
IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.7, July 2015

1

Manuscript received July 5, 2015
Manuscript revised July 20, 2015

Automata Designs for Data Encryption with AES using the
Micron Automata Processor

Angkul Kongmunvattana

School of Computer Science, Columbus State University, Columbus, GA, USA

Summary
Cybersecurity has become the most important issue in the current
era of cyber warfare. Significant advantages can be obtained from
using co-processing units when a cyberattack diminished the
computing power of the main processor cores from carried out
useful tasks. Automata Processor (AP) is a novel accelerator
from Micron Technology, which is based on the non-von
Neumann architecture and the processing in memory concept. A
series of automata designs for implementing the Advanced
Encryption Standard algorithm on the AP board is proposed,
validated, compiled, and simulated using AP SDK and AP
Workbench. The results demonstrated that the proposed automata
designs utilized the available resources on the AP chip efficiently,
yielding the maximum degree of concurrencies across all six
ranks available on the Micron AP-D480 board. Thus, this paper
serves as an exploratory guide to enhance cybersecurity
operational capability by using the AP co-processing board.
Key words:
Advanced encryption standard, Automata processor, Cyber
security, Data encryption.

1. Introduction

Server and storage systems on the cloud handle
tremendously large amount of data with multiple nodes
connected to each other via the Internet. Data encryption
protocols play an important role in maintaining data
security, integrity, and privacy by obfuscating original data
contents. For this general purpose of data security,
advanced encryption standard (AES) algorithm has been
widely adopted. In most cases, the tasks of data encryption
and decryption are carried out in software by the processor
cores. When the systems are under attack or infected by
malwares, the processing speed is diminished due to a lack
of CPU cycles to carry out these important tasks. This is an
unacceptable scenario in the context of cyber warfare,
where the capability to maintain security and availability of
data while under attack is essential [1].
Recently, Micron Technology proposed a novel
accelerator based on the concept of processing in memory
and the non-von Neumann architecture called the
Automata Processor (AP) [2]. The processing capability of
the Micron AP is based on its data processing rate as well
as the design and programming of its state transition
elements (STEs), counter elements, and Boolean elements.

A few seminal studies and preliminary results have shown
that the AP technology is capable of solving problems in
Bioinformatics [3] and Data Mining [4]. To the best of our
knowledge, this is the first instance of data security
application using the Micron AP, which can be helpful to
the cybersecurity community as this new technology
becomes available.
In this paper, we propose a series of automata designs for
implementing the AES algorithm on the Micron AP. The
first automaton is designed to recognize an 8-bit block
pattern in an input stream and to produce an output based
on the substitution values given in the S-Box. The second
and third automata designs recognize an 8-bit block pattern
in an input stream and produce an output based on the
multiplication operations with {02} and {03} in GF(28),
respectively. The fourth automaton combines the outputs
from multiplications in GF(28) using addition operations in
GF(28) to complete the MixColumns() transformation. The
compilation and simulation results demonstrated that the
proposed automata designs utilized only 57% of the STEs
and 62.5% of the Boolean elements available on each of
the (six) AP ranks, allowing the 48-core AP-D480 board to
process six input data stream concurrently.
The rest of this paper is organized as follows. A concise
summary on the AES operations is provided in Section 2.
An overview on the Micron AP is described in Section 3.
The proposed automata designs are presented in Section 4.
The results in terms of STE utilization and expected data
processing rate are discussed in Section 5. Our findings are
summarized in Section 6.

2. Advanced Encryption Standard

The National Institute of Standards and Technology
(NIST) published advanced encryption standard (AES) in
2001 [5]. The AES is based on Rijndael algorithm, which
is a symmetric block cipher. The AES adopted a data block
size of 128 bits with the cipher keys of 128, 192, or 256
bits in length. This paper focuses on the automata designs
for 128-bit encryption, but it can certainly be expanded to
other key lengths. In general, AES repeats ten rounds of
byte-level substitutions, row-wise left rotations at byte
granularity, and column-wise matrix multiplications in

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.7, July 2015

2

GF(28). Multiplication and addition operations in GF(28)
can be carried out with bit shifting and XOR operations.
The goal of AES is to obfuscate the original input data
contents from unauthorized accesses.

3. Automata Processor

The Micron Automata Processor (AP) is an accelerator
that can be programmed to execute a large number of
Finite State Machines (FSM) in parallel to identify patterns
in data streams as well as to process them. There are three
types of elements in the AP called (i) state transition
elements (STE), (ii) counter elements, and (iii) Boolean
elements. Each STE is designed to recognize an input data
value, which can be any character classes over the 8-bit
symbols. These STEs are reconfigurable and can be
reprogrammed to recognize new input data values. An
automaton design connects these STEs through transitional
links, which are only activated and led to destination STEs
when an input data value is recognized by the STEs. There
are a few special types of STEs called starting and
reporting STEs. A starting STE usually acts as an initial
state of the FSM. Multiple starting states are allowed,
which enables parallel execution of multiple FSMs. A
starting STE is further classified into two subtypes namely
all-input-start STE and start-of-data STE. All-input-start
STE can be activated by any input data value whereas
start-of-data STE can only be activated by a recognized
input data value of that STE. A reporting STE is typically
used as an acceptance state in the FSM. For example, FSM
recognizing the word ANT appearing anywhere in an input
stream is shown in Figure 1, whereas FSM recognizing
only the word ANT appearing at the beginning of an input
stream is shown in Figure 2.

Fig. 1 Automaton with all-input-start and reporting STEs.

Fig. 2 Automaton with start-of-data and reporting STEs.

Apart from the STE, counter elements can be used to
report the number of times a particular input data value has
been recognized. For example, FSM recognizing the word

ANT and counting whether it appears more than twice in
an input stream is shown in Figure 3.

Fig. 3 Automaton with a counter element.

Finally, Boolean elements can be used to create a
combinational circuit complementing the FSM designs.
These Booleans elements can be programmed to act as
AND, OR, NOT, NAND, NOR, AND-OR (i.e., sum-of-
product), and OR-AND (i.e., product-of-sum) gates. An
XOR gate used for an addition operation in GF(28) is
implemented using AND, NAND, and OR gates as shown
in Figure 4.

Fig. 4 Automaton with Boolean elements.

4. Automata Designs for AES

The first step in designing an automaton for advanced
encryption standard (AES) is mapping its operations to
pattern recognition problems. Then, one or more finite
state machine (FSM) is developed to recognize the patterns
and to produce desired outputs. Finally, the FSM is then
programmed on to the STE, counter, and Boolean elements.
Under the AES algorithm, the first common operation in
multiple rounds of processing is substitution
transformation using S-Box. The next common operation
is multiplication in GF(28). Finally, the automaton for
combining the multiplication outputs through addition
operation in GF(28) is required. The explanation of each
automaton is presented in the following subsections.

4.1 S-Box Substitution Transformation Automaton

Consider an automaton designed for an 8-bit sequence B =
b1b2b3b4b5b6b7b8 that accepts any 8-bit binary strings and
provides a mechanism to deduce an 8-bit output sequence
based on the acceptance state reported. The proposed
automaton design consists of two start-of-data STEs,

 regular STEs, and 28 reporting STEs arranged in
the a binary tree fashion. Thus, this automaton requires
510 STEs. The two start-of-data STEs are the root nodes

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.7, July 2015

3

and the reporting STEs are the leave nodes. The usage of
start-of-data STEs allows the substitution transformation to
occur at an 8-bit byte granularity in the input data stream.
For example, when an 8-bit input data is 000000002, a
substitution transformation using AES’s S-Box produces
011000112 or 6316 as an output. Thus, this automaton is
simply a one-to-one mapping between an 8-bit input data
to the output data value provided in the S-Box. The design
is best described through an illustration (see Figure 5).

Fig. 5 Automaton for substitution transformation based on S-Box.

4.2 Automaton for Multiplication in GF(28)

For the MixColumn() transformation in AES, two
multiplication operations in GF(28) are carried out on two
bytes of data in each column. Specifically, the first
multiplication operation is performed on an input byte and
{02} in GF(28). An output from this multiplication
operation is obtained by left shifting an input byte one bit,
following by an exclusive-OR with {1b} when the left-
most bit before the left shift was equal to “1”. Thus, it is
possible to pre-calculate the outputs of this multiplication
in GF(28) for all possible 8-bit input sequences and to
create an automaton that recognizes each of the 8-bit input
data sequences with reporting STEs for deducing the
outputs. For example, multiplying {00} with {02}
produces {00} because left shifting 000000002 by one bit
yields 000000002. Multiplying {01} with {02} produces
{02} because left shifting 000000012 by one bit yields

000000102. Multiplying {02} with {02} produces {04}
because left shifting 000000102 by one bit yields
000001002. Multiplying {03} with {02} produces {06}
because left shifting 000000112 by one bit yields
000001102. These multiplication operations and their
results are mapped to the first four rows of the automaton
shown in Figure 6.
The last six rows of the automaton represents the
multiplications of {02} with {fa}, {fb}, {fc}, {fd}, {fe},
and {ff}, respectively. Specifically, the bottom row of
Figure 6 represents an output from recognizing an 8-bit
input in the data stream being 111111112. Multiplying {ff}
with {02} produces {e5} because left shifting 111111112
by one bit produces 111111102. Since the left-most bit of
{ff} is 1, the output from bit shifting is then exclusive-
ORed with {1b} (i.e., 111111102 XOR 000110112), which
produces {e5} (i.e., 111001012). The next row up
represents an output from recognizing an 8-bit input in the
data stream being 111111102. Multiplying {fe} with {02}
produces {e7} because left shifting 111111102 by one bit
produces 111111002. Since the left-most bit of {fe} is 1,
the output from bit shifting is then exclusive-ORed with
{1b} (i.e., 111111002 XOR 000110112), which produces
{e7} (i.e., 111001112). This automaton also requires 510
STEs because it is required to recognize all of the unique
8-bit input data values (i.e., 28 is 256). A depiction of the
automaton is shown in Figure 6.

Fig. 6 Automaton for GF(28) multiplication of 8-bit input with {02}.

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.7, July 2015

4

The second multiplication operation is performed on an
input byte and {03} in GF(28). An output of this operation
is obtained by performing multiplication with {02} in
GF(28) as described in the last paragraph, and then,
performing an addition operation in GF(28) on the output
with the original 8-bit input. Again, it is possible to pre-
calculate the outputs of this multiplication in GF(28) for all
possible 8-bit input sequences and to create an automaton
that recognizes each of the 8-bit input data sequences with
reporting STEs for deducing the outputs.
For example, the 2nd row of an automaton shown in Figure
7 recognizes 000000012 (i.e., {01}) as an 8-bit input data.
Multiplying {01} with {03} produces {03} because {01}
multiplies by {02} produces {02} and {02} ⊕ {01}
produces {03} (i.e., 000000102 XOR 000000012 =
000000112).
In another example, the bottom row of Figure 7 represents
an output from recognizing an 8-bit input in the data
stream being 111111112. Multiplying {ff} with {03}
produces {1a} because left shifting 111111112 by one bit
produces 111111102. Since the left-most bit of {ff} is 1,
the output from bit shifting is then exclusive-ORed with
{1b} (i.e., 111111102 XOR 000110112), which produces
{e5} (i.e., 111001012). At this point, {e5} is an output
from {ff} multiplied by {02}. To produce an output for
{ff} multiplied by {03}, {e5} has to be added with {ff}.
Addition operation in GF(28) is equivalent to a bit-wise
exclusive-OR. Thus, {e5} ⊕ {ff} produces {1a} (i.e.,
111001012 XOR 111111112 = 000110102), which is an
output of multiplying {ff} with {03}. This automaton also
requires 510 STEs.

4.3 Automaton for MixColumn() Transformation

Apart from the two multiplication operations in GF(28), the
MixColumn() transformation requires an exclusive-OR (in
lieu of addition operations in GF(28)) of all outputs from
the multiplication operations. As shown earlier, an XOR
gate is implemented by using AND, OR, and NAND gates
on the Micron AP since its Boolean element does not
support an XOR gate.

5. Results and Discussion

The performance of the proposed automata designs is
evaluated using the AP SDK and Workbench version 1.4-
11 from Micron Technology, assuming a 48-core AP-D480
board. Specifically, each AP board has 6 ranks, each with
8 processor cores (as shown in Figure 8). Each core
occupies one AP chip, which is divided into two half-cores.
Each half-core holds 96 blocks. Each block has 256 STEs,
4 counter elements, and 12 Boolean elements. Thus, a 48-
core AP board has 2,359,296 STEs, 36,864 counters, and

110,592 Boolean elements. In terms of input streaming,
each rank on the AP board can handle one input stream at
the rate of 1 Gbps. Thus, a cumulative data processing rate
for the AP board is 6 Gbps.

Fig. 7 Automaton for GF(28) multiplication of 8-bit input with {03}.

The proposed automata designs were successfully
validated, compiled, and simulated on the AP Workbench.
The substitution transformation using S-Box in each of the
ten rounds of AES needs a total of 8,160 STEs. The
MixColumn() transformation using multiplication and
addition operations in GF(28) in each of the ten rounds of
AES needs a total of 16,320 STEs and 1,152 Boolean
elements. Thus, for ten rounds of AES, the proposed
automata designs need a total of 224,800 STEs and 11,520
Boolean elements. Since each rank on the AP can hold
393,216 STEs and 18,432 Boolean elements, the proposed
designs fit comfortable in one rank using only 57% of the
STEs and 62.5% of the Boolean elements. Thus, six input
data streams can be encrypted concurrently and
independently on six ranks of the AP board.

Fig. 8 Eight Micron AP chips forming one rank.

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.7, July 2015

5

In order to compare the performance of the proposed
automata designs on the Micron AP board to prior work
that used field programmable gate array (FPGA) devices or
software running on the main CPU cores or the GPUs, a
normalization of design and implementation lead time as
well as technology is necessary. This is because designing,
implementing, and optimizing pipelined AES circuits on
the FPGA devices requires significantly more time and
effort than designing and compiling automata for the
Micron AP. Furthermore, the AP chip used 45nm
technology whereas the current generation of CPUs and
GPUs used 14nm and 28nm technology, respectively [6],
[7]. To compare different architectures fairly, an
assumption on linear scaling of clock frequency and square
scaling of capacity to bring all architectures to the same
semiconductor technology level can be made [8].

Table 1: Performance Comparison

Architectures Processing Rate Throughput

AP 133 MHz 6 Gbps [2]

Intel AES-NI 3.47 GHz 0.5 - 0.7 Gbps [9]

Nvidia GPU 900 MHz 14.6 Gbps [10]

Table 1 displays a collection of data on software
implementation of AES running on Intel CPU cores and
Nvidia GPUs. Intel AES-NI is a special class of assembly
instructions tailored and optimized for software
implementation of AES algorithm on Intel CPU cores. The
AP implementation of AES significantly outperforms Intel
AES-NI. Using linear scaling of clock frequency based on
the semiconductor technology used to fabricate the AP
chip and the GPU (i.e., 45nm vs 28nm), the software
implementation of AES running on the GPU slightly
outperforms the AES implementation on the AP.

5. Conclusion

The Micron Automata Processor is a new accelerator that
is capable of processing multiple input data streams
concurrently at a high rate. This paper explores its usage in
the area of data security to aid the development of resilient
computer systems that can withstand cyberattacks and also
maintain a high degree of cybersecurity operational
capability. A series of automata designs for implementing
advanced encryption standard algorithm was proposed,
validated, compiled, and simulated. The performance
results demonstrated a promising future of the Automata
Processor as an accelerator in the area of cybersecurity.

Acknowledgments

The author thanks Micron Technology, Inc. for granting a
limited license and an access to a pre-release version of the
AP SDK and AP Workbench. This research is supported in
part by computing resources from the NSF XSEDE Startup
Allocation Award.

References
[1] D. Parr, “Securing the Cloud,” Journal of Information

Warfare, 13(2):56-69, April 2014.
[2] P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal, and

H. Noyes, “An Efficient and Scalable Semiconductor
Architecture for Parallel Automata Processing,” IEEE
Transactions on Parallel and Distributed Systems,
25(12):3088-3098, December 2014.

[3] I. Roy and S. Aluru, “Discovering Motifs in Biological
Sequences using the Micron Automata Processor,” IEEE
Transactions on Computational Biology and Bioinformatics,
2015, in press.

[4] K. Wang, M. Stan, and K. Skadron, “Association Rule
Mining with the Micron Automata Processor,” In
Proceedings of the 29th IEEE International Parallel and
Distributed Processing Symposium, 2015, in press.

[5] National Institute of Standards and Technology (NIST),
“Advanced Encryption Standard (AES),” FIPS Publication
197, November 2001.

[6] B. Dally, “GPU Computing: To ExaScale and Beyond,”
Plenary Speaker, NVIDIA Showcase, The 2010 ACM/IEEE
International Conference for High Performance Computing,
Networking, Storage and Analysis (SC10), November 2010.

[7] Intel Corporation, “Advancing Moore’s Law – The Road to
14 nm,” Intel White Paper, August 2014.

[8] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital
Integrated Circuits: A Design Perspective, 2nd Edition,
Prentice Hall, January 2003.

[9] A. Basu and A. Bhargav-Santzel, “Intel AES-NI
Performance Testing on Linux/Java Stack,” Intel White
Paper, June 2012.

[10] J. W. Bos, D. A. Osvik, and D. Stefan, “Fast
Implementations of AES on Various Platforms,” Software
Performance Enhancement for Encryption and Decryption
and Cryptographic Compilers (SPEED-CC), October 2009.

Angkul Kongmunvattana earned a
doctorate degree in Computer Science
from the University of Louisiana at
Lafayette in 1999. He is currently an
Associate Professor in the School of
Computer Science at Columbus State
University. His area of research
includes bioinformatics, cybersecurity,
and high-performance computing

systems. His research work has been supported in part by US
National Science Foundation, US Geological Survey, Altera
Corporation, and Sun Microsystems (now Oracle).

	Processing Rate
	Throughput

	Architectures
	133 MHz
	6 Gbps [2]

	AP
	3.47 GHz
	0.5 - 0.7 Gbps [9]

	Intel AES-NI
	900 MHz
	14.6 Gbps [10]

	Nvidia GPU

