
IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.5, May 2015

44

Manuscript received May 5, 2015
Manuscript revised May 20, 2015

Partially Interleaved Modular Karatsuba-Ofman Multiplication

Gokay Saldamli†, YoJin Baek†† and Levent Ertaul†††,

†MIS Department, Bogazici University, Bebek, Istanbul, Turkey
††Dept. of Information Security, Woosuk University, Wanju-gun Jeonbuk 565-701, S.Korea

††† Department of Math & Computer Science, CSU East Bay, Hayward, CA, USA

Summary
We describe a method of performing modular multiplication that
has various applications in the field of modern cryptography and
coding theory. The proposed algorithm, which combines the
Karatsuba-Ofman multiplier and bipartite modular reduction,
presents an interleaved processing on the upper most level of
Karatsuba-Ofman's recursion. The method provides an efficient
and highly parallel modular arithmetic for both hardware and
software realizations of public-key cryptosystems, such as today's
dominating RSA and Diffie-Hellman algorithms.
Key words:
Modular multiplication; Karatsuba-Ofman multiplication;
Bipartite reduction.

1. Introduction

Modular arithmetic has various applications in the
field of applied sciences. This emerging trend is due to its
exact integer arithmetic and the need for some advanced
computations in certain mathematical structures such as
finite fields, groups and rings. An apparent example is the
practice of cryptography involving calculations requiring
modular arithmetic.

Excluding the lighter modular addition and

subtraction, research on modular arithmetic is mainly
concentrated on the modular multiplication. In the finite or
more specifically modular world, multiplications are
carried in two steps: namely a multiplication followed by a
reduction step. Since multiplication and reduction are
probably the most studied two subjects in computer
arithmetic, methods for carrying modular multiplication
can simply be generated by matching the algorithms from
each algorithm class. Obviously, this would utilize
separated multiplication and reduction stages. On the other
hand, a more intelligent approach would be interleaving
these two operations which has a further impact on
compact and scalable hardware designs.

Unfortunately, fast multipliers such as Karatsuba-

Ofman (KO) [1], Furer [3] and Schonhage-Strassen [2]
could not be interleaved. Hence, these area hungry
asymptotically faster multipliers have to be bundled with a
separate reduction process in order to realize modular

multiplication (see [4] and for a recent study, we refer the
reader to [5]).

Nevertheless, it is not correct to blame the fast

multipliers for disabling the interleaved processing. In fact,
the problem is the dependency issue of the reduction
algorithms that does not permit parallel processing (i.e.
parallel reduction). Bipartite modular multiplication
(BMM) method introduced by Kaihara and Takagi in [6]
and [7], presents a partial solution for this problem. It is
based on an observation that a product could
simultaneously be reduced from left and right without a
dependency issue. Although, the dependency exists within
each direction, BMM algorithm outlines a global method
of parallel reduction.

In this study, we present a partially interleaved

modular Karatsuba-Ofman multiplier based on the ideas
introduced in [6] and [7]. After giving a brief description
of BMM and related preliminaries, in Section 3, we outline
the proposed method that merges the KO multiplier with
the bipartite reduction in the upper most level of KO's
recursion. The method provides an efficient and highly
parallel modular arithmetic for both hardware and software
realizations of today's dominating RSA and Diffie-Hellman
public-key cryptosystems. From this section, input the
body of your manuscript according to the constitution that
you had. For detailed information for authors, please refer
to [1].

2. Modular Multiplication

Being free from the round-off errors, modular arithmetic
finds various applications and studies in the field of
applied sciences. While modular addition and subtraction
are considered lighter, modular multiplication involving
products and reductions is considered complicated. In the
literature, there are various proposals and enhancements
for carrying modular multiplication. A simple
classification of these methods is done with respect to their
reduction approach; namely, algorithms reducing from left-
to-right and from right-to-left. In fact, for left-to-right
approach, several proposals ([8], [9], [10], etc.) exist

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.5, May 2015

45

whereas Montgomery multiplication [11] is the only
example of right-to-left reduction.

2.1 Left-to-right Modular Multiplication

Algorithms including the standard division can be put
into this category. Assume that a, b and n are positive
numbers; division algorithm states that there exist positive
integers q and t (namely quotient and remainder) such that
ab = qn + t for 0 ≤ t <n.

Let a, b and n are represented with k=2h bits for some

positive integer h, the quotient q could also be considered
as a k-bit number that will be written as q= q12h+q0 where
q0 and q1 are the least and most significant h bits
respectively. If the a and b are partitioned into their least
and most significant h bits, we would get the illustration
seen in Fig. 1. Notice that either the result of a full
multiplication or some intermediate partial sum can be
reduced from left-to-right.

Fig. 1 Left-to-right modular multiplication.

Hardware realizations of left-to-right multiplication
favorably process bit-wisely. In other words bitwise
multiplication follows bitwise reduction. In general, the
reduction step could involve several subtractions. However,
employing an estimation logic using the few most
significant bits of the partial remainder and modulus
reduces this overhead to a single subtraction ([12],[13]).

2.2 Right-to-left Modular Multiplication

Montgomery approach is the only method
implementing a right to left reduction (see Fig. 2). In its
reduction steps, firstly, a multiple of the modulus is
determined by the least significant digit of the partial sum.
This multiple is then added to the partial sum in order to

annihilate the least significant digit after which a trivial
right shift (i.e. a reduction) is applicable.

We formally outline the Montgomery’s approach as

follows:

Definition 1: Let n be a positive integer, and R be

an integer such that R > n, gcd(n,R) =1. We define
the n-residue of an integer a (0 ≤ a <n∙R) with
respect to R as

naRa mod=

Moreover we define the Montgomery reduction of a
modulo n with respect to R as

naR mod1−

Observe that Montgomery reduction and n-residues
are inverses of each other. Furthermore, multiplication of
two residues followed by a reduction also gives an n-
residue. The following proposition describes a method of
computing the Montgomery reduction carrying only trivial
divisions.

Fig. 2 Montgomery multiplication with r2 := R.

Proposition 1: Let a be an integer with 0 ≤ a <n∙R
and let n' = - n -1 mod R. If u =a n' mod R then (a+ u n) /
R is an integer and Montgomery reduction of a modulo n
with respect to R is equivalent to

(a+u n) / R modulo n.

Proof :Let a and n' be as above and let u =a n' mod
R then there exist an integers k and l such that n' n= -1 +
kR and u= an' + lR. This implies

knal
RkrnlRaa

RmlRanaRuna

+=
++−+=

++=+
/))1((

/))'((/)(

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.5, May 2015

46

The second one is easier; a ≡ (a+ u n) mod n =>
(a+un) / R ≡ aR-1 mod n.

The selection of R is very important in computations

of n-residues and reductions. Assuming that n is an odd
number, a suitable choice of R would be R = 2d for

)(log2 nd > . With such a choice aR -1 mod n can be
computed with two multiplications u = a n' and un plus
some shift of a+ n for divisions by R.

Remark 1: In order to have consistent symbols in the

sections, R = r2 is taken throughout the text for some
positive integer r.

2.3 Bipartite Modular Multiplication

It is known that division has an intense sequential
nature. This nature in the context of modular reduction
comes from the dependency in determining which multiple
of modulus would be added to the partial sum. Since this
decision is dependent on the previously taken modulus
multiples, unlike multiplication, we do not have parallel or
lower complexity algorithms for reduction.

BMM method introduced by Kaihara and Takagi in

[6] and [7], presents a partial solution for this problem
based on an observation that a product could
simultaneously be reduced from left and right without a
dependency issue. Although the dependency exists within
each direction, BMM algorithm outlines a global method
of parallel reduction.

Assume that r = 2h and the modulus and the two

respective quotients of left-to-right and right-to-left
reductions are as follows;

n := 2hn1 + n0 = rn1 + n0, (1)

q := 2hq1 + q0 = rq1 + q0, (2)

qʹ := 2hqʹ1 + qʹ0 = rqʹ1 + qʹ0 (3)

The mentioned dependency is illustrated in Figs. 1

and 2. Literally, q0n or qʹ1n are dependent to the previous
reductions q1n or qʹ0n respectively. Moreover, notice from
the figures that during left-to-right reduction, the shaded
least significant bits of ab are not manipulated when q1n is
added to the partial sum. Similarly, the shaded part is
untouched with addition of qʹ0n in the right-to-left
reduction. Since these two methods do not have any
dependency during the first half of their reduction steps,
they could be combined as seen in Fig. 3. In fact, the figure
gives a sketch of the bipartite reduction.

The strength of BMM is clear; since the reduction is
split into two parts, it can be handled separately in parallel.
Therefore, theoretically, BMM should shrink the reduction
time by half. In [7], the authors report the performance
figures of BMM realizations. According to their
simulations, BMM perform about 1.8 and 1.3 times better
than the standard and Montgomery multipliers respectively.
Obviously, these outstanding performance figures come
with an area cost as reduction goes in parallel. Again in [7],
the authors report that BMM needs about 1.5 and 1.7 times
more area compared to the standard and Montgomery
implementations respectively.

Fig.3 Bipartite reduction combining left-to-right and right-to-left
reductions.

Although it is reported in [14] that further speed up
on BMM is possible, this is not in the scope of our
discussion. In the next section, our focus is to embed the
bipartite reduction into the Karatsuba-Ofman machinery
and discuss the possibility of yielding an interleaved
multiplier. In fact, we demonstrate such a multiplier that
operates in the upper most layer of the KO’s recursion.

2. Bipartite KO Multiplier

The choice of a multiplier is subject to the application,
mostly determined by the operand’s bit length. For small
size operands, standard multiplication is mostly used. KO
multiplier is the choice for the inputs having up to a couple
of thousand bits whereas big and extremely big numbers
are multiplied by so called FFT techniques ([15], [16]).

On the other hand, when it comes to modular

multiplication, asymptotically fast multipliers can only be
utilized in a separated multiply and reduce fashion. In

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.5, May 2015

47

reality, such a usage is not efficient as it increases the area
and the total complexity. Instead, a common practice to
realize compact and scalable designs is to interleave these
two operations. The methods of Montgomery and Blakley
are the examples of such multipliers; interleaving the
standard multiplication with their specific reductions. In
fact, these multipliers are the most popular ones in practice,
despite the existence of the faster multipliers.

3.1 Bipartite Modular Multiplication

KO algorithm introduced in 1962 presents a recursive
method which requires asymptotically fewer bit operations
than the standard multiplication. In-depth details of the
algorithm can be found in their original paper [1] and in
Knuth[17]. For a brief explanation, firstly, we decompose
a and b into two equal-size parts:

a := 2ha1 + a0,

b := 2hb1 + b0,
i.e., a1 and a0 represent the respective most and least

significant h bits of a, assuming k is even and 2h = k. A
natural way of breaking the multiplication of a and b into
multiplications of the parts a0, a1, b0, and b1 follows:

t := ab,

 := (2ha1 + a0)(2hb1 + b0),

 := 22h(a1b1)+ 2h (a1b0+ a0b1) a0b0

 := 22ht2+ 2h t1 + t0
This formulation yields the standard recursive

multiplication algorithm requiring O(k2) bit operations to
multiply two k-bit numbers. The KO algorithm is based on
the following observation that three half-size
multiplications suffice to achieve the same purpose as seen
in Fig. 4:

t0 := a0b0,

t2 := a1b1,

t1 := (a1 + a0)(b1 + b0) – t0 – t2 = a1b0+ a0b1 ,
This yields to the KO recursive multiplication

algorithm which requires O(k1.58) bit operations in order to
multiply two k-bit numbers. Thus, it is asymptotically
faster than the standard (recursive as well as non-recursive)
algorithm requiring O(k2) bit operations. Due to the
recursive nature of the algorithm, there is some overhead
involved. For this reason, KO algorithm starts paying off
as k gets larger

Note that, one has the option of stopping at any point

during the recursion. For example, we may apply one level
of recursion and then compute the required three
multiplications using the standard non-recursive
multiplication algorithm.

Fig.4 Karatsuba-Ofman multiplication

3.2 Interleaving modular KO multiplier

In the absence of data dependency, multiplication
enjoys the bit level parallelism. Fast multipliers including
KO multiplier utilize this parallelism in order to beat the
quadratic complexity. As mentioned earlier, general
reduction routine is not lucky in terms of data dependency.
As a result, it can not be parallelized and interleaved with
fast multipliers. However, to an extend, bipartite reduction
could be interleaved with KO multiplier. To be specific,
BMM can be interleaved with KO on the uppermost layer
of KO recursion. Let q, n and qʹ be as in (1), (2) and (3)
respectively. We start by defining the following partial
products;

00000000 mqtmqbart ′+=+=′

11211222 mqtmqbat +=+=′
Using these, t'1 can be calculated as follows;

rttrtt

mmqqbbaa

mqmqtrt

mqtmqrtbbaa

mqmqtrtttbbaa

mqmqrtttt

2200

10101010

011020

1120001010

011020201010

01102011

))(())((

)()())((

))((

′−′+′−′+

+++++=

+′+′+′+

−′−′−′−++=

+′+′+′+−−++=

+′+′+′+=′

In fact, tʹ1 gives the desired modular reduction, abr−1

mod n. In Fig. 5, we further illustrate how the partial
products could be added to get the modular multiplication.

Proposed method’s efficiency could easily be seen by

counting the number of half size multiplications as
tabulated in Table I. Notice from Figs. 1 and 2 that,

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.5, May 2015

48

neglecting the expenses of lighter adds and the decision
logic, a standard non-interleaved multiplier needs 8 half-
size multiplications where 4 of them is for the ab
generation and the other 4 is for qn calculation used in
reduction. In case of interleaved multipliers, we still need 8
half-size multiplications but this time they are paired where
a pair consists of one multiplication for reduction and
another one for multiplication. Therefore, the latency drops
to delay of 4 paired half-size multipliers. In fact, because
of this paired organization, interleaved multipliers have
compact and scalable designs.

Fig.5 Partially interleaved modular KO multiplier.

On the other hand, if KO method requiring 3 half-size
multiplications is used for multiplication, the number of
halfsize multiplications drops to 7 for both modular
multipliers bundling KO with Montgomery or BMM
reductions. However, latencies differ in the existence of
parallelism. First of all, since t0, t1 and t2 can all be
computed in parallel, the latency for KO can be taken as
the latency of a single half-size multiplication. As the
standard Montgomery needs 4 sequential half-size
multiplications whereas BMM parallelize these; the
latency becomes approximately 5 for and 3 for if the
additions and subtractions are neglected.

Lastly, if the proposed method is considered, all we
need to have are the following calculations:

• two paired multiplications giving tʹ0, tʹ2, qʹ0 and
also q1.

• integer multiplications (a0 + a1)(b0 + b1) and (qʹ0
+q1)(n0 + n1)

Observe that, only 6 half-size multiplications are

needed for tʹ1 = abr−1 mod n (i.e the modular
multiplication) calculation.

Table 1: A simple comparison for various modular multiplications.

Algorithm

of halfsize
Multiplications
(mult. + red.)

latency in
halfsize
multiplications

Standard (4 + 4) = 8 8

Interleaved (4 + 4) = 8 4*
KO + Montgomery (3 + 4) = 7 (1 + 4) = 5
grade school +BMM (4 + 4) = 8 (5 + 2) = 7
KO +BMM (3 + 4) = 7 (1 + 2) = 3
proposed (3 + 3) = 6 (1* + 1) ~ 2
Standard (4 + 4) = 8 8
Interleaved (4 + 4) = 8 4*
KO + Montgomery (3 + 4) = 7 (1 + 4) = 5

* – paired

Fig.6 Block diagram of the proposed method.

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.5, May 2015

49

As seen in the block diagram given in Fig. 6, the
method can be realized in a highly parallel fashion having
a delay of 1 paired and 1 half-size multiplication latency.
The top block which consists of two paired multiplications
(in case, able to work in parallel) implementing the idea of
BMM but unlike BMM these multiplications are half-sized.
Meanwhile, the block underneath implements two integer
multiplications that can run in parallel. Moreover, since
they are not modular, further KO recursion could be
employed.

4. Conclusion

We describe a method of performing modular
multiplication that combines the ideas of the bipartite
modular reduction with the Karatsuba-Ofman multiplier.
The method presents an interleaved processing on the
upper most level of KO's recursion. However, it is not
recursively applicable to the whole KO algorithm because
of the sequential nature of reduction in the leaves.

We reported that with the new method, 6 half-

size multiplications suffice to compute a modular
multiplication of two numbers, where 8 of these are
needed in case of a standard interleaved multiplier.
Moreover, two of these half-sized multiplications are
integer multiplications where further KO recursion
could be employed. Therefore, we conclude that the
presented method gives parallel architectures for
hardware and software realizations of public-key
cryptosystems involving modular arithmetic.

Acknowledgments

The author would like to thank Y. J. Baek from Samsung
Electronics, Giheung, S. Korea for his valuable comments
and discussions. G. Saldamli is partially funded by
TUBITAK research project 109E180.

References
[1] A. Karatsuba, Y. Ofman, Multiplication of multidigit

numbers by automata, Soviet Physics-Doklady 7 (1963)
595–596.

[2] A. Schonhage, V. Strassen, Schnelle multiplikation grafer
zahlen, Computing 7 (1971) 281–292.

[3] M. Furer, Faster integer multiplication, in: Proceedings of
the thirty-ninth annual ACM symposium on Theory of
computing, San Diego, California, USA, 2007.

[4] C. K. Koc¸, High-Speed RSA Implementation, Tech. Rep.
TR 201, RSA Laboratories, 73 pages (November 1994).

[5] G. G.W. Hasenplaugh, V. Gopal, Fast modular reduction,
in: Proceedings of the 18th IEEE Symposium on Computer
Arithmetic 2007 (ARITH’07), 2007, pp. 225–229.

[6] M. E. Kaihara, N. Takagi, Bipartite modular multiplication,
in: Proceedings of 7th InternationalWorkshop on
Cryptographic Hardware and Embedded Systems
(CHES’05), 2005, pp. 201–210.

[7] M. Kaihara, N. Takagi, Bipartite modular multiplication
method, IEEE Transactions on Computers 57 (2) (2008)
157–164.

[8] P. Barrett, Implementing the Rivest Shamir and Adleman
public key encryption algorithm on a standard digital signal
processor, in: Advances in Cryptology CRYPTO’86, 1987,
pp. 311–323.

[9] G. R. Blakley, A computer algorithm for the product ab
modulo m, IEEE Transactions on Computers 32 (5) (1983)
497–500.

[10] H. Sedlak, The RSA cryptography processor, in: Advances
in Cryptology, EUROCRYPT’87, 1987, pp. 95–105.

[11] P. L. Montgomery, Modular multiplication without trial
division, Mathematics of Computation 44 (170) (1985)
519–521.

[12] K. Sloan, Comments on a computer algorithm for
calculating the product ab modulo m, IEEE Transactions on
Computers 34 (3) (1985) 290–292.

[13] V. Bunimov, M. Schimmler, Area and time efficient
modular multiplication of large integers, 14th IEEE
International Conference on Application-Specific Systems,
Architectures and Processors (ASAP’03) (2003) 400.

[14] M. Knezevic, F. Vercauteren, I. Verbauwhede, Speeding up
bipartite modular multiplication, in: Proceedings of the
Third international conference on Arithmetic of finite fields,
WAIFI’10, Springer-Verlag, 2010, pp. 166–179.

[15] R. E. Blahut, Fast Algorithms for digital signal processing,
Addison-Wesley publishing Company, 1985.

[16] H. J. Nussbaumer, Fast Fourier transform and convolution
algorithms, Springer, Berlin, Germany, 1982.

[17] D. E. Knuth, The Art of Computer Programming:
Seminumerical Algorithms, 3rd Edition, Addison-Wesley,
New York, NY, USA, 1997.

Gokay Saldamli, He is an assistant professor in Bogazici
University, Turkey

YoJin Baek He is a faculty member in Dept. of
Information Security, Woosuk University, South
Korea

Levent Ertaul. He is currently a full time Professor at California
State University Eastbay, USA in the department of Math &
Computer Science.

