, Mathematics of Computation 44 (170) (1985) 
519–521. 

[12] K. Sloan, Comments on a computer algorithm for 
calculating the product ab modulo m, IEEE Transactions on 
Computers 34 (3) (1985) 290–292. 

[13] V. Bunimov, M. Schimmler, Area and time efficient 
modular multiplication of large integers, 14th IEEE 
International Conference on Application-Specific Systems, 
Architectures and Processors (ASAP’03) (2003) 400. 

[14] M. Knezevic, F. Vercauteren, I. Verbauwhede, Speeding up 
bipartite modular multiplication, in: Proceedings of the 
Third international conference on Arithmetic of finite fields, 
WAIFI’10, Springer-Verlag, 2010, pp. 166–179. 

[15] R. E. Blahut, Fast Algorithms for digital signal processing, 
Addison-Wesley publishing Company, 1985. 

[16] H. J. Nussbaumer, Fast Fourier transform and convolution 
algorithms, Springer, Berlin, Germany, 1982. 

[17] D. E. Knuth, The Art of Computer Programming: 
Seminumerical Algorithms, 3rd Edition, Addison-Wesley, 
New York, NY, USA, 1997. 

 
 
Gokay Saldamli, He is an assistant professor in Bogazici 
University, Turkey 
 
YoJin Baek He is a faculty member in Dept. of 
Information Security, Woosuk University, South 
Korea 
 
Levent Ertaul. He is currently a full time Professor at California 
State University Eastbay, USA in the department of Math & 
Computer Science.  
 


