
IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.6, June 2015

75

Manuscript received June 5, 2015
Manuscript revised June 20, 2015

Improving Data Integrity for Data Storage Security in Cloud
Computing

Poonam M. Pardeshi Deepali R. Borade
Department of Computer Engineering Pune University,

Maharashtra, India
Department of Computer Engineering, Pune University,

Maharashtr, India

Abstract:
Cloud computing has become a trend. With the provision of
innumerable benefits, cloud has become an emerging standard
that brings about various technologies and computing ideas for
internet. Massive storage centers are provided by the cloud
which can be accessed easily from any corner of the world and at
any time. The on-demand service provision with utilization of
fewer resources of client system benefits the client. However,
data outsourcing paradigm in cloud is one of the biggest security
concerns. Frequent integrity checking is needed to keep an eye
on data. The proposed scheme makes use of Merkle Hash Tree
(MHT) and AES algorithm to maintain data integrity at the
untrusted server. In most of the previously proposed schemes,
RSA algorithm was used for storage security. AES being faster
in encryption-decryption and the buffer-space requirement being
less as compared to RSA, we try to improve the performance by
making use of AES algorithm. The cloud must not impose on
user the responsibility to verify his/ her stored data. Taking this
into consideration and relieve client form the overhead of data
integrity verification, we introduce an entity called the Third
Party Auditor (TPA), which acts on behalf of client for data
integrity checking and send an alert to notify the status of the
stored data. The proposed storage security scheme also assures
recovery of data, in case of data loss or corruption, by providing
a recovery system. Thus the proposed scheme aims at keeping
the user data integrated and support data restore. The system also
reduces the server computation time when compared with
previous systems.
Keywords:
Advanced Encryption Standard, Cloud Computing, Merkle Hash
Tree, Public Auditability, Recovery System, Third Party Auditor.

1. INTRODUCTION:

Cloud Computing is has gained popularity in recent years.
Cloud facilitates the storage of various sorts of data. Cloud
is highly scalable when it comes to huge data and can
provide infinite computing resources on demand. . Clients
can use cloud services without any installation and the
data uploaded on cloud is accessible from any corner of
the world, all it needs to be accessed is a computer with
active internet connection on it. The users can subscribe
high quality services of data and software which resides
solely on the remote servers and enjoy the provision of on-
demand provision of services. As a customizable
computing resources and a huge amount of storage space

are provided by internet based online services, the shift to
online storage has contributed greatly in eliminating the
overhead of local machines in storage and maintenance of
data. The cloud provides a number of benefits such as
flexibility, disaster recovery, pay-per-use and easy to
access and use model which contribute to the reason of
moving into cloud. A large number of clients store their
important data in the cloud without keeping a single copy
of this data in their local computers. Thus, cloud helps free
up the space on the local disk, hence also called as ‘A
Hard-disc in the sky’.
 Even though immense advantages are offered by cloud, a
lot of security concerns still exist in it. The most
worrisome concern is its storage security [11,12]. Most of
the times, the user does not maintain any copy of
outsourced data in their local system. The question
regarding data security becomes crucial when it comes to
confidential data. The integrity of the data has to be
looked upon seriously in order to gain user trust and
satisfaction. However, maintaining security is a
challenging task. What if the storage server itself is not
trustworthy? For example, the server or the Cloud Service
Provider (CSP) may delete some less frequently accessed
data to save the storage space. It may also try to hide
errors in case of Byzantine errors to maintain their
reputation. Therefore, although outsourcing data into the
cloud may look economically attractive, the data integrity
and availability factor may impede its adoption by users.
The user must have the knowledge whether his/ her data is
secured. The user needs to be convinced regarding the
safety of remotely stored data. However, it is not feasible
for the user himself to verify his data.
There exist many systems that have tried to solve the
problem of data integrity. The auditing can be performed
in two ways viz. Private and Public. In Private
Auditability, the client is responsible to verify the data. No
one else except the client can question the server regarding
the data integrity, whereas, Public Auditability is more
convenient and preferred over Private Auditability
because it allows a third party to perform integrity
verification on behalf of client. The client is not solely
responsible for it and so it largely reduces client’s burden.
We refer this third party as the Third Party Auditor (TPA).

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.6, June 2015 76

The other important piece in maintaining user data in
cloud is the restore system. If under some unpleasant
situation, the integrity of data is lost, ultimately Cloud
Service Provider is responsible for it and there should be
some provision to heal the situation. This is because what
a user needs is his/ her data in original its form
irrespective of what problem occurred at the server.
Considering this fact, the proposed system is equipped
with a recovery system which stores a backup of the user
data. This contributes to availability of data anytime.

2. BACKGROUNG THEORY:

2.1 Auditing:

The verification of user data can be carried out in two
ways, either by the user himself (data owner) or by a third
party auditor. The verifier’s role fall under two categories:

2.1.1 Private Auditability:

Only data owner is allowed to check the integrity of the
stored data. No one else can question the server regarding
the data. This kind of auditability increases verification
overhead of the user.

2.1.2 Public Auditability:

This kind of auditability allows anyone, not just the client,
to challenge the server and perform data verification check.
This is where a Third Party Auditor (TPA) comes into
play.

2.2 Third Party Auditor (TPA):

The TPA is an entity that acts in behalf of the client. It has
the expertise, capabilities, knowledge and professional
skills that client does not have. It handles the work of
integrity verification and reduces the overhead of the
client. The client no longer needs to verify the integrity of
the data at the server on its own. In fig 1, we can see the
TPA with CSP.

Fig 1: TPA with cloud service provider

2.3 Cloud Storage Architecture:

Fig 2: Cloud Storage Architecture [1]

Fig. 2 shows the storage architecture of the cloud. The
three network entities viz. the client, cloud CSP and TPA
are present in the cloud environment. The client stores
data on the storage server provided by the CSP. The TPA
keeps a check on client’s data by periodically verifying
integrity of data on-demand. If, during this integrity
verification process, any variation of fault is found in
client data, the client is notified.

2.4 Merkle Hash Tree (MHT):

A Merkle Hash Tree is a well-studied authentication
structure [7]. It is used to efficiently prove that a set of
elements are undamaged and unaltered. It helps greatly in
reduction of server time [9]. It is used by cryptographic
methods to authenticate the file blocks. The leaf nodes of
the MHT are the hash values of the original file blocks.
The idea behind generating MHT is to break the file into a
number of blocks. Apply hashes to the authentic data
values i.e. the original file blocks and combine iteratively.
Now, rehash the result hash nodes and combine in a tree-
like fashion and repeat this procedure till we get a tree
with a single root. The MHT is generated by the client and
is stored at both the client and the server side. Fig 3
depicts an example of MHT. The tree has four leaf nodes
viz. m1, m2, m3 and m4. Initially, we apply hash on each
of these file blocks and obtain h(m1), h(m2), h(m3) and
h(m4). Then, h(m1) and h(m2) are hashed and combined
together to get ha. Similar process happens with blocks
m3 and m4 and here, we get hb. Here, h is a secure hash
function.
This can be expressed as

ha = h(h(m1)|| h(m2)) and hb = h(h(m3)|| h(m4))
Further, ha and hb are combined and rehashed to obtain
the root as hr. This can be expressed as

hr=h (h(A)|| h(B)) or hr= h(ha|| hb)

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.6, June 2015 77

Fig 3. Merkle Hash Tree

2.5 Characteristics of proposed system:

The proposed system has following characteristics:
• Privacy preservation:

The TPA cannot gain the knowledge of the
original user data during the process of auditing.

• Unbound number of requests/challenges:
The verifier can make use of unlimited number
of auditing requests to the server for data
verification.

• Public verifiability:
Anyone, not just the client can perform integrity
verification on client’s data.

• Recoverability:
Recovery of the lost or corrupted data is possible
using the recovery system.

Road Map

Section 3 gives the survey on various systems developed
for storage security in cloud. Section 4 describes the
proposed security model. Section 5 presents the
performance analysis, and then section 6 gives the
concluding remark of the whole paper and discusses the
future work.

3. LITERATURE SURVEY:

Recently, much work has been done in the area of cloud
security. Majority of them focus on the integrity
verification of data stored in the cloud. Deswarte et al. in
[1], use RSA based hash function for verification of the
file stored at the remote server. Using this scheme, it is
possible for the client to perform multiple challenges
using the same metadata.
Disadvantage: The limitation of this scheme lies in the
computational complexity at the server which must
exponentiate all the blocks in the file.

Miller and Schwarz [2] proposed a technique using which
the data stored at the remotely across multiple sites can be
ensured. The scheme makes use of algebraic signature for

it. In this, a function is used to fingerprint the file block
and then verifies if the signature of the parity block is
same as the signature of the block.
Disadvantages: 1) The main disadvantage of this scheme
is that the computation complexity at client side and
server side takes place at the cost of linear combination of
file blocks. 2) Also, the security of this scheme remains
unclear.

Ateniese et al. [3] were the first in considering the concept
of Public Auditing for ensuring possession of files at
untrusted servers. For auditing of outsourced data, the
scheme utilizes RSA based homomorphic tags, thus
achieving public auditing. In this protocol, the client need
to verify if the server has retained file data without
actually retrieving the data from server and without having
the server access the entire file.
By sampling random sets of blocks from the server, the
model generates probabilistic proofs of possession by
sampling random sets of blocks. This reduces I/O cost
drastically. The Provable Data Possession [PDP] model
for remote data checking supports large data sets in
widely-distributed storage systems. It is provably-secure
scheme for remote data checking.
Disadvantages: 1) An overhead of generating metadata is
imposed on client. 2) No support provided for dynamic
auditing. 3) Requires more than 1kilo-byte of data for a
single verification.
A scheme called, “Proofs of Retrievability” (POR) [4],
proposed by Juels and Kalisiki focuses on static archival
of large files. To ensure data possession and retrievability,
it makes use of spot checking and error correcting codes.
Some special blocks called as “sentinels” are randomly
embedded into the file F for detection. Further, the file is
encrypted out in order to protect the position of these
sentinel blocks. POR scheme cannot be used for public
databases; it is suitable only for confidential data.
Disadvantages: 1) Dynamic updation is prevented due to
the introduction of sentinel nodes. 2) Number of queries
clients used is fixed priori. 3) Preprocessing of each file is
needed prior to storage at the server. 4) The scheme
cannot be used for public databases and can only be used
for confidential data. 5) Does not support Public
Auditability, i.e., it supports only two-party auditing,
which is not efficient because neither the client nor the
cloud service provider can give assurance to provide
balance auditing.
Shacham and Waters design an improved PoR scheme
with full proofs of security in the security model defined
in [4]. They use publicly verifiable homomorphic
authenticators built from BLS signatures [18], based on
which the proofs can be aggregated into a small
authenticator value, and public retrievability is achieved.
Still, the authors only consider static Data files.
Disadvantage:

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.6, June 2015 78

The scheme works only with static data files
Scalable and Efficient Provable Data Possession (S-PDP
and E-PDP) protocols contribute to the work of Ateniese
et al. [5]. The paper presents the dynamic version of prior
PDP scheme and relies, in both the setup and verification
phases, only on efficient symmetric-key operations. It
makes use of less storage space (size of challenge and
response is significantly less, less than a single data block),
and uses less bandwidth. As no bulk encryption of
outsourced data is required, the scheme delivers better
performance on client side.
 Disadvantage: 1) The number of queries which can be
answered is fixed priori. 2) Not applicable for dynamic
data operations, supports only basic block operation with
limited functionality. 3) It is a partially dynamic scheme,
not fully dynamic because it does not support block
insertion.
The scheme proposed by C.Erway el at [6] is a dynamic
auditing protocol that can support the dynamic operations
of the data on the cloud servers. This scheme requires the
linear combination of data blocks to be sent to the auditor
for verification. The scheme makes use of a TPA for
integrity verification. It also supports data dynamics via
the most general forms of data operation, such as block
modification, insertion and deletion.
Disadvantages: 1) The scheme may leak data content to
the auditor because it requires the server to send linear
combinations of data blocks to the auditor for verification.
2) The efficiency of this scheme is not clear.

Table 1 describes the comparison of existing literature reviewed system
with proposed system.

4. PROPOSED SCHEME:

Problem Statement:

Data security in cloud is one of the serious issues with
cloud storage facility. Client store their data at the cloud,
delete the local copy of that data and rely completely on
the cloud server for data safety and maintenance. For this,
auditing of the data is necessary to assure client safety of
his data. To overcome this problem of data security, we
introduce an AES based Storage Security System to verify
client’s data and keep it safe and integrated.

Design:

Fig.4. General Data Flow

Fig gives a block representation of the general data flow.
It has three network entities, viz. the client (client system),
the CSP and the TPA.
1.Client (User): It is a network entity that stores data
on the cloud server and relies on it for the maintenances
and storage of the data.
2.Cloud Service Provider (CSP): It is the cloud
server that provides significant storage space, resources
and maintenance for user data. We have considered CSP
as an untrusted entity. In the block diagram, two more
blocks are present, Storage Server and the Backup server.
The storage server is where the original files of the client
are stored and the backup server is the one where the
backup copies of the file are stored for recovery purpose.
3. Third Party Auditor (TPA): TPA is an entity
that has knowledge and expertise that the client does not
possess. It is responsible for data integrity verification and
works on behalf of the client.

General Idea:

In our system, we consider the server as untrusted entity.
After a check is performed, a notification is sent to the
client about the status of his data; indicating whether the
data is in its actual form or if its integrity is lost. Also, as
the server is considered to be untrusted, instead of storing
data directly to the server, we encrypt it using AES-128
algorithm before storing it so that the server cannot read
the content in the files. According to a performance
evaluation, if we go from AES-128 to 192 bits key, the
power and time consumption increases by 8% and 256 bits
key causes an increase of 16 % [15,16]. So we propose
use of industry-standard high grade Advanced Encryption
Standard (AES) symmetric encryption algorithm with key
length of 128-bits for this purpose. We make use of
Merkle Hash Tree for authentication of file and integrity
verification.
Secondly, we provide a Recovery System. In case of data
loss or if the file stored at the server side is corrupted, the
Recovery System can be used to recover the respective file.

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.6, June 2015 79

Data Uploading and Downloading:

When the file is uploaded to the cloud server, before
storing it, AES algorithm is used to encrypt the data to
protect the content from being displayed to the server.
Similarly, at the time of download, the data is decrypted to
plain text form

Uploading Process:

The user data is encrypted using AES and then stored at
the cloud server. This is done as shown in the fig. 5.

Fig. 5: Data Uploading

Downloading Process:

At the time of download, the user files are decrypted using
AES. This can be seen in Fig. 6.

Fig. 6: Data Downloading

Notations:
Esk - Encryption using Secret key
F- File stored at the untrusted server
m - File block
T- Tag (signature)
ᶲ- Set of tags

STORAGE SECURITY MODEL:
The proposed storage security model is based on
RSA based storage security model, RSASS.
AES being better than RSA in many ways, the
proposed system makes use of AES algorithm
instead of RSA. The proposed security model

consists of two phases, viz. the setup phase and
the integrity verification phase.

4. 1. The Setup Phase:

 In the setup phase, the file F= {m1, m2...mn}
is generated by the client, which is a finite
collection on n blocks. Using the key
generation algorithm, the secret key is
generated. The overall flow of this process is
depicted in Fig.7.
The setup phase has five steps. In the first step,
a signature is generated for each file block
using the secret key and SHA1 hash algorithm.
This is done as Ti = Esk(H(mi)), where mi is the
ith block of the file. In second step, a set of
signatures of file blocks ᶲ= {Ti} is generated,
also known as the set of Tags. Then Merkle
Hash Tree is constructed and in fourth step, the
root of the tree is signed using the secret key as
sigsk (H(R)). . In the last step, the client
advertises {F, ᶲ, sigsk(H(R))} to the server and
deletes F and sig(H(R)) from its local storage.

Fig 7 : Pre-processing File Blocks [14]

4. 2 Integrity Verification Phase:

 The integrity verification process, in Fig.8,
is where client initiates by sending a request to
TPA for auditing the desired file or data. This is
done by sending some metadata such as FileId
and ClientId. The TPA generates a challenge,
sends it to the CSP and in response, the server
generates a proof for the corresponding
challenge. In the proof, the server generates the
proof. The proof contains the signature of the
root and the root of the MHT generated for the

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.6, June 2015 80

respective file. The verification process is done
in two stages. First is file authentication and
second is integrity checking. For authentication
of the file, the signature of the root is checked. If
it matches with signature stored during file
upload, the output is given as True otherwise
emits False. If the output is True, the integrity is
checked by checking the value of the root with
previously stored root. Any changes made to the
file blocks are reflected in the value of the root.
If the root does not match, it means that some
changes are made to the file and the file has lost
its integrity. In both the cases, a notification is
sent to the client. In case of data loss or if the
file is corrupted, the client can recover the file
from the recovery system if he has previously
taken a backup of the file.
The integrity verification is done by checking
the value of only the Tags; the TPA does not
need to access the actual data for it. Due to this,
the TPA cannot view client’s data and it makes
the process Privacy-Preserving.

Fig. 8: Integrity checking process flow [14]

The above described process is depicted in fig. 8.
To take the auditing process to a deeper level,
after a file is not found to be in the integrated
state, further checking at the block level is done
to find out particularly which block is corrupted
or modified.

THE RECOVERY SYSTEM:

The user has the right to decide whether to store
his/ her files in the recovery system or not. The
files stored in this backup system can be
recovered easily in case of link failure or storage
server crash, loss or corruption of original file
and in similar unpleasant circumstances.

In the verification process, if it is found that the
file has lost its integrity, then the TPA checks
the file at the block level, i.e. the leaf nodes are
checked to see which block is infected. After
detection of the infected block, instead of
fetching the entire file, the TPA fetches only the
infected block from the recovery server. This
greatly reduces the communication bandwidth
required for recovery.
The Recovery system adds to the plus points as
it contributes to the availability of data which is
a very important parameter to be observed.

The Use Case Diagram:

Following use case diagram in fig 9 depicts all
the functionalities that the three entities, here
actors, can perform.

Fig. 9: Use Case Diagram for Secure Audit Service by TPA

5. Performance Analysis:

Encryption and Decryption Time:

Figures 10 and 11 graphically represent
the time required for encryption and
decryption respectively on different file
sizes. The behavior of the graphs shows
that for file size up to 1000 kb, the
required is less and it gradually rises
when the file size is increased. If we
compare the encryption and decryption
time with similar systems, it shows that
our time is significantly less.

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.6, June 2015 81

Fig 10: Encryption time by AES

Fig 11: Decryption time by AES

Server Computation Time:
We compare the server computation time of our system
with the RSASS system and the S-PDP scheme. The
graph in figure 12 indicates that for the file blocks of any
size, the server computation time for the AES based
system remains less. For example, if a file of size 120 kb
is considered, then the time needed by RSASS system is
between 4 to 5 seconds. For similar file size, the time
needed by S-PDP system is around 6.3 second whereas for
AES based Storage Security System, the server time lies
between 1 to 2 seconds which is much less as compared to
both the other systems.

Fig. 12: Server Time Comparison

6. CONCLUSION AND FUTURE SCOPE:

In this paper, we proposed a secured and efficient AES
based system for auditing user data stored at untrusted
server. The system guarantees data the achievement of
data integrity and availability. The system supports Public
Auditing by making use of TPA and Privacy Preserving
by not leaking the data to TPA during integrity
verification process. By frequent integrity checking, the
system assures data possession at remote server.
In future, the AES bases Storage Security System can be
further extended to support dynamic operations on data.
Also, the system can further be enhanced to support
dynamic auditing, by which, the auditor can periodically
perform check on the data and maintain it even when the
client does not request for it. This will completely remove
the burden of client and help keep data safe.

REFERENCES:
[1] Y. Deswarte, J. Quisquater, and A. Saidane, “Remote

integrity checking”, In Proc. of Conference on Integrity and
Internal Control in Information Systems (IICIS’03),
November \2003.

[2] T. Schwarz and E.L. Miller, “Store, forget, and check:
Using algebraic signatures to check remotely administered
storage”, In Proceedings of ICDCS ’06. IEEE Computer
Society, 2006.

[3] G.Ateniese, “Provable Data Possession at Untrusted
Stores”, Proc. 14th ACM Conf. Computer and Comm.
Security (CCS’ 07), 2007.

[4] A. Juels, “Pors: Proofs of Retrievability for Large Files,”
Proc. 14th ACM Conf. Computer and Comm. Security
(CCS ’07), pp. 584-597, 2007.

[5] G.Ateniese, “Scalable and Efficient Provable Data
Possession”, Proc. Fourth Int’l Conf. Security and Privacy
in Comm. Networks (SecureComm ’08), 2008.

[6] C,Erway, A.Kuocu, C. Pamanthou, R.Tamassia, “Dynamic
Provable Data Possession”, Proc. 16th ACM Conf.
Computer and Comm. Security (CCS’09),2009.

[7] Cong Wang, “Enabling Public Auditability and Data
Dynamics for Storage Security in Cloud Computing”, IEEE
Transactions on Parallel and Distributed Systems, May
2011.

[8] C.Wang, Q.Wang, Kui Ren, Wenjing Lou, “Ensuring
Dynamic Data Storage Security in Cloud Computing”, Proc.
17th Int’1 Workshop Quality of Service (IWQos’09),2009.

[9] P. Golle, S. Jarecki, and I. Mironov “Cryptographic
primitives enforcing communication and storage
complexity”. In Financial Cryptography, pages 120-135,
2002.

[10] L. Chen and H. Chen,”Ensuring Dyanmic Data Integrity
with Public Auditing for Cloud Storage”, In Proc. Of
International Conference on Computer Science and Service
System (ICSSS’ 2012), 2012.

[11] D.G.Feng, M. Zang, Y. Zang and Z. Xu,”Study on cloud
computing security”, Journal of Software, vol.22 (1), pp.
71-83, 2011.

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.6, June 2015 82

[12] L.M. Kunfam, “Data Security in the world of cloud
computing”, IEEE Security and Privacy, vol.7 (4),pp.61-
64,2009.

[13] B. Waters and H.Shacham, “Compact proofs of
Retrievability”, Proc.14th Int’l Conf. Theory and
Application of Cryptology and Information Security:
Advances in Cryptology (ASIACRYPT’ 08), pp.90-107,
2008.

[14] M. Venkatesh, “Improving Public Auditability, Data
Possession in Data Storage Security for Cloud Computing”,
ICRTIT-IEEE 2012

[15] Elminaam, Diaa Salama Abdul, Hatem Mohamed Abdul
Kader, and Mohie Mohamed Hadhoud. "Performance
Evaluation of Symmetric Encryption Algorithms." IJCSNS
International Journal of Computer Science and Network
Security 8.12 (2008): 280-286.

[16] Simar Preet Singh, and Raman Maini, “COMPARISON OF
DATA ENCRYPTION ALGORITHMS”, International
Journal of Computer Science and Communication (IJCSC),
Vol. 2, No. 1, January-June 2011, pp. 125-127

[17] Z. Hao, S. Zhong and N. Yu,"A Privacy-Preserving Remote
Data Integrity Checking Protocol with Data Dynamics and
Public Verifiability",IEEE Transactions on Knowledge and
Data Engineering, Vol. 23, No. 9, September 2011

[18] D. Boneh, B. Lynn, H. Shacham, Short signatures from the
Weil pairing, J.Cryptology, 17(4)(2004) 297–319.

