
IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.6, June 2015

17

Manuscript received June 5, 2015
Manuscript revised June 20, 2015

Review of Algorithm for Mining Frequent Patterns from
Uncertain Data

Liwen Yue

University of Yanshan, College of Information Science and Engineering, Qinhuangdao, China

Summary
Mining frequent patterns from traditional database is an
important research topic in data mining and researchers achieved
tremendous progress in this field. However, with high volumes of
uncertain data generated in distributed environments in many of
biological, medical and life science application in the past ten
years, researchers have proposed different solutions in extending
the conventional techniques into uncertainty environment. In this
paper, we review the classic mining algorithms: Apriori
algorithm and FP-growth algorithm, and then analyses the
improved algorithm for mining frequent patterns form uncertain
data and uncertain data streams. Last, some further research
directions on mining frequent patterns form uncertain data are
given.
Key words:
Uncertain Data, Frequent Patterns, Data Stream, Data Mining.

1. Introduction

As one of the popular data mining tasks, frequent pattern
mining [1-3] aims to discover implicit, previously unknown
and potentially useful knowledge in the form of frequent
patterns and so on, sets of frequently co-occurring items,
objects, or events. Since its introduction, frequent pattern
mining has been the subject of numerous studies, in which
it has also played an important role in the mining of other
patterns [6-8].
Many of the early frequent pattern mining algorithms were
Apriori-based [4], which depend on a generate-and-test
paradigm to mine frequent patterns from transaction
databases of precise data by first generating candidates and
then checking their actual support (i.e., occurrences)
against the database. To improve algorithmic efficiency,
tree-based frequent pattern mining algorithms [5] construct
an extended prefix-tree structure (FP-tree) to capture the
contents of the database and perform the mining process
using a restricted test-only approach. These tree-based
algorithms do not generate candidates, only test for support.
With the popularization of wireless sensor networks, many
real-life biological, medical or life science applications,
huge volumes of data which riddled with uncertainty were
collected. The presence or absence of items in a dataset in
these applications is uncertain partially due to inherent
measurement inaccuracies and sampling errors (e.g., in

sensors or laboratory equipment), human reaction time,
and intentional blurring of data to preserve anonymity (e.g.,
preserve patient’s privacy). Hence, mining uncertain data
is in demand.
The rest of paper is organized as follows. The next section
introduces the frequent patterns mining algorithms from
certain data briefly. In section 3 and 4, the related
definition about uncertain data and improved algorithms
for mining frequent patterns from uncertain data are
introduced. Section 5 we check efficiency of algorithms
using IBM datasets and draw the conclusion finally.

2. Frequent Pattern Mining Algorithms from
Certain Data

In the past twenty years, researchers have made
tremendous achievements in developing efficient and
scalable algorithms for frequent patterns mining in precise
and certain databases. The most classic algorithms are
Apriori [1], FP-growth [2].
Apriori algorithm was proposed by Agarwal and Srikant in
1994.Apriori is bottom up approach. It is more popular
algorithm to find all the frequent patterns. Apriori is
designed to operate on databases containing transactions.
Each transaction is seen as a set of items (a pattern). Given
a threshold, the Apriori algorithm identifies the item sets
which are subsets of at least C transactions in the database.
Apriori uses a "bottom up" approach, where frequent
subsets are extended one item at a time, and groups of
candidates are tested against the database. Firstly,
algorithm generate candidate 1 length item sets C1,
compute the support of all candidate set in C1 to determine
frequent sets and save these candidate frequent 1-sets in
L1.Secondly ,it will generate candidate 2 length sets C2
from L1, by computing the support of candidate sets in C2
determine the frequent 2-sets, which saved in L2. And so
on, it generates candidate item sets of length k from item
sets Ck-1 of length k-1. Then it prunes the candidates which
have an infrequent sub item set. According to the
downward closure lemma, the candidate set contains all
frequent k- 1 length item sets. The algorithm terminates
when Ck is empty and no further successful extensions are
found. Algorithm scans the transaction database every time

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.6, June 2015

18

to determine frequent item sets among the candidates,
when the database is very large, candidate sets will
generate large numbers of subsets (the algorithm attempts
to load up the candidate set with as many as possible
before each scan). Bottom-up subset exploration
(essentially a breadth-first traversal of the subset lattice)
finds any maximal subset S only after all 2^{|S|}-1 of its
proper subsets. Apriori has low efficiency especially when
the database very big and a large number of item sets exist.
The FP-Growth Algorithm, proposed by Han in [2], is an
efficient and scalable method for mining the complete set
of frequent patterns by pattern fragment growth, using an
extended prefix-tree structure for storing compressed and
crucial information about frequent patterns named
frequent-pattern tree (FP-tree).
The FP-growth algorithm works as follows: first scan the
transaction database DB once, collect F, the set of frequent
items and the support of each frequent item. Sort F by
support descending order as FList, the list of frequent
items. Second create the root of an FP-tree, T, and label it
as “null”. For each transaction Trans in DB do the
following:
Select the frequent items in Trans and sort them according
to the order of FList. Let the sorted frequent-item list in
Trans be [p | P], where p is the first element and P is the
remaining list. Call insert tree ([p | P], T).
The function insert tree ([p | P], T) is performed as follows.
If T has a child N such that N.item-name = p.item-name,
then increment N ’s count by 1; else create a new node N ,
with its count initialized to 1, its parent link linked to T ,
and its node-link linked to the nodes with the same item-
name via the node-link structure. If P is nonempty, call
insert tree (P, N) recursively. FP-Growth Algorithm does
not generate candidate patterns, only test for support, the
popularity and efficiency of FP-Growth Algorithm
contributes with many studies that propose variations to
improve his performance.

3. Methods of Mining Frequent Patterns form
Uncertain Data

3.1 Uncertain Data Mining

When handling probabilistic databases of uncertain data,
the presence or absence of items in the databases is
uncertain. The degree of uncertainty can be expressed in
terms of existential probability, which is associated with
each item in transactions in the probabilistic databases of
uncertain data. The existential probability P(x, ti) of an
item x in a transaction ti indicates the likelihood of x being
present in ti.

Given an item x and a transaction ti, there are two possible
worlds when using the “possible world” interpretation of
uncertain data [9,10]: (i) a possible world W1 where x∈ti
and (ii) another possible world W2 where x ∉ ti. Although
it is uncertain which of these two worlds is the true world,
the probability of W1 being the true world is P(x, ti) and
that of W2 is 1 − P(x, ti). Then, in a probabilistic database
of uncertain data with n transactions, a pattern X is
frequent if it’s expected support ≥ the user-defined
threshold minsup. The expected support of X in the
database can be computed by using the following equation:

 (1)
where (i) sup(X,Wj) denotes the support of X in a possible
world Wj which can be computed by counting the number
of transactions that contain X in the possible world Wj and
(ii) prob(Wj) denotes the probability of Wj to be the true
world，it can be computed by following equation:

 (2)
For items x and y within X when items in X are
independent, Equation (1) can be simplified [18] to
become the following equation:

 (3)
When the support of items X expSup(X)>=ρs (user
specified threshold), items X is frequent, or else is not.

3.2 Algorithm for Uncertain Data Mining

3.2.1 Apriori-base Algorithm

Apriori algorithm has a good application in frequent
patterns mining form traditional database. Chui et al
proposed U-Aprioir[9] algorithm for using in uncertain
database, which is improvement of the Apriori. In Apriori
algorithm, support for the candidate set is computed by
accumulating. If the candidate set occurres in transaction,
the support degree plus 1; but in the uncertain database,
support of each item is represented by probability, from
formula (3), support of each set X is by accumulating
product of the probability of all x appears in the ti, which
all x belong to set X.
Similar to the Apriori, method of U-Apriori is not good at
large database, especially when the probability of
candidate items is very small. According formula (3),
accumulation of probabilities multiplication is meaningless,
instead it increases execution time and system consumption.
In order to solve this problem, Chui et al proposed a
pruning strategy, first remove small probability events
from the original database, produce a new database DT,
then apply the U-Apriori algorithm in DT. The strategy
mainly includes three parts: trimming module, pruning
module and patch up module.

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.6, June 2015

19

First trimming module, find all frequent items by scanning
original database, set a pruning threshold ρt,(ρt is less than
user specified threshold ρs).When second scan form a new
database DT, some items are removed which threshold is
less ρt . According to different strategies, pruning
threshold ρt can be global or local, usually the most
probability of pruned partition in items is its error
estimation E(x). So all frequent patterns in DT were found
by using U-Apriori algorithm, which must be frequent in
original database. Contrary, unfrequent patterns in DT are
not always unfrequent in original database. For a pattern, if
its expected support expSup(X) is less than threshold ρs
and its expected support add error estimation(E(X)) is
greated than threshold ρs, which maybe be frequent, but if
its expected support add error estimation is still less than
threshold ρs, which must be unfrequent. The second step is
pruning module, it will confirm error estimation based on
statistical information getting form the trimming module
and prune the certain unfrequent patterns. The last step
check the support of frequent pattern and probable
frequent in original database, confirm the accuracy.
When small probability items have large proportion(R) in
original database, the size of new database DT, which
generated from pruning strategy, is much smaller than the
original database, this can greatly improve the efficiency.
But when R is small, the size of new database and the
original database is almost similar, conform the new
database DT will waste time and reduce the efficiency, so
the algorithm is sensitive to R. Otherwise the setting of
pruning threshold ρt is important, if too high will lose
frequent patterns, but too little will make the pruned items
very small and new database DT big, the algorithm will not
reach the result of pruning. In reality, the distribution of
every item support is consistent, so the selection of
threshold is very difficult.
In order to solve the above problems, Chui et al proposed
an alternative method, called Decremental Pruning [11]. For
candidate item, set estimated support upper bound when
every transaction is processed in database, it is unfrequent
when its support upper bound less than ρs, so it can be
removed. One diminishing counter including the candidate
items X, one of nonempty subsets X’ of X, and number of
transactions K is set when determined the support upper
bound. When beginning, the probability of X-X’ include
item x is 1, it can be proved that he value of the counter is
constantly greater or equal to the number of support of
candidate set X, so the counter is support upper bound of
the candidate item set X. Before handling, the counter is
initialized X’ support and in the processing the counter is
decremented according to the actual support of x ⊂X-X’,
when it lower than given threshold ρs, the candidate item
sets is filtered out. The number of detrimental counter is
very large because the number of nonempty subsets of X

(it has 2|X|-2 nonempty subsets), it made consumption of
resources and low efficiency.
To improve the efficiency more methods were proposed
including AS and CP, they can generate more little
candidate items, but algorithms are Aprioir-based, they
must process a large number of candidate items.

3.2.2 Tree-based Algorithm

Using FP-growth algorithm in mining frequent pattern
from traditional database is efficient, but is not good at
mining uncertain data, Leung et al proposed an improved
algorithm based on FP-growth, named UF-growth [12-14], it
was used in frequent patterns mining form uncertain data.
Similar to FP-growth, UF-growth also has two
steps :(i)construction of UF-tree;(ii)frequent pattern mining
in UF-growth.
The most important is how to store the information of each
item, and is conducive to later mining when the UF-tree is
constructed. Therefore, each node including three parts in
UFtree : (1) name; (2) the expected support; (3) and the
frequency count of same expected to support. The process
as follows: first scan of the database, obtain every item
expected support by accumulating support degree of them,
when expected support is greater than the user specified
threshold ρs, the pattern is frequent, and remove
unfrequent pattern, and sort frequent item by accumulating
expected support on descending. The second scan, insert
each transaction into UF-Tree, the insertion process similar
to FP-Tree, only when all items name of a transaction and
its expected support completely consist with one branch,
the transaction can be merged with the branch. Using this
method, the accumulated count of farther’s is definitely
more than the children's nodes.
When using algorithms, UF-tree is different from FP-
growth in following aspects: (i)the support of X need to be
recorded when construct the UF-tree of sub-database of
item X;(ii) support of items bigger than X(like X∪｛y｝)
obtain from multiplying the support of x and support of y
in this branch.
The tree is merged only when the name and corresponding
support of item are completely consistent, the worst case,
the number of nodes in the tree is consistent with the
number of items of all transactions in the database, which
will occupy lots of memory space. In order to solving the
problem, Leung et al proposed two improved methods.
Support of some items may is an infinite decimal in the
uncertain database, save them in the tree nodes will occupy
a lot of memory space. Therefore, setting decimal digits
before construction of tree, it can reduce occupation of
memory space and increase the probability of the same
items which have same support, at same time reduces the
number of nodes in the tree and save the memory space
also.

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.6, June 2015

20

For second method, it does not construct UF-tree for item
X, UF-tree only for original database and single item x, the
path of x is extracted from UF-tree of itself, and then
calculate the support of all the subsets belonging to this
path and find frequent pattern.

4. Frequent Pattern Mining from Uncertain
Data Streaming

Data stream is continuous, infinite and distribution of data
usually change with time, so frequent pattern mining form
data stream is big challenges. In the past few years,
researches proposed a variety of algorithms for frequent
patterns from data stream. For example, Giannella et al
proposed FP-streaming algorithm based on static data
stream. Therefore, in order to achieve frequent patterns
from uncertainty data streams, it needs to put forward a
new algorithm or improve existing algorithms. Two kinds
of algorithms for mining frequent pattern from data
streams will be introduced as follows, they are based on
tree structure [15].
The first method is an improved algorithm of FP-streaming,
a slightly smaller threshold than the user selected was
reserved firstly, when a group of data stream reaches, calls
the FP-growth method to find out the data items which
support is greater than the reserve threshold, called
for ”maybe frequent”. The second step, calculates the
support of the “maybe frequent” patterns, and saves them
in tree structure of FP-stream. Chose a preparatory
threshold is necessary because the data flow is constant, at
this moment the data is not frequent and may become
frequent at next time. In order to prevent the frequent data
was pruned early, slightly smaller threshold than the user
specified threshold is set up. The difference between FP-
tree and FP-stream as follow:(i) each path in FP-tree
represents a transaction and in FP-stream, it represents
a”maybe frequent” pattern;(ii)every nodes information
include its corresponding support in FP-tree ,but node
information in FP-stream include name of the item and a
window table, the window table save the support of item of
recent w group of data stream, when window move, the
support of each node will change.
UF-stream algorithm is similar with FP-stream, “maybe
frequent “ patterns were found when a batch of data stream
arriving, then computed the support of these patterns, these
patterns were saved in UF-stream, each node in UF-stream
includes name of pattern and a window table.
 UF-stream have some questions: first “maybe frequent” is
not equal with frequent, it need some extra work, and some
frequent pattern will be missed when set the preparatory
threshold, at same time it is difficult to select the prepared
threshold. Second, the item sets need to save in an extra
structure (UF-stream). At last, the algorithm is immediate

mining, it needs to save every data stream, some of them
maybe useless.
For solving above questions, a new SUF-growth algorithm
based on tree-structure is proposed. A SUF-tree is built to
save the item in data stream, but the situation of nodes will
change with data stream, so use a standard sort method to
avoid change of situation of nodes when construct the
SUF-tree. Name and support of item, and record table were
included in nodes; record table saved the occurrence
number of support of item in every group data stream
appeared at present window, so it is easy to update
information when new data stream arrived.
It can extract information from SUF-tree when it is
completed and the more and more smaller database will be
constructed recursively for mining frequent patterns.
According to the standard sort of SUF-tree, SUF-growth
algorithm adopt “bottom to up” method, it can find all
frequent patterns avoid Omission or repetition. SUF-
growth is delayed mining, it work when the data is needed.
Once the SUF-tree is constructed, the nodes save the
newest when window moved, it can effectively avoid
useless data flow mining, and save a lot of resources.
Compared to UF-streaming, SUF-growth has following
advantages: first it returns real frequent patterns; second
the algorithm does not need extra tree-structure to save
mined pattern and last it can avoid lots of waste by
adopting delayed mining.
To check the algorithms, Leung et al designed contrastive
experiment based on IBM datasets, FIMI datasets and UCI
datasets, the conclusion is similar. We give the conclusion
by emulational experiment, using IBM datasets. The
datasets include 1M record, every record have 10 data
items, totally have 1000 items. In experiment, set every
data stream including the size of transaction is 0.1M,
window size is 5, the expected support of item in every
transaction is between 0 and 1. Experiment result will take
the average of many times and show as following figures.
In figure 1, we checked the effect of threshold, with the
threshold increasing, support of item larger than it reduce,
so frequent patterns and corresponding run time reduce
also. Extendibility of algorithms also was checked by
increasing the number of transaction.

Fig. 1 Effect of Change of Threshold

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.6, June 2015

21

Fig. 2 Effect of Capacity of Database

From the figure 2, the running time of the algorithm with
incensement of number of transactions has a linear growth.
Leung et al also compare the two algorithms from the
distribution of expected support, nodes number in tree and
accuracy or efficiency of algorithm. The experimental
results show that two methods have their own advantages
and disadvantages, can find frequent patterns from the
uncertain data stream, SUF-growth is better than UF-
streaming in running time and high accuracy.

5. Conclusion

In reality，there are an amount of uncertain data, how to
find valuable data and mine frequent pattern from these
data is a big question, it need efficient algorithm. In this
paper introduced some algorithms for frequent pattern
mining, all of them were based on U-Aprior or tree
structure UF-growth or improvement of them. Especially,
we introduced the US-streaming algorithm and SUF-
growth algorithm which were used of mining frequent
pattern form uncertain data. The efficiency of US-
streaming and SUF-growth algorithm was checked by
setting the Minimum support threshold and size of
database respectively. Experiment result shows that the
improved algorithms for uncertain data have good
efficiency in reducing memory and run time, especially
used in complete frequent patterns. But the other type of
frequent patterns include frequent patterns based on
constraint, maximal frequent patterns, and frequent closed
patterns so on ， every type need their own suitable
algorithm, these algorithms are one of directions of next
research work. The efficiency and the application area in
reality of algorithm is problem to be solved.

Acknowledgments

This paper is partially supported by Science and
technology Instruction Program of Qinhuangdao, No:
201302A029.

References
[1] R. Agrawal, T. Imielinski & A. Swami, Mining association

rules between sets of items in large databases, in ACM
SIGMOD 1993, pp. 207–216.

[2] B. Chikhaoui, S. Wang, & H. Pigot, A frequent pattern
mining approach for ADLs ecognition in smart
environments, in IEEE AINA 2011, pp. 248–255.

[3] C.K.-S. Leung & C.L. Carmichael, Exploring social
networks: A frequent pattern visualization approach, in
IEEE SocialCom 2010, pp. 419–424

[4] R. Agrawal & R. Srikant, Fast algorithms for mining
association rules, in VLDB 1994, pp. 487–499.

[5] J. Han, J. Pei & Y. Yin, Mining frequent patterns without
candidate generation, in ACM SIGMOD 2000, pp. 1–12

[6] J.J. Cameron, C.K.-S. Leung & S.K. Tanbeer, Finding
strong groups of friends among friends in social networks,
in IEEE DASC/SCA 2011,pp. 824–831

[7] Y. Chen, A. Narayanan, S. Pang & B. Tao, Malicioius
software detection using multiple sequence alignment and
data mining, in IEEE AINA 2012, pp. 8–14.

[8] H. Takei & H. Yamana, IC-BIDE: intensity constraint-based
closed sequential pattern mining for coding pattern
extraction, in IEEE AINA 2013, pp. 976–983.

[9] C.-K. Chui, B. Kao & E. Hung, Mining frequent itemsets
from uncertain data, in PAKDD 2007, pp. 47–58

[10] C.K.-S. Leung & B. Hao, Mining of frequent itemsets from
streams of uncertain data, in IEEE ICDE 2009, pp. 1663–
1670.

[11] Chui C K，Kao B.A decremental approach for mining
frequent itemsets from uncertain data[C] LNAI 5012：
PAKDD，2008：64-75.

[12] Leung C K S，Mateo M A F，Brajczuk D A.A tree-based
approach for frequent pattern mining from uncertain data[C]
LNAI 5012：PAKDD，2008：653-661.

[13] Leung C K S，Carmichael C L，Hao B.Efficient mining of
frequent patterns from uncertain data[C] Proc IEEE ICDM
Workshops,2007：489-494.

[14] Leung C K S，Brajczuk A D.Efficient mining of frequent
itemsets from data streams[C] LNCS 5071：BNCOD，

2008：2-14.
[15] Leung C K S ，Hao B.Mining of frequent items from

streams of uncertain data[C] Proc IEEE Computer Society，
2009：1663-1670

Liwen Yue received the B.S. degrees in
Computer Science from Jilin Normal Univ
in 2000 and M.S. degree in Computer
Application from Yanshan Unvi in 2007.
During 2007-now, she words as a teacher in
Yanshan Univ. Her main research interest
includes XML Data Model, Data Mining
and their applications.

