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Summary 
Cybersecurity has become the most important issue in the current 
era of cyber warfare. Significant advantages can be obtained from 
using co-processing units when a cyberattack diminished the 
computing power of the main processor cores from carried out 
useful tasks. Automata Processor (AP) is a novel accelerator 
from Micron Technology, which is based on the non-von 
Neumann architecture and the processing in memory concept. A 
series of automata designs for implementing the Advanced 
Encryption Standard algorithm on the AP board is proposed, 
validated, compiled, and simulated using AP SDK and AP 
Workbench. The results demonstrated that the proposed automata 
designs utilized the available resources on the AP chip efficiently, 
yielding the maximum degree of concurrencies across all six 
ranks available on the Micron AP-D480 board. Thus, this paper 
serves as an exploratory guide to enhance cybersecurity 
operational capability by using the AP co-processing board. 
Key words: 
Advanced encryption standard, Automata processor, Cyber 
security, Data encryption. 

1. Introduction 

Server and storage systems on the cloud handle 
tremendously large amount of data with multiple nodes 
connected to each other via the Internet. Data encryption 
protocols play an important role in maintaining data 
security, integrity, and privacy by obfuscating original data 
contents. For this general purpose of data security, 
advanced encryption standard (AES) algorithm has been 
widely adopted. In most cases, the tasks of data encryption 
and decryption are carried out in software by the processor 
cores. When the systems are under attack or infected by 
malwares, the processing speed is diminished due to a lack 
of CPU cycles to carry out these important tasks. This is an 
unacceptable scenario in the context of cyber warfare, 
where the capability to maintain security and availability of 
data while under attack is essential [1]. 
Recently, Micron Technology proposed a novel 
accelerator based on the concept of processing in memory 
and the non-von Neumann architecture called the 
Automata Processor (AP) [2]. The processing capability of 
the Micron AP is based on its data processing rate as well 
as the design and programming of its state transition 
elements (STEs), counter elements, and Boolean elements. 

A few seminal studies and preliminary results have shown 
that the AP technology is capable of solving problems in 
Bioinformatics [3] and Data Mining [4]. To the best of our 
knowledge, this is the first instance of data security 
application using the Micron AP, which can be helpful to 
the cybersecurity community as this new technology 
becomes available. 
In this paper, we propose a series of automata designs for 
implementing the AES algorithm on the Micron AP. The 
first automaton is designed to recognize an 8-bit block 
pattern in an input stream and to produce an output based 
on the substitution values given in the S-Box. The second 
and third automata designs recognize an 8-bit block pattern 
in an input stream and produce an output based on the 
multiplication operations with {02} and {03} in GF(28), 
respectively. The fourth automaton combines the outputs 
from multiplications in GF(28) using addition operations in 
GF(28) to complete the MixColumns() transformation. The 
compilation and simulation results demonstrated that the 
proposed automata designs utilized only 57% of the STEs 
and 62.5% of the Boolean elements available on each of 
the (six) AP ranks, allowing the 48-core AP-D480 board to 
process six input data stream concurrently.   
The rest of this paper is organized as follows. A concise 
summary on the AES operations is provided in Section 2. 
An overview on the Micron AP is described in Section 3. 
The proposed automata designs are presented in Section 4. 
The results in terms of STE utilization and expected data 
processing rate are discussed in Section 5. Our findings are 
summarized in Section 6. 

2. Advanced Encryption Standard 

The National Institute of Standards and Technology 
(NIST) published advanced encryption standard (AES) in 
2001 [5]. The AES is based on Rijndael algorithm, which 
is a symmetric block cipher. The AES adopted a data block 
size of 128 bits with the cipher keys of 128, 192, or 256 
bits in length. This paper focuses on the automata designs 
for 128-bit encryption, but it can certainly be expanded to 
other key lengths. In general, AES repeats ten rounds of 
byte-level substitutions, row-wise left rotations at byte 
granularity, and column-wise matrix multiplications in 
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GF(28). Multiplication and addition operations in GF(28) 
can be carried out with bit shifting and XOR operations. 
The goal of AES is to obfuscate the original input data 
contents from unauthorized accesses.  

3. Automata Processor 

The Micron Automata Processor (AP) is an accelerator 
that can be programmed to execute a large number of 
Finite State Machines (FSM) in parallel to identify patterns 
in data streams as well as to process them. There are three 
types of elements in the AP called (i) state transition 
elements (STE), (ii) counter elements, and (iii) Boolean 
elements. Each STE is designed to recognize an input data 
value, which can be any character classes over the 8-bit 
symbols. These STEs are reconfigurable and can be 
reprogrammed to recognize new input data values. An 
automaton design connects these STEs through transitional 
links, which are only activated and led to destination STEs 
when an input data value is recognized by the STEs. There 
are a few special types of STEs called starting and 
reporting STEs. A starting STE usually acts as an initial 
state of the FSM. Multiple starting states are allowed, 
which enables parallel execution of multiple FSMs. A 
starting STE is further classified into two subtypes namely 
all-input-start STE and start-of-data STE. All-input-start 
STE can be activated by any input data value whereas 
start-of-data STE can only be activated by a recognized 
input data value of that STE. A reporting STE is typically 
used as an acceptance state in the FSM. For example, FSM 
recognizing the word ANT appearing anywhere in an input 
stream is shown in Figure 1, whereas FSM recognizing 
only the word ANT appearing at the beginning of an input 
stream is shown in Figure 2. 

 

Fig. 1  Automaton with all-input-start and reporting STEs. 

 

Fig. 2  Automaton with start-of-data and reporting STEs. 

Apart from the STE, counter elements can be used to 
report the number of times a particular input data value has 
been recognized. For example, FSM recognizing the word 

ANT and counting whether it appears more than twice in 
an input stream is shown in Figure 3. 

 

Fig. 3  Automaton with a counter element. 

Finally, Boolean elements can be used to create a 
combinational circuit complementing the FSM designs. 
These Booleans elements can be programmed to act as 
AND, OR, NOT, NAND, NOR, AND-OR (i.e., sum-of-
product), and OR-AND (i.e., product-of-sum) gates. An 
XOR gate used for an addition operation in GF(28) is 
implemented using AND, NAND, and OR gates as shown 
in Figure 4. 

 

Fig. 4  Automaton with Boolean elements. 

4. Automata Designs for AES 

The first step in designing an automaton for advanced 
encryption standard (AES) is mapping its operations to 
pattern recognition problems. Then, one or more finite 
state machine (FSM) is developed to recognize the patterns 
and to produce desired outputs. Finally, the FSM is then 
programmed on to the STE, counter, and Boolean elements. 
Under the AES algorithm, the first common operation in 
multiple rounds of processing is substitution 
transformation using S-Box. The next common operation 
is multiplication in GF(28). Finally, the automaton for 
combining the multiplication outputs through addition 
operation in GF(28) is required. The explanation of each 
automaton is presented in the following subsections. 

4.1 S-Box Substitution Transformation Automaton 

Consider an automaton designed for an 8-bit sequence B = 
b1b2b3b4b5b6b7b8 that accepts any 8-bit binary strings and 
provides a mechanism to deduce an 8-bit output sequence 
based on the acceptance state reported. The proposed 
automaton design consists of two start-of-data STEs, 

  regular STEs, and 28 reporting STEs arranged in 
the a binary tree fashion. Thus, this automaton requires 
510 STEs. The two start-of-data STEs are the root nodes 
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and the reporting STEs are the leave nodes. The usage of 
start-of-data STEs allows the substitution transformation to 
occur at an 8-bit byte granularity in the input data stream.  
For example, when an 8-bit input data is 000000002, a 
substitution transformation using AES’s S-Box produces 
011000112 or 6316 as an output. Thus, this automaton is 
simply a one-to-one mapping between an 8-bit input data 
to the output data value provided in the S-Box. The design 
is best described through an illustration (see Figure 5). 

 

Fig. 5  Automaton for substitution transformation based on S-Box. 

4.2 Automaton for Multiplication in GF(28) 

For the MixColumn() transformation in AES, two 
multiplication operations in GF(28) are carried out on two 
bytes of data in each column. Specifically, the first 
multiplication operation is performed on an input byte and 
{02} in GF(28). An output from this multiplication 
operation is obtained by left shifting an input byte one bit, 
following by an exclusive-OR with {1b} when the left-
most bit before the left shift was equal to “1”. Thus, it is 
possible to pre-calculate the outputs of this multiplication 
in GF(28) for all possible 8-bit input sequences and to 
create an automaton that recognizes each of the 8-bit input 
data sequences with reporting STEs for deducing the 
outputs. For example, multiplying {00} with {02} 
produces {00} because left shifting 000000002 by one bit 
yields 000000002. Multiplying {01} with {02} produces 
{02} because left shifting 000000012 by one bit yields 

000000102. Multiplying {02} with {02} produces {04} 
because left shifting 000000102 by one bit yields 
000001002. Multiplying {03} with {02} produces {06} 
because left shifting 000000112 by one bit yields 
000001102. These multiplication operations and their 
results are mapped to the first four rows of the automaton 
shown in Figure 6.  
The last six rows of the automaton represents the 
multiplications of {02} with {fa}, {fb}, {fc}, {fd}, {fe}, 
and {ff}, respectively. Specifically, the bottom row of 
Figure 6 represents an output from recognizing an 8-bit 
input in the data stream being 111111112. Multiplying {ff} 
with {02} produces {e5} because left shifting 111111112 
by one bit produces 111111102. Since the left-most bit of 
{ff} is 1, the output from bit shifting is then exclusive-
ORed with {1b} (i.e., 111111102 XOR 000110112), which 
produces {e5} (i.e., 111001012). The next row up 
represents an output from recognizing an 8-bit input in the 
data stream being 111111102. Multiplying {fe} with {02} 
produces {e7} because left shifting 111111102 by one bit 
produces 111111002. Since the left-most bit of {fe} is 1, 
the output from bit shifting is then exclusive-ORed with 
{1b} (i.e., 111111002 XOR 000110112), which produces 
{e7} (i.e., 111001112). This automaton also requires 510 
STEs because it is required to recognize all of the unique 
8-bit input data values (i.e., 28 is 256). A depiction of the 
automaton is shown in Figure 6. 

 

Fig. 6  Automaton for GF(28) multiplication of 8-bit input with {02}. 
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The second multiplication operation is performed on an 
input byte and {03} in GF(28). An output of this operation 
is obtained by performing multiplication with {02} in 
GF(28) as described in the last paragraph, and then, 
performing an addition operation in GF(28) on the output 
with the original 8-bit input. Again, it is possible to pre-
calculate the outputs of this multiplication in GF(28) for all 
possible 8-bit input sequences and to create an automaton 
that recognizes each of the 8-bit input data sequences with 
reporting STEs for deducing the outputs.  
For example, the 2nd row of an automaton shown in Figure 
7 recognizes 000000012 (i.e., {01}) as an 8-bit input data. 
Multiplying {01} with {03} produces {03} because {01} 
multiplies by {02} produces {02} and {02} ⊕ {01} 
produces {03} (i.e., 000000102 XOR 000000012 = 
000000112).  
In another example, the bottom row of Figure 7 represents 
an output from recognizing an 8-bit input in the data 
stream being 111111112. Multiplying {ff} with {03} 
produces {1a} because left shifting 111111112 by one bit 
produces 111111102. Since the left-most bit of {ff} is 1, 
the output from bit shifting is then exclusive-ORed with 
{1b} (i.e., 111111102 XOR 000110112), which produces 
{e5} (i.e., 111001012). At this point, {e5} is an output 
from {ff} multiplied by {02}. To produce an output for 
{ff} multiplied by {03}, {e5} has to be added with {ff}. 
Addition operation in GF(28) is equivalent to a bit-wise 
exclusive-OR. Thus, {e5} ⊕ {ff} produces {1a} (i.e., 
111001012 XOR 111111112 = 000110102), which is an 
output of multiplying {ff} with {03}. This automaton also 
requires 510 STEs. 

4.3 Automaton for MixColumn() Transformation 

Apart from the two multiplication operations in GF(28), the 
MixColumn() transformation requires an exclusive-OR (in 
lieu of addition operations in GF(28)) of all outputs from 
the multiplication operations. As shown earlier, an XOR 
gate is implemented by using AND, OR, and NAND gates 
on the Micron AP since its Boolean element does not 
support an XOR gate. 

5. Results and Discussion 

The performance of the proposed automata designs is 
evaluated using the AP SDK and Workbench version 1.4-
11 from Micron Technology, assuming a 48-core AP-D480 
board. Specifically, each AP board has 6 ranks, each with 
8 processor cores (as shown in Figure 8). Each core 
occupies one AP chip, which is divided into two half-cores. 
Each half-core holds 96 blocks. Each block has 256 STEs, 
4 counter elements, and 12 Boolean elements. Thus, a 48-
core AP board has 2,359,296 STEs, 36,864 counters, and 

110,592 Boolean elements. In terms of input streaming, 
each rank on the AP board can handle one input stream at 
the rate of 1 Gbps. Thus, a cumulative data processing rate 
for the AP board is 6 Gbps. 

 

Fig. 7  Automaton for GF(28) multiplication of 8-bit input with {03}. 

The proposed automata designs were successfully 
validated, compiled, and simulated on the AP Workbench. 
The substitution transformation using S-Box in each of the 
ten rounds of AES needs a total of 8,160 STEs. The 
MixColumn() transformation using multiplication and 
addition operations in GF(28) in each of the ten rounds of 
AES needs a total of 16,320 STEs and 1,152 Boolean 
elements. Thus, for ten rounds of AES, the proposed 
automata designs need a total of 224,800 STEs and 11,520 
Boolean elements. Since each rank on the AP can hold 
393,216 STEs and 18,432 Boolean elements, the proposed 
designs fit comfortable in one rank using only 57% of the 
STEs and 62.5% of the Boolean elements. Thus, six input 
data streams can be encrypted concurrently and 
independently on six ranks of the AP board. 

 

Fig. 8  Eight Micron AP chips forming one rank. 
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In order to compare the performance of the proposed 
automata designs on the Micron AP board to prior work 
that used field programmable gate array (FPGA) devices or 
software running on the main CPU cores or the GPUs, a 
normalization of design and implementation lead time as 
well as technology is necessary. This is because designing, 
implementing, and optimizing pipelined AES circuits on 
the FPGA devices requires significantly more time and 
effort than designing and compiling automata for the 
Micron AP. Furthermore, the AP chip used 45nm 
technology whereas the current generation of CPUs and 
GPUs used 14nm and 28nm technology, respectively [6], 
[7]. To compare different architectures fairly, an 
assumption on linear scaling of clock frequency and square 
scaling of capacity to bring all architectures to the same 
semiconductor technology level can be made [8]. 

Table 1: Performance Comparison 

Architectures Processing Rate Throughput 

AP 133 MHz 6 Gbps [2] 

Intel AES-NI 3.47 GHz 0.5 - 0.7 Gbps [9] 

Nvidia GPU 900 MHz 14.6 Gbps [10] 

 
Table 1 displays a collection of data on software 
implementation of AES running on Intel CPU cores and 
Nvidia GPUs. Intel AES-NI is a special class of assembly 
instructions tailored and optimized for software 
implementation of AES algorithm on Intel CPU cores. The 
AP implementation of AES significantly outperforms Intel 
AES-NI. Using linear scaling of clock frequency based on 
the semiconductor technology used to fabricate the AP 
chip and the GPU (i.e., 45nm vs 28nm), the software 
implementation of AES running on the GPU slightly 
outperforms the AES implementation on the AP. 

5. Conclusion 

The Micron Automata Processor is a new accelerator that 
is capable of processing multiple input data streams 
concurrently at a high rate. This paper explores its usage in 
the area of data security to aid the development of resilient 
computer systems that can withstand cyberattacks and also 
maintain a high degree of cybersecurity operational 
capability. A series of automata designs for implementing 
advanced encryption standard algorithm was proposed, 
validated, compiled, and simulated. The performance 
results demonstrated a promising future of the Automata 
Processor as an accelerator in the area of cybersecurity.   
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