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Summary 
Mining frequent patterns from traditional database is an 
important research topic in data mining and researchers achieved 
tremendous progress in this field. However, with high volumes of 
uncertain data generated in distributed environments in many of 
biological, medical and life science application in the past ten 
years, researchers have proposed different solutions in extending 
the conventional techniques into uncertainty environment. In this 
paper, we review the classic mining algorithms: Apriori 
algorithm and FP-growth algorithm, and then analyses the 
improved algorithm for mining frequent patterns form uncertain 
data and uncertain data streams. Last, some further research 
directions on mining frequent patterns form uncertain data are 
given. 
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1. Introduction 

As one of the popular data mining tasks, frequent pattern 
mining [1-3] aims to discover implicit, previously unknown 
and potentially useful knowledge in the form of frequent 
patterns and so on, sets of frequently co-occurring items, 
objects, or events. Since its introduction, frequent pattern 
mining has been the subject of numerous studies, in which 
it has also played an important role in the mining of other 
patterns [6-8].  
Many of the early frequent pattern mining algorithms were 
Apriori-based [4], which depend on a generate-and-test 
paradigm to mine frequent patterns from transaction 
databases of precise data by first generating candidates and 
then checking their actual support (i.e., occurrences) 
against the database. To improve algorithmic efficiency, 
tree-based frequent pattern mining algorithms [5] construct 
an extended prefix-tree structure (FP-tree) to capture the 
contents of the database and perform the mining process 
using a restricted test-only approach. These tree-based 
algorithms do not generate candidates, only test for support. 
With the popularization of wireless sensor networks, many 
real-life biological, medical or life science applications, 
huge volumes of data which riddled with uncertainty were 
collected. The presence or absence of items in a dataset in 
these applications is uncertain partially due to inherent 
measurement inaccuracies and sampling errors (e.g., in 

sensors or laboratory equipment), human reaction time, 
and intentional blurring of data to preserve anonymity (e.g., 
preserve patient’s privacy). Hence, mining uncertain data 
is in demand. 
The rest of paper is organized as follows. The next section 
introduces the frequent patterns mining algorithms from 
certain data briefly. In section 3 and 4, the related 
definition about uncertain data and improved algorithms 
for mining frequent patterns from uncertain data are 
introduced. Section 5 we check efficiency of algorithms 
using IBM datasets and draw the conclusion finally. 

2. Frequent Pattern Mining Algorithms from 
Certain Data 

In the past twenty years, researchers have made 
tremendous achievements in developing efficient and 
scalable algorithms for frequent patterns mining in precise 
and certain databases. The most classic algorithms are 
Apriori [1], FP-growth [2].  
Apriori algorithm was proposed by Agarwal and Srikant in 
1994.Apriori is bottom up approach. It is more popular 
algorithm to find all the frequent patterns. Apriori is 
designed to operate on databases containing transactions. 
Each transaction is seen as a set of items (a pattern). Given 
a threshold, the Apriori algorithm identifies the item sets 
which are subsets of at least C transactions in the database. 
Apriori uses a "bottom up" approach, where frequent 
subsets are extended one item at a time, and groups of 
candidates are tested against the database. Firstly, 
algorithm generate candidate 1 length item sets C1, 
compute the support of all candidate set in C1 to determine 
frequent sets and save these candidate frequent 1-sets in 
L1.Secondly ,it will generate candidate 2 length sets C2 
from L1, by computing the support of candidate sets in C2 
determine the frequent 2-sets, which saved in L2. And so 
on, it generates candidate item sets of length k from item 
sets Ck-1 of length k-1. Then it prunes the candidates which 
have an infrequent sub item set. According to the 
downward closure lemma, the candidate set contains all 
frequent k- 1 length item sets. The algorithm terminates 
when Ck is empty and no further successful extensions are 
found. Algorithm scans the transaction database every time 
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to determine frequent item sets among the candidates, 
when the database is very large, candidate sets will 
generate large numbers of subsets (the algorithm attempts 
to load up the candidate set with as many as possible 
before each scan). Bottom-up subset exploration 
(essentially a breadth-first traversal of the subset lattice) 
finds any maximal subset S only after all 2^{|S|}-1 of its 
proper subsets. Apriori has low efficiency especially when 
the database very big and a large number of item sets exist. 
The FP-Growth Algorithm, proposed by Han in [2], is an 
efficient and scalable method for mining the complete set 
of frequent patterns by pattern fragment growth, using an 
extended prefix-tree structure for storing compressed and 
crucial information about frequent patterns named 
frequent-pattern tree (FP-tree).  
The FP-growth algorithm works as follows: first scan the 
transaction database DB once, collect F, the set of frequent 
items and the support of each frequent item. Sort F by 
support descending order as FList, the list of frequent 
items. Second create the root of an FP-tree, T, and label it 
as “null”. For each transaction Trans in DB do the 
following: 
Select the frequent items in Trans and sort them according 
to the order of FList. Let the sorted frequent-item list in 
Trans be [p | P], where p is the first element and P is the 
remaining list. Call insert tree ([p | P], T). 
The function insert tree ([p | P], T) is performed as follows. 
If T has a child N such that N.item-name = p.item-name, 
then increment N ’s count by 1; else create a new node N , 
with its count initialized to 1, its parent link linked to T , 
and its node-link linked to the nodes with the same item-
name via the node-link structure. If P is nonempty, call 
insert tree (P, N) recursively. FP-Growth Algorithm does 
not generate candidate patterns, only test for support, the 
popularity and efficiency of FP-Growth Algorithm 
contributes with many studies that propose variations to 
improve his performance. 

3. Methods of Mining Frequent Patterns form 
Uncertain Data 

3.1 Uncertain Data Mining 

When handling probabilistic databases of uncertain data, 
the presence or absence of items in the databases is 
uncertain. The degree of uncertainty can be expressed in 
terms of existential probability, which is associated with 
each item in transactions in the probabilistic databases of 
uncertain data. The existential probability P(x, ti) of an 
item x in a transaction ti indicates the likelihood of x being 
present in ti.  

Given an item x and a transaction ti, there are two possible 
worlds when using the “possible world” interpretation of 
uncertain data [9,10]: (i) a possible world W1 where x∈ti 
and (ii) another possible world W2 where x ∉ ti. Although 
it is uncertain which of these two worlds is the true world, 
the probability of W1 being the true world is P(x, ti) and 
that of W2 is 1 − P(x, ti). Then, in a probabilistic database 
of uncertain data with n transactions, a pattern X is 
frequent if it’s expected support ≥ the user-defined 
threshold minsup. The expected support of X in the 
database can be computed by using the following equation:  

             (1) 
where (i) sup(X,Wj) denotes the support of X in a possible 
world Wj which can be computed by counting the number 
of transactions that contain X in the possible world Wj and 
(ii) prob(Wj) denotes the probability of Wj to be the true 
world，it can be computed by following equation: 

   (2) 
For items x and y within X when items in X are 
independent, Equation (1) can be simplified [18] to 
become the following equation:   

                          (3) 
When the support of items X expSup(X)>=ρs (user 
specified threshold), items X is frequent, or else is not. 

3.2 Algorithm for Uncertain Data Mining 

3.2.1 Apriori-base Algorithm 

Apriori algorithm has a good application in frequent 
patterns mining form traditional database. Chui et al 
proposed U-Aprioir[9] algorithm for using in uncertain 
database, which is improvement of the Apriori. In Apriori 
algorithm, support for the candidate set is computed by 
accumulating. If the candidate set occurres in transaction, 
the support degree plus 1; but in the uncertain database, 
support of each item is represented by probability, from 
formula (3), support of each set X is by accumulating 
product of the probability of all x appears in the ti, which 
all x belong to set X. 
Similar to the Apriori, method of U-Apriori is not good at 
large database, especially when the probability of 
candidate items is very small. According formula (3), 
accumulation of probabilities multiplication is meaningless, 
instead it increases execution time and system consumption. 
In order to solve this problem, Chui et al proposed a 
pruning strategy, first remove small probability events 
from the original database, produce a new database DT, 
then apply the U-Apriori algorithm in DT. The strategy 
mainly includes three parts: trimming module, pruning 
module and patch up module. 
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First trimming module, find all frequent items by scanning 
original database, set a pruning threshold ρt,( ρt is less than 
user specified threshold ρs).When second scan form a new 
database DT, some items are removed which threshold is 
less ρt . According to different strategies, pruning 
threshold ρt can be global or local, usually the most 
probability of pruned partition in items is its error 
estimation E(x). So all frequent patterns in DT were found 
by using U-Apriori algorithm, which must be frequent in 
original database. Contrary, unfrequent patterns in DT are 
not always unfrequent in original database. For a pattern, if 
its expected support expSup(X) is less than threshold ρs 
and its expected support add error estimation(E(X)) is 
greated than threshold ρs, which maybe be frequent, but if 
its expected support add error estimation is still less than 
threshold ρs, which must be unfrequent. The second step is 
pruning module, it will confirm error estimation based on 
statistical information getting form the trimming module 
and prune the certain unfrequent patterns. The last step 
check the support of frequent pattern and probable 
frequent in original database, confirm the accuracy.  
When small probability items have large proportion(R) in 
original database, the size of new database DT, which 
generated from pruning strategy, is much smaller than the 
original database, this can greatly improve the efficiency. 
But when R is small, the size of new database and the 
original database is almost similar, conform the new 
database DT will waste time and reduce the efficiency, so 
the algorithm is sensitive to R. Otherwise the setting of 
pruning threshold ρt is important, if too high will lose 
frequent patterns, but too little will make the pruned items 
very small and new database DT big, the algorithm will not 
reach the result of pruning. In reality, the distribution of 
every item support is consistent, so the selection of 
threshold is very difficult. 
In order to solve the above problems, Chui et al proposed 
an alternative method, called Decremental Pruning [11]. For 
candidate item, set estimated support upper bound when 
every transaction is processed in database, it is unfrequent 
when its support upper bound less than ρs, so it can be 
removed. One diminishing counter including the candidate 
items X, one of nonempty subsets X’ of X, and number of 
transactions K is set when determined the support upper 
bound. When beginning, the probability of X-X’ include 
item x is 1, it can be proved that he value of the counter is 
constantly greater or equal to the number of support of 
candidate set X, so the counter is support upper bound of 
the candidate item set X. Before handling, the counter is 
initialized X’ support and in the processing the counter is 
decremented according to the actual support of x ⊂X-X’, 
when it lower than given threshold ρs, the candidate item 
sets is filtered out. The number of detrimental counter is 
very large because the number of nonempty subsets of X 

(it has 2|X|-2 nonempty subsets), it made consumption of 
resources and low efficiency. 
To improve the efficiency more methods were proposed 
including AS and CP, they can generate more little 
candidate items, but algorithms are Aprioir-based, they 
must process a large number of candidate items. 

3.2.2 Tree-based Algorithm 

Using FP-growth algorithm in mining frequent pattern 
from traditional database is efficient, but is not good at 
mining uncertain data, Leung et al proposed an improved 
algorithm based on FP-growth, named UF-growth [12-14], it 
was used in frequent patterns mining form uncertain data. 
Similar to FP-growth, UF-growth also has two 
steps :(i)construction of UF-tree;(ii)frequent pattern mining 
in UF-growth. 
The most important is how to store the information of each 
item, and is conducive to later mining when the UF-tree is 
constructed. Therefore, each node including three parts in 
UFtree : (1) name; (2) the expected support; (3) and the 
frequency count of same expected to support. The process 
as follows: first scan of the database, obtain every item 
expected support by accumulating support degree of them, 
when expected support is greater than the user specified 
threshold ρs, the pattern is frequent, and remove 
unfrequent pattern, and sort frequent item by accumulating 
expected support on descending. The second scan, insert 
each transaction into UF-Tree, the insertion process similar 
to FP-Tree, only when all items name of a transaction and 
its expected support completely consist with one branch, 
the transaction can be merged with the branch. Using this 
method, the accumulated count of farther’s is definitely 
more than the children's nodes. 
When using algorithms, UF-tree is different from FP-
growth in following aspects: (i)the support of X need to be 
recorded when construct the UF-tree of sub-database of 
item X;(ii) support of items bigger than X(like X∪｛y｝) 
obtain from multiplying the support of x and support of y 
in this branch. 
The tree is merged only when the name and corresponding 
support of item are completely consistent, the worst case, 
the number of nodes in the tree is consistent with the 
number of items of all transactions in the database, which 
will occupy lots of memory space. In order to solving the 
problem, Leung et al proposed two improved methods.  
Support of some items may is an infinite decimal in the 
uncertain database, save them in the tree nodes will occupy 
a lot of memory space. Therefore, setting decimal digits 
before construction of tree, it can reduce occupation of 
memory space and increase the probability of the same 
items which have same support, at same time reduces the 
number of nodes in the tree and save the memory space 
also.  
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For second method, it does not construct UF-tree for item 
X, UF-tree only for original database and single item x, the 
path of x is extracted from UF-tree of itself, and then 
calculate the support of all the subsets belonging to this 
path and find frequent pattern. 

4. Frequent Pattern Mining from Uncertain 
Data Streaming 

Data stream is continuous, infinite and distribution of data 
usually change with time, so frequent pattern mining form 
data stream is big challenges. In the past few years, 
researches proposed a variety of algorithms for frequent 
patterns from data stream. For example, Giannella et al 
proposed FP-streaming algorithm based on static data 
stream. Therefore, in order to achieve frequent patterns 
from uncertainty data streams, it needs to put forward a 
new algorithm or improve existing algorithms. Two kinds 
of algorithms for mining frequent pattern from data 
streams will be introduced as follows, they are based on 
tree structure [15].  
The first method is an improved algorithm of FP-streaming,  
a slightly smaller threshold than the user selected was 
reserved firstly, when a group of data stream reaches, calls 
the FP-growth method to find out the data items which 
support is greater than the reserve threshold, called 
for ”maybe frequent”. The second step, calculates the 
support of the “maybe frequent” patterns, and saves them 
in tree structure of FP-stream. Chose a preparatory 
threshold is necessary because the data flow is constant, at 
this moment the data is not frequent and may become 
frequent at next time. In order to prevent the frequent data 
was pruned early, slightly smaller threshold than the user 
specified threshold is set up. The difference between FP-
tree and FP-stream as follow:(i) each path in FP-tree 
represents a transaction and in FP-stream, it represents 
a”maybe frequent” pattern;(ii)every nodes information 
include its corresponding support in FP-tree ,but node 
information in FP-stream include name of the item and a 
window table, the window table save the support of item of 
recent w group of data stream, when window move, the 
support of each node will change. 
UF-stream algorithm is similar with FP-stream, “maybe 
frequent “ patterns were found when a batch of data stream 
arriving, then computed the support of these patterns, these 
patterns were saved in UF-stream, each node in UF-stream  
includes name of pattern and a window table. 
 UF-stream have some questions: first “maybe frequent” is 
not equal with frequent, it need some extra work, and some 
frequent pattern will be missed when set the preparatory 
threshold, at same time it is difficult to select the prepared 
threshold. Second, the item sets need to save in an extra 
structure (UF-stream). At last, the algorithm is immediate 

mining, it needs to save every data stream, some of them 
maybe useless.  
For solving above questions, a new SUF-growth algorithm 
based on tree-structure is proposed. A SUF-tree is built to 
save the item in data stream, but the situation of nodes will 
change with data stream, so use a standard sort method to 
avoid change of situation of nodes when construct the 
SUF-tree. Name and support of item, and record table were 
included in nodes; record table saved the occurrence 
number of support of item in every group data stream 
appeared at present window, so it is easy to update 
information when new data stream arrived.  
It can extract information from SUF-tree when it is 
completed and the more and more smaller database will be 
constructed recursively for mining frequent patterns. 
According to the standard sort of SUF-tree, SUF-growth 
algorithm adopt “bottom to up” method, it can find all 
frequent patterns avoid Omission or repetition. SUF-
growth is delayed mining, it work when the data is needed. 
Once the SUF-tree is constructed, the nodes save the 
newest when window moved, it can effectively avoid 
useless data flow mining, and save a lot of resources.  
Compared to UF-streaming, SUF-growth has following 
advantages: first it returns real frequent patterns; second 
the algorithm does not need extra tree-structure to save 
mined pattern and last it can avoid lots of waste by 
adopting delayed mining. 
To check the algorithms, Leung et al designed contrastive 
experiment based on IBM datasets, FIMI datasets and UCI 
datasets, the conclusion is similar. We give the conclusion 
by emulational experiment, using IBM datasets. The 
datasets include 1M record, every record have 10 data 
items, totally have 1000 items. In experiment, set every 
data stream including the size of transaction is 0.1M, 
window size is 5, the expected support of item in every 
transaction is between 0 and 1. Experiment result will take 
the average of many times and show as following figures. 
In figure 1, we checked the effect of threshold, with the 
threshold increasing, support of item larger than it reduce, 
so frequent patterns and corresponding run time reduce 
also. Extendibility of algorithms also was checked by 
increasing the number of transaction. 

 

Fig. 1  Effect of Change of Threshold 
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Fig. 2 Effect of Capacity of Database 

From the figure 2, the running time of the algorithm with 
incensement of number of transactions has a linear growth. 
Leung et al also compare the two algorithms from the 
distribution of expected support, nodes number in tree and 
accuracy or efficiency of algorithm. The experimental 
results show that two methods have their own advantages 
and disadvantages, can find frequent patterns from the 
uncertain data stream, SUF-growth is better than UF-
streaming in running time and high accuracy. 

5. Conclusion 

In reality，there are an amount of uncertain data, how to 
find valuable data and mine frequent pattern from these 
data is a big question, it need efficient algorithm. In this 
paper introduced some algorithms for frequent pattern 
mining, all of them were based on U-Aprior or tree 
structure UF-growth or improvement of them. Especially, 
we introduced the US-streaming algorithm and SUF-
growth algorithm which were used of mining frequent 
pattern form uncertain data. The efficiency of US-
streaming and SUF-growth algorithm was checked by 
setting the Minimum support threshold and size of 
database respectively. Experiment result shows that the 
improved algorithms for uncertain data have good 
efficiency in reducing memory and run time, especially 
used in complete frequent patterns. But the other type of 
frequent patterns include frequent patterns based on 
constraint, maximal frequent patterns, and frequent closed 
patterns so on ， every type need their own suitable 
algorithm, these algorithms are one of directions of next 
research work. The efficiency and the application area in 
reality of algorithm is problem to be solved. 
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