
IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.5, May 2015

60

Manuscript received May 5, 2015
Manuscript revised May 20, 2015

A Syntactically Enriched Tool Enabling Dynamic Binding to Web
Services

Oyebode Kazeem Oyeyemi 1, Esenogho Ebenezer 2

1 School of Electrical, Electronic & Computer Engineering. University of KwaZulu-Natal, Durban, South Africa

Summary
Software availability and reliability is crucial within the context
of critical software systems that depend on web services to fulfill
their business processes. As such, there is need to cater for
scenarios where there is a failure in a given web service,
servicing a particular software system. There should be a fall
over mechanism from a failed web service to another in real time
in order to maintain software availability to service request.
Based on this argument, we propose a software tool called D-
Web Service. D-Web Service tries to improve the reliability and
availability of software systems leveraging web services by
providing a platform for automatic switching from a failed web
service to an available web service performing the same
functionality. To achieve this capability, D-Web Service provides
a repository where acquired web services are uploaded,
providing an avenue for software systems to select from a pool of
available web services at runtime. The capability of D-Web
Service is put to test by another critical software system called
Global Money Transfer (GMT).
Key words:
Web services, dynamic binding, D-Web Service, GMT.

1. Introduction

Because web services can be invoked independently
irrespective of their underlying language implementation,
thus making them interoperable with other software
system vendors, [10] points that organizations are now
using them to reduce the cost of maintaining and
developing software systems. However, when web service
specification is no longer valid [12] [1], there are failures
encountered in the invoked web service as the software
system tries to fulfill its business process. Based on the
criticality of organizations business processes relying on
web services, a failure in a business critical software
system may result in a major economic loss as [7] points
out. This strongly suggests that a suitable technique to
dynamic binding to web services is imperative in order to
guarantee system availability and reliability.
This paper introduces a software tool (D-Web Service)
capable of selecting a suitable web service to fulfill a
business process from a pool of web services performing
the same functionality and dynamically bind to the chosen
web service at runtime.

The rest of the paper is structured as follows, section II
discusses related work with respect to dynamic binding to
web services; section III discusses the concept of D-Web
Service. Section IV discusses the software system – Global
Money Transfer (GMT) and how it puts the capability of
D-Web Service to test. Section V points out the limitations
of D-Web Service, section VI identifies the future
enhancement that can be incorporated into D-Web Service
and lastly, section VII graphical behavior with different
plotting tools and conclusion.

2. RELATED WORK

In [18] the author developed a technique where web
crawlers are used to discover web services on the internet
and dynamically invoked. It involves creating a simple
HTML page and writing (embedding) Web Service
Description Language (WSDL) into web pages so as to
enable web crawlers search web pages for key web service
information such as their names and operations. However,
search engines or web crawlers have restrictions as they
may not have the capability to reach out to web pages that
needs authentication or approval before such pages are
viewed and used for dynamic web service linking as [2]
argues. Furthermore, this technique or approach does not
cater for a scenario where a switch can be made from a
failed web service to an available one.

An approach is describes by [8] using identified concepts
in domain ontology to describe the operations of web
services in a semantic annotation. The web service user
uses such semantic annotation to dynamically search and
invoke web services at runtime. However, the process of
describing web service functionality using domain
ontology is very difficult. Firstly, [4] argues that
service requesters will have to formally describe web
service operations with the same concept captured by
service providers in order to avoid semantic heterogeneity,
secondly, the requester may find it difficult to describe his
request as a result of strict ontological rules, and lastly one
need a good understanding of ontology before exploiting
its capabilities in the context of web services. Furthermore,

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.5, May 2015

61

[11] described a syntactic approach using content analysis
research methods in carrying out an experiment to develop
an algorithm that will enable clients to bind to web
services in the Universal Description, Discovery and
Integration (UDDI) repository, based on web service
names and operations. The content analysis approach was
adopted in order to understand the structure of web
services in the UDDI. Based on this algorithm, if a match
is found, the client dynamically binds to a web service.
However, this approach does not allow dynamic web
service linking based on web service quality attributes
such as response time to request. In order to enhance this
approach, [3] and [5] carried out an experiment in which
Quality of Service (QoS) broker based architecture was
incorporated into the UDDI repository. The result of the
experiment indicated that clients can dynamically bind to
web services in the UDDI based on quality attributes.
However, as [5] points out, the lack of maintenance of the
UDDI repository and the lack of verifying the correctness
of UDDI content by regulative bodies has discouraged
web service providers from publishing web services in the
UDDI. With this development, finding suitable services in
the UDDI for dynamic binding becomes a challenge. This
development has given rise to service providers publishing
their services on the internet (distributed architecture) [2].

3. PROPOSED D-WEB SERVICE
CONCEPT EXPLAINED

D-Web Service is a software system that functions as a
repository where acquired web services are uploaded see
fig 1. Before a web service is uploaded into D-Web
Service, a web service category and a web service
subcategory must be created. For example, if a user wants
to upload a web service that verifies credit card numbers
with name “Verify Credit Card” into D-Web Service, then
such a web service needs to belong to a given subcategory
say “Get Credit Card Verification” and lastly, a category
say “Credit Card Verification”. The reason for making this
arrangement as indicated in [6] is to create a super-class
(category) sub-class (subcategory) relationship that
enhances proper classification of entities (web services),
thus resembling an ontological web service modelling,
holding concepts and knowledge in a particular domain, as
such, enhancing an organised way to search for web
services on the fly for dynamic web service invocation.
This way of categorizing and grouping acquired web
services in D-Web Service software as seen in figure 2 is
similar to the lexicon approach of building ontology in a
given domain as described in [13]. In their approach,
important concepts in a given domain are identified by the
Language Extended Lexicon (LEL) and stated precisely in
a software tool called OilEd tool. The OilEd tool enables
the creation of classes, subclasses, also the creation of

relationships and restrictions among identified concepts.
The constructed ontology using their approach can be
processed by a computer software agent. D-Web Service is
also trying to achieve a similar objective, that is clearly
categorizing and precisely stating a given web service
properties such as its operations, names, number of input
parameters, number of output parameters, type of input
and output parameters and also the category and
subcategory it belongs to. However, unlike the ontology
developed using approach in [13] which can be processed
by a computer agent, the precise stating of web service
properties in D-Web Service enables D-Web Service to
intelligently decide (syntactic selection) what sort of web
service will be suitable to call upon dynamically at run
time on behalf of a client.

GMT D-wed Embedded Algorithm Out world/Users

Repository
Platform

Web service 1
Web service 2
Web service 3
Web service 4

:
Web service n

Fig.1
System/Network Architecture of the Proposed D-web

concept.

Main Category
Credit Card
Verification

Sub-Category
Get Credit Card

Verification

Web Service 1
Verify Credit Card

Web Service 1
Verify Credit Card

……………………………… n

Input
Parameter Name Operation

Input
Parameter Name Operation

Figure 2: Ontological Arrangement of Web Services

4. ABOUT GLOBAL MONEY TRANSFER
(GMT) SOFTWARE (CASE-STUDY)

GMT is developed in order to test the dynamic web
service capability of D-Web Service. GMT leverages on

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.5, May 2015 62

uploaded web services in D-Web Service in order to fulfil
a given business process in real time. GMT enables users
transfer money across the globe to another person in their
home currency. See figure 6 for GMT user interface.

A. GMT’S BUSINESS PROCESS.

GMT is easy to use, before the user sends money,
he/she needs to get the exchange rate of the currency to
send, for example if a user wants to send 100 British
pounds to Nigerian Naira, then the user needs to get the
Naira equivalent of 100 British pounds in Nigerian Naira
in real time. Next the user enters the credit card he/she
wishes to use for the transaction followed by the sender’s
information and finally enters the beneficiary’s name and
address.

Get Currency Exchange Rate

Verify Credit Card For Transfer

Enter Beneficiary’s information

Enter Sender’s Information

Send Momey

Is Credit Card
Valid? Block

START

NO

YES

Figure 3 Work Flow Diagram of GMT Business Process

B. HOW GMT LEVERAGES D-WEB SERVICE

In order for GMT to fulfil its business processes, the
researcher went in search for free web services on the
internet, the researcher discovered:

1) Two web services that provides currency
exchange rate in real time, the WDSL of these
web services are:

a) http://www.webservicex.net/CurrencyConver
tor.asmx

b) http://www.currencyserver.de/webservice/Cu

rrencyServerWebService.asmx

2) One web service that verifies credit/debit cards
online, the WDSL of the web service is

a) http://www.ezzylearning.com/services/Cre
ditCardValidationService.asmx

We then uploaded these web services into D-Web
Service; however, it is interesting to note that a password
was given by the provider of web service 1b in order to be
successfully invoked. In the case of web service 1b (see
figure7), one cannot dynamically bind to it successfully
without knowing its invocation password.

After uploading discovered web services on the D-Web
Service (see figure 7 below), GMT was setup on the Local
Area Network (LAN) to discover the uploaded web
services on D-Web Service.

C. BEFORE GMT CALLS ON D-WEB SERVICE
Before GMT invokes uploaded web services, it is
important to point at some key facts about figure 7.

1) Cost per request for web service 1a as shown in
fig. 7 is £0, while for 1b is £0.2.

2) Both services have never been used before.
3) Even though they are enabled to respond to

clients call, D-Web Service defaulted their
availability status to false, this is because D-Web
Service has not used any of these services before
and as such, it defaulted their availability statuses
to false until they are used.

4) The “last used” status of web services as shown
in fig. 7 is “Never Used”, meaning that these
services have never been invoked before.

D. GMT CALLING ON D-WEB SERVICE
As GMT is about to call upon D-Web Service to get the
latest currency rate information in real time, GMT does
not know any information about any web service
(information such as web service address is unknown) to
fulfil this business process, all it knows is the subcategory
– Get Currency Rate as shown in Figure 8. Figure 9
shows the result as GMT prepares to call upon D-Web
Service. The user intends to send £100 to Nigeria, in
Nigerian currency (Naira), and the result is 24930.1277
Naira

E. D-WEB SERVICE, AS GMT CALLS IT
Though figure 8 seems not to contain tangible data,
however, a closer look at it reveals a great deal of
information. Figure 8 shows two web services that D-Web
Service can call on behave of GMT. Before D-Web
Service calls any of these web services, it needs to apply
the web service selection algorithm as seen in figure 3.
The selection algorithm checks web services if any is

http://www.webservicex.net/CurrencyConvertor.asmx
http://www.webservicex.net/CurrencyConvertor.asmx
http://www.currencyserver.de/webservice/CurrencyServerWebService.asmx
http://www.currencyserver.de/webservice/CurrencyServerWebService.asmx
http://www.ezzylearning.com/services/CreditCardValidationService.asmx
http://www.ezzylearning.com/services/CreditCardValidationService.asmx

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.5, May 2015

63

enabled for usage (availability), followed by cost and
lastly the response time to request.
Based on the web service selection algorithm, D-Web
Service further selects the web service with the least cost,
which is web service 1a, however web service 1a
generated an internal error while invoking it as seen in
figure 8, as such D-Web Service tries the next web service
which is 1b. A closer look at the ‘Last Used’ column in
figure 8 reveals that D-Web Service dynamically invoked
web service 1b, 2 seconds after web service 1a failed. The
next step is for GMT users to enter their credit card
information and the beneficiary’s information and the
amount will be sent to the beneficiary.

Is there a new services that has
not been used ?

Dynamically
invoke chosen
web services

cost

START

Response
time to

Request

NO

YES

D-web service, before
innovation get similar web

services performing the same
function that are available

Now, filter chosen web
services based on cost. i.e. the
web service with the least cost

is invoked first.

Furthermore, select web
service having the least
response time to request

Now, invoke web service
After invocation, update web

service quality attributes in the
repository

End.

Figure 4 the web service selection algorithm

5. D-WEB SERVICE CALLING
ALGORITHM

1) Collect all web services performing same

function into a collection list.
2) Rearrange or prioritize web services, those

services that have not been used will be at the top
of the collection list followed by web services
with low calling cost.

3) Call the web service at the top of the collection
list

4) If there are errors, record the failure against this
web service. Remove this web service that
generated error from the collection list. Repeat
step 3

5) Send result to the client
6) End

6. D-WEB SERVICE LIMITATIONS

Though D-Web Service can dynamically bind to web
service at runtime, this is not the case for all web services,
for example D-Web Service cannot dynamically
bind/communicate to RESTful web services. Furthermore,
because of the complexity attributed to some web service
WDSL (Web Service Description Language) design, D-
Web Service may find it difficult to read and dynamically
invoke such web services having complex and complicated
WSDL files. In addition, though D-Web Service monitors
web service quality attributes such as availability by
periodically updating this property against each web
service in the database, this is still not enough in
improving the reliability of a software system leveraging
D-Web Service. For example, in a case D-Web Service
notices the unavailability of a service, it does not alert a
system administrator via test messages or email for
immediately action to be taken. It would have made sense
for D-Web Service to contact the system administrator at
the point a web service fails; this will enable immediate
action to be taken in order to keep the failed web service
running again or contact the web service provider in time.

7. FUTURE DEVELOPMENT TO
ENHANCE D-WEB SERVICE

D-Web Service functionalities can be improved as
follows:-

1) D-Web Service can implement a function that
alerts users (via mobile text) in situations where a
web service fails; this will enable web service
users contact web service providers for
immediate rectification.

2) D-Web Service can implement a functionally that
enables auto generation of monthly report, giving
information about the performance of a given
web service. This kind of performance report will
enable its users decide if a web service
performance is above expectation.

3) D-Web Service can be improved by incorporating
ontology into its selection process. This will
enable D-Web Service to be more intelligent in
its web service selection capability.

4) D-Web Service can be improved not only to work
with SOAP compliant web services, but also with
web services that are not SOAP compliant.

5) D-Web Service can be improved so as to read and
process security information in SOAP headers;
this will enable D-Web Service to be compliant
or dynamically invoke web services from
providers like Amazon.

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.5, May 2015 64

8. CONCLUSION

D-Web Service provides the capability for web service
clients to dynamically call a web service at run time.
Furthermore, D-Web Service provides the capability for
software systems to dynamically switch over from a failed
web service to an available one in real time. Respective of
the limitations of D-Web Service as discussed, it has been
shown to have increased the availability and reliability of
critical software systems leveraging web services. And
finally, from the graphical behaviour, users with more
request enjoys flat cost just to encourage users couple with
its advantages.

RESULT OF THE BEHAVIOUR OF THE SYSTEM

Fig .5a cost vs Request represented in bars

Fig .5b cost vs Request represented in graph plots

Figure 6: GMT User Interface

Figure 7: Web Service 1a and 1b Uploaded into D-Web

Service, Before Invocation by GMT

Figure 8: GMT Source Code Calling D-Web Service

0 5 10
1
4
7

10

cost

Request

0

5

10

1 2 3 4 5 6 7 8 9 10

Request

cost

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.5, May 2015

65

Figure 9: GMT Calling on D-Web Service on a LAN

Figure 10: D-Web Service after Being Called by GMT

References
[1] Alonso, G; Casati, F; Kuno, H; Machiraju,

V; (2004)”Web Services : Concepts, Architectures
and Applications”. New York :Springer:

[2] Al-Masri, E.; Mahmoud, Q.H. (2008b); , "Toward
Quality-Driven Web Service Discovery," IT
Professional , vol.10, no.3, pp.24-28

[3] D'Mello, D.A.; Ananthanarayana, V.S.; Santhi, T.;
(2008) "A QoS Broker Based Architecture for
Dynamic Web Service Selection,” Second Asia
International Conference on Modeling & Simulation ,
vol., no., pp.101-106

[4] D'Mello, D.A.; Ananthanarayana, V.S.; (2010), "A
Review of Dynamic Web Service Description and
Discovery Techniques,", 2010 First International
Conference on Integrated Intelligent Computing
(ICIIC), vol., no., pp.246-251

[5] Dong, W.; (2007), "QoS Driven Service Discovery
Method Based on Extended UDDI,". ICNC 2007.
Third International Conference on Natural
Computation, 2007, vol.5, no., pp.317-324

[6] Elmasri & Navathe(2007) “Fundamentals of Database
Systems 5th Edition”. USA: Pearson Education

[7] Kontonya, G. and Sommerville, I.(1998),
“Requirement Engineering”. West Sussex: Wiley

[8] M'Bareck, N.O.A.; Tata, S.; ,(2007) "How to Consider
Requester's Preferences to Enhance Web Service
Discovery?,". Second International Conference on
Internet and Web Applications and Services, 2007,
vol., no., pp.59,

[9] Song, H.; Doreen Cheng; Messer, A.; Kalasapur,
S.;(2007) , "Web Service Discovery Using General-
Purpose Search Engines," Web Services, 2007. ICWS
2007. IEEE International Conference on , vol., no.,
pp.265-271

[10] Sommerville.I (2010), Software Engineering 9th
Edition.USA: Addison-Wesley. ISBN 13-978-0-13-
705346-9.

[11] Wang, Y; Stroulia, E.; (2003) , "Flexible interface
matching for Web-service discovery," Proceedings of
the Fourth International Conference on Web
Information Systems Engineering, vol., no., pp. 147-
156

[12] Weske,M. (2007) “Business Process Management”.
New York: Springer

[13] Karin Koogan Breitman, Julio Cesar Sampaio do
Prado Leite “Ontology as a requirements engineering
product” Requirements Engineering Conference, 2003.
Proceedings. 11th IEEE Internationa. Page 309-319
2003.

Oyebode Kazeem Oyeyemi holds a
B.Eng in Electrical/Electronic
Engineering from the University of Ado-
Ekiti, Nigeria in 2009 with a second class
upper division. He also holds a master’s
degree in Software Engineering from the
University of the West of England in
2012. Presently, he is pursuing his Ph.D.
research at the University of KwaZulu-

Natal in South Africa, his research interest include; cloud
computing, web services and computer vision and cognitive radio
network (SDR).

 Esenogho Ebenezer received his
Diploma, B.Eng. in Computer
Engineering and M.Eng. Degrees in

Electronic/Telecommunication
Engineering from University of Benin in
2003, 2008, and 2011 respectively.
Presently, he is pursuing his Ph.D.
Program at the University of KwaZulu-

Natal in South Africa, his research interest include; cognitive
radio network (SDR), wireless sensor network, mobile
computing and Artificial intelligence/Machine learning. He is a
lecturer/researcher with the University of Benin, Benin City
Nigeria.

