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Summary 
The architecture of two-tiered sensor networks, where storage 
nodes serve as an intermediate tier between sensors and a sink 
for storing data and processing queries, has been widely adopted 
because of the benefits of power and storage saving for sensors 
as well as the efficiency of query processing. However, the 
importance of storage nodes also makes them attractive to 
attackers. In this paper, SafeQ, a protocol that prevents attackers 
from gaining information from both sensor collected data and 
sink issued queries. SafeQ also allows a sink to detect 
compromised storage nodes when they misbehave. To preserve 
privacy, SafeQ uses a novel technique to encode both data and 
queries such that a storage node can correctly process encoded 
queries over encoded data without knowing their values. To 
preserve integrity,  consider two different schemes—one using 
Merkle hash trees and another using a new data structure called 
neighborhood chains—to generate integrity verification 
information so that a sink can use this information to verify 
whether the result of a query contains exactly the data items that 
satisfy the query. 
Keywords: 
Integrity, privacy, range queries, sensor networks. 

1. Introduction 

Wireless sensor networks (WSNs) have been widely 
deployed for various applications, such as environment 
sensing, building safety monitoring, earthquake prediction 
etc. In this, consider a two-tiered sensor network 
architecture in which storage nodes gather data from 
nearby sensors and answer queries from the sink of the 
network. The storage nodes serve as an intermediate tier 
between the sensors and the sink for storing data and 
processing queries. Storage nodes bring three main 
benefits to sensor networks. First, sensors save power by 
sending all collected data to their closest storage node 
instead of sending them to the sink through long routes. 
Second, sensors can be memory-limited because data are 
mainly stored on storage nodes. Third, query processing 
becomes more efficient because the sink only 
communicates with storage nodes for queries.  
The inclusion of storage nodes also brings significant 
security challenges. As storage nodes store data received 
from sensors and serve as an important role for answering 
queries, they are more vulnerable to be compromised, 
especially in a hostile environment. A compromised 
storage node imposes significant threats to a sensor 

network. First, the attacker may obtain sensitive data that 
has been, or will be, stored in the storage node. Second, 
the compromised storage node may return forged data for 
a query. Third, this storage node may not include all data 
items that satisfy the query. 
Therefore, there is a need to design a protocol that 
prevents attackers from gaining information from both 
sensor collected data and sink issued queries, which 
typically can be modeled as range queries, and allows the 
sink to detect compromised storage nodes when they 
misbehave. For privacy, compromising a storage node 
should not allow the attacker to obtain the sensitive 
information that has been, and will be, stored in the node, 
as well as the queries that the storage node has received, 
and will receive. Note that we treat the queries from the 
sink as confidential because such queries may leak critical 
information about query issuers’ interests, which need to 
be protected especially in military applications. For 
integrity, the sink needs to detect whether a query result 
from a storage node includes forged data items or does not 
include all the data that satisfy the query.  
 1.1 Technical Challenges 
There are two key challenges in solving the privacy and 
integrity-preserving range query problem. First, a storage 
node needs to correctly process encoded queries over 
encoded data without knowing their actual values. Second, 
a sink needs to verify that the result of a query contains all 
the data items that satisfy the query and does not contain 
any forged data.  

 1.2 Limitations of Prior Art 

Although important, the privacy and integrity preserving 
range query problem has been under-investigated. The 
prior art solution to this problem was proposed by Sheng 
and Li in their recent seminal work. We call it “S&L 
scheme”[1]. This scheme has two main drawbacks: 1) it 
allows attackers to obtain a reasonable estimation on both 
sensor collected data and sink issued queries. 2) the power 
consumption and storage space for both sensors and 
storage node  grow exponentially with the number of 
dimensions of collected data. 

1.3 Proposed Approach and Key Contributions 

Proposed approach uses SafeQ, a novel privacy and 
integrity preserving range query protocol for two-tiered 
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sensor networks. The ideas of SafeQ are fundamentally 
different from S&L scheme. To preserve privacy, SafeQ 
uses a novel technique to encode both data and queries 
such that a storage node can correctly process encoded 
queries over encoded data without knowing their actual 
values. To preserve integrity, we propose a new technique 
called neighborhood chaining that allows a sink to verify 
whether the result of a query contains exactly the data 
items that satisfy the query.  
SafeQ excels the-state-of-art S&L[1] scheme in two 
aspects. First, SafeQ provides significantly better security 
and privacy. While prior art allows a compromised 
storage node to obtain a reasonable estimation on the 
value of sensor collected data and sink issued queries, 
SafeQ makes such estimation very difficult. Second, 
SafeQ delivers orders of magnitude better performance on 
both power consumption and storage space for data, 
which are most common in practice as most sensors are 
equipped with multiple sensing modules. 

2. Models And Problem Statement 

 2.1 System Model 

A two-tired sensor network consists of three types of 
nodes: sensors, storage nodes, and a sink. Sensors are 
inexpensive sensing devices with limited storage and 
computing power. They are often massively distributed in 
a field for collecting physical or environmental data, e.g., 
temperature. Storage nodes are powerful wireless devices 
that are equipped with much more storage capacity and 
computing power than sensors. Each sensor periodically 
sends collected data to its nearby storage node. The sink is 
the point of contact for users of the sensor network. Each 
time the sink receives a question from a user, it first 
translates the question into multiple queries and then 
disseminates the queries to the corresponding storage 
nodes, which process the queries based on their data and 
return the query results to the sink. The sink unifies the 
query results from multiple storage nodes into the final 
answer and sends it back to the user. 

 

Fig 1: Architecture of two-tired sensor networks 

For the above network architecture, assume that all sensor 
nodes and storage nodes are loosely synchronized with the 
sink. With loosely synchronization in place, we divide 
time into fixed duration intervals and every sensor collects 

data once per time interval. From a starting time that all 
sensors and the sink agree upon, every n time intervals 
form a time slot. From the same starting time, after a 
sensor collects data for n times, it sends a message that 
contains a 3-tuple (i, t, {d1, · · · , dn}), where i is the 
sensor ID and t is the sequence number of the time slot in 
which the n data items {d1, · · · , dn} are collected by 
sensor si. A range query “finding all the data items, which 
are collected at time slot t and whose value is in the range 
[a, b]” is denoted as {t, [a, b]}. Note that the queries in 
most sensor network applications can be easily modeled 
as range queries. 

 2.2 Threat Model 

For a two-tiered sensor network, assume that the sensors 
and the sink are trusted, but the storage nodes are not. In a 
hostile environment, both sensors and storage nodes can 
be compromised. If a sensor is compromised, the 
subsequent collected data of the sensor will be known to 
the attacker, and the compromised sensor may send forged 
data to its closest storage node.  However, the data from 
one sensor constitute a small fraction of the collected data 
of the whole sensor network. Therefore, we mainly focus 
on the scenario where a storage node is compromised. 
Compromising a storage node can cause much greater 
damage to the sensor network than compromising a sensor. 
After a storage node is compromised, the large quantity of 
data stored on the node will be known to the attacker, and 
upon receiving a query from the sink, the compromised 
storage node may return a falsified result formed by 
including forged data or excluding legitimate data. 
Therefore, attackers are more motivated to compromise 
storage nodes. 

2.3 Problem Definition 

The fundamental problem for a two-tired sensor network 
is the following: How to design the storage scheme and 
the query protocol in secured manner? Here in this context, 
security comes in two flavours such as privacy and 
integrity. A satisfactory solution to this problem should 
meet the following two requirements: 
Data and query privacy: Data privacy means that a storage 
node cannot know the actual values of sensor collected 
data. This ensures that an attacker cannot understand the 
data stored on a compromised storage node. Query 
privacy means that a storage node cannot know the actual 
value of sink issued queries. This ensures that an attacker 
cannot understand, or deduce useful information from, the 
queries that a compromised storage node receives. 
Data integrity: If a query result that a storage node sends 
to the sink includes forged data or excludes legitimate 
data, the query result is guaranteed to be detected by the 
sink as invalid. Besides these two hard requirements, a 
desirable solution should have low power and space 
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consumption because these wireless devices have limited 
resources.  

3. Privacy Preserving Scheme 

To preserve privacy, each sensor si encrypts data items 
d1,…,dn using its secret key ki, denoted as 
(d1)ki ,... ,(dn)ki. Note that, ki is a shared secret key with 
the sink. However, the key challenge is how a storage 
node processes encrypted queries over encrypted data 
without knowing their values. The idea of our solution is 
to convert sensor collected data and sink issued queries to 
prefixes, and then use prefix membership 
verification[8][9] to check whether a data item satisfies a 
range query.  
To prevent a storage node from knowing the values of 
data items and range queries, sensors and the sink apply 
Hash Message Authentication Code (HMAC) to each 
prefix converted from the data items and range queries. 
For example, consider sensor collected data {1, 4, 5, 7, 9} 
and a sink issued query [3,7] in Fig. 2. The sensor first 
converts the collected data to ranges [min,1], [1,4], …. , 
[9,max], where min and max denote the lower and upper 
bound for all possible data items, respectively. Second, 
the sensor converts each range [dj, dj+1] to prefixes, 
denoted as p([dj , dj+1]), and then apply HMAC to each 
prefix in p([dj , dj+1]), denoted as hg(p([dj , dj+1])). Third, 
the sensor sends the result to a storage node. When the 
sink performs query [3,7], it first converts 3 and 6 to 
prefixes, denoted as p(3) and p(7), respectively, and then 
apply HMAC to each prefix in p(3) and p(7), denoted as 
hg (p(3)) and hg (p(6)), respectively. Upon receiving 
query hg (p(3)) and hg (p7)) from the sink, the storage 
node checks which hg(p([dj , dj+1])) has common 
elements with hg(p(3)) or Hg(p(7)). Based on prefix 
membership verification, if hg (p(a)) ∩ hg (p([dj , dj+1])) 
6≠  ∅. , a ∈ [dj , dj+1]. Therefore, hg (p(3)) ∩ hg(p([1, 
4])) 6≠  ∅. And hg (p(7)) ∩ hg (p([5, 7])) ≠  ∅.. Finally, 
the storage node finds that the query result of [3,7] 
includes two data items 4 and 5, and then sends (4)ki and 
(5)ki to the sink. 

 

Fig 2: Privacy preserving scheme of SafeQ 

4. Integrity Preserving Scheme 

The meaning of data integrity is two-fold in this context. 
In the result that a storage node sends to the sink in 
responding to a query, first, the storage node cannot 

include any data item that does not satisfy the query; 
second, the storage node cannot exclude any data item 
that satisfies the query. To allow the sink to verify the 
integrity of a query result, the query response from a 
storage node to the sink consists of two parts: (1) the 
query result QR, which includes all the encrypted data 
items that satisfy the query; (2) the verification object VO, 
which includes information for the sink to verify the 
integrity of QR.  To achieve this purpose, we propose two 
schemes based on two different techniques: Merkle hash 
trees and neighborhood chains. 

 4.1 Merkle Hash Trees 

Each time a sensor sends data items to storage nodes, it 
constructs a Merkle hash tree for the data items. Fig. 
shows a Merkle hash tree constructed for eight data items. 
Suppose sensor si wants to send n=2m encrypted data 
items (d1)ki,.....(dn)ki  to a storage node. Sensor si first 
builds a Merkle hash tree for the n=2m data items, which 
is a complete binary tree. The terminal nodes are 
H1…..Hn, where Hj=h((dj)ki) for every 1 ≤ j ≤ n  . 
Function is a one-way hash function such  SHA-1.  

 

Fig 3 Merkle hash tree for eight data items 

The value of each non terminal node v, whose children are 
vl and vr, is the hash of the concatenation of vl’s value 
and vr’s value. For example, in Fig.3, H12=h(H1|H2) . 
Note that if the number of data items n is not a power of 2, 
interim hash values that do not have a sibling value to 
which they may be concatenated are promoted, without 
any change, up the tree until a sibling is found. Note that 
the resulting Merkle hash tree will not be balanced. For 
the example Merkle hash tree in Fig. 4.4, if we remove the 
nodes H6, H7, H8, H78 and let H58 = H56 = H5, the 
resulting unbalanced tree is the Merkle hash tree for five 
data items. 
The Merkle hash tree used in our solution has two special 
properties that allow the sink to verify query result 
integrity. First, the value of the root is computed using a 
keyed HMAC function, where the key is ki, the key 
shared between sensor and the sink. For example, in Fig. 
4, H18 = HMACki(H14 |H58) . Using a keyed HMAC 
function gives us the property that only sensor and the 
sink can compute the root value. Second, the terminal 
nodes are arranged in an ascending order based on the 
value of each data item. 
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We first discuss what a sensor si needs to send to its 
nearest storage node along its data items dj. Each time 
sensor si wants to send encrypted data items to a storage 
node, it first computes a Merkle hash tree over the 
encrypted data items, and then sends the root value along 
with the n encrypted data items to a storage node. Note 
that among all the nodes in the Merkle hash tree, only the 
root is sent from sensor si to the storage node because the 
storage node can compute all other nodes in the Merkle 
hash tree by itself. 
Next, can discuss what a storage node needs to send to the 
sink along a query result, i.e., what should be included in 
a verification object. For the storage node that is near to 
sensor , each time it receives a query [a,b] from the sink, it 
first finds the data items that are in the range. Second, it 
computes the Merkle hash tree (except the root) from the 
data items. Third, it sends the query result QR and the 
verification object VO to the sink. Given data items 
(d1)ki,.....(dn)ki  in a storage node, where d1,…dn, and a 
range [a,b], where dn-1< a < dn1< …..< dn2  ≤ b < dn2+1  
and 1 ≤ n1-1 <  n2+1 ≤  n, and the query result QR= 
{ (dn1)ki……{(dn2)ki}, the storage node should include 
and in the verification object VO= {(dn-1)ki, (dn+2)ki} 
because (dn-1)ki and (dn+2)ki ensure that the query result 
does include all data items that satisfy the query as the 
query result is bounded by them. Let’s  call (dn-1)ki the 
left bound of the query result, and (dn+2)ki right bound of 
the query result. Note that the (dn-1)ki  left bound and the  
(dn+2)ki right bound may not exist. If a <=d1, then left 
bound (dn-1)ki  does not exist; if b <= dn, the right bound 
(dn+2)ki does not exist. The verification object includes 
zero to two encrypted data items and O(log n) proof nodes 
in the Merkel hash tree that are needed for the sink to 
verify the integrity of the query result.  
Taking the example in Fig. 5, suppose a storage node has 
received eight data items { (2)ki, (5)ki, (9)ki, (15)ki, 
(20)ki, (23)ki, (34)ki, (40)ki } that sensor collected at time 
t, and the sink wants to perform the query [10,30] on the 
storage node. Using Theorem 4.1, the storage node finds 
that the query result includes (15)ki, (20)ki and (23)ki 
which satisfy the query. Along with the query result (i.e., 
the three data items), the storage node also sends (9)ki, 
(34)ki, H12, H8  and H18 which are marked gray in 
Fig.4.5, to the sink as the verification object. 

 

Fig.4 Data integrity verification 

Next, we discuss how the sink uses Merkle hash trees to 
verify query result integrity. Upon receiving a query result 

and its verification object, the sink computes the root 
value of the Merkle hash tree and then verifies the 
integrity of the query result QR= {(dn1)ki……{(dn2)ki}. 
Query result integrity is preserved if and only if the 
following four conditions hold. 
1) The data items in the query result do satisfy the query. 
2) If the left bound (dn-1)ki exists, verify dn-1 < a that 
and (dn-1)ki  is the nearest left neighbor of in the Merkle 
hash tree; otherwise, verify that (dn)ki is the leftmost 
encrypted data item in the Merkle hash tree. 
3) If the right bound (dn+2)ki exists, verify that b < dn+2  
and (dn+2)ki is the nearest right neighbor of (dn2)ki in the 
Merkle hash tree; otherwise, verify that (dn2)ki is the 
rightmost encrypted data item in the Merkle hash tree. 
4) The computed root value is the same as the root value 
included in VO. 
Note that sorting data items is critical in our scheme for 
ensuring the integrity of query result. Without this 
property, it is difficult for a storage node to prove query 
result integrity without sending all data items to the sink. 

4.2 Neighborhood Chaining 

A new datastructure to preserve integrity called 
neighborhood chains and then discuss its use in integrity 
verification. Given n data items d1, · · · , dn, where d0 < 
d1 < · · · < dn < dn+1, we call the list of n items 
encrypted using key ki, (d0|d1)ki , (d1|d2)ki , · · · , 
(dn−1|dn)ki , (dn|dn+1)ki, the neighborhood chain for the 
n data items. Here “|” denotes concatenation. For any item 
(dj−1|dj)ki in the chain, we call dj the value of the item 
and (dj |dj+1)ki the right neighbor of the item. Figure 4.6 
shows the neighborhood chain for the 5 data items 1, 3, 5, 
7 and 9. 

 

Fig.5. An example neighborhood chain 

Preserving query result integrity using neighborhood 
chaining works as follows. After collecting n data items 
d1, · · · , dn, sensor si sends the corresponding 
neighborhood chain (d0|d1)ki , (d1|d2)ki , · · · , 
(dn−1|dn)ki , (dn|dn+1)ki, instead of (d1)ki , · · ·, (dn)ki , 
to a storage node. Given a range query [a, b], the storage 
node computes QR as usual. The corresponding 
verification object VO only consists of the right neighbor 
of the largest data item in QR. Note that VO always 
consists of one item for any query. If QR = 
{(dn1−1|dn1 )ki , · · · , (dn2−1|dn2 )ki }, then VO = {(dn2 
| dn2+1)ki }; if QR =  ∅ , suppose dn2 < a ≤ b < dn2+1, 
then VO = {(dn2 |dn2+1)ki}. 
After the sink receives QR and VO, it verifies the 
integrity of QR as follows. First, the sink verifies that 
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every item in QR satisfies the query. Second, the sink 
verifies that the storage node has not excluded any item 
that satisfies the query. 
 Let {(dn1−1|dn1 )ki , · · ·, (dj−1|dj)ki , · · · , 
(dn2−1|dn2 )ki } be the correct query result and QR be the 
query result from the storage node. Let’s consider the 
following four cases: 
1) If there exists n1 < j < n2 such that (dj−1|dj)ki does not 
belong to QR, the sink can detect this error because the 
items in QR do not form a neighborhood chain. 
2) If (dn1−1|dn1 )ki does not belong to QR, the sink can 
detect this error because it knows the existence of dn1 
from (dn1 |dn1+1)ki and dn1 satisfies the query. 
3)If (dn2−1|dn2 )ki does not belong to QR, the sink can 
detect this error because it knows the existence of dn2 
from the item (dn2 |dn2+1)ki in VO and dn2 satisfies the 
query. 
4)If QR = ∅, the sink can verify this fact because the item 
(dn2 |dn2+1)ki in VO should satisfy the property dn2 < a 
≤ b < dn2+1. 
Note that our submission and query protocols are 
designed to facilitate integrity verification. To process 
query [a, b] over data items d1, · · · , dn, instead of testing 
whether each data item di is in [a, b], we test which ranges 
among [d0, d1], [d1, d2], · · ·, [dn, dn+1] contain a and 
which ranges contain b. Thus, a storage node not only can 
find which items satisfy a query, but also can find the 
right neighbor of the largest data item in the query result, 
which is the verification object. 

5. Complexity And Security Analysis 

5.1 Complexity Analysis 

Assume that a sensor collects n data items in a time-slot, 
each attribute of a data item is a w0-bit number, and the 
HMAC result of each numericalized prefix is a wh  
number. The computation cost, communication cost, and 
storage space of SafeQ are described in Table 1. Note that 
the communication cost denotes the number of bytes sent 
for each submission or query, and the storage space 
denotes the number of bytes stored in a storage node for 
each submission. Furthermore, note that whether sensor 
nodes report to storage nodes periodically or upon some 
events has no impact on these costs of one time sending of 
data items. 

Table 1: Complexity Analysis of SafeQ 
 Computation Communication Space 

Sensor O(w0n) hash 
O(n) encryption 

O(w0 wh n) - 

Storage 
node 

O(w0z) hash O(n) O(w0 
wh n) 

Sink O(w0z) hash O(w0) - 

5.2 Privacy Analysis 

In a SafeQ protected two-tiered sensor network, 
compromising a storage node does not allow the attacker 
to obtain the actual values of sensor collected data and 
sink issued queries. The correctness of this claim is based 
on the fact that the hash functions and encryption 
algorithms used in SafeQ are secure. In the submission 
protocol, a storage node only receives encrypted data 
items and the secure hash values of prefixes converted 
from the data items. Without knowing the keys used in the 
encryption and secure hashing, it is computationally 
infeasible to compute the actual values of sensor collected 
data and the corresponding prefixes. In the query protocol, 
a storage node only receives the secure hash values of 
prefixes converted from a range query. Without knowing 
the key used in the secure hashing, it is computationally 
infeasible to compute the actual values of sink issued 
queries.  
 
Next, we analyze information leaking if HMACg( ) does 
not satisfy the one-wayness property. More formally, 
given y, where y = HMACg(x) and x is a numericalized 
prefix, suppose that a storage node takes O(T) steps to 
compute x. Recall that the number of HMAC hashes sent 
from a sensor is O(w0n). To reveal a data item dj , the 
storage node needs to reveal all the numericalized prefixes 
in HMACg(N(S([dj-1, dj]))). Thus, to reveal n data items, 
the storage node would take O(w0nT) steps. Here, T= 
2128 for HMAC. 
 
Note that if a storage node and a sensor are both 
compromised, the storage node may reveal the sensor 
collected data and sink issued queries by employing brute-
force attacks. In this case, the storage node knows the 
shared secret key g for the function HMAC. Due to the 
one-wayness property of HMACg, the storage node 
cannot reveal x directly using HMACg(x) and g. However, 
it can compute the HMACg results of the numericalized 
prefixes for all possible values in the data domain in a 
brute-force manner, and then compare the HMACg results 
with the received data and queries. Based on the 
comparison, the storage node can reveal the sensor 
collected data and sink issued queries. However, in 
practice, this computational cost could be prohibitive for a 
large data domain. 

 5.3 Integrity Analysis 

For scheme using Merkle hash trees, the correctness of 
this claim is based on the property that any change of leaf 
nodes in a Merkle hash tree will change the root value. 
Recall that the leaf nodes in a Merkle hash tree are sorted 
according to their values. In a query response, the left 
bound of the query result (if it exists), the query result, 
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and the right bound of the query result (if it exists) must 
be consecutive leaf nodes in the Merkle hash tree. If the 
storage node includes forged data in the query result or 
excludes a legitimate data item from the query result, the 
root value computed at the sink will be different from the 
root value computed at the corresponding sensor. 
 
For scheme using neighborhood chains, the correctness of 
this claim is based on the following three properties that 
QR and VO should satisfy for a query. First, items in  
QR ∪ VO form a chain. Excluding any item in the middle 
or changing any item violates the chaining property. 
Second, the first item in QR ∪ VO contains the value of 
its left neighbor, which should be out of the range query 
on the smaller end. Third, the last item in QR  ∪  VO 
contains the value of its right neighbor, which should be 
out of the range query on the larger end. 

6. Experimental Results 

To get desired result,Pentium-4,genuine Intel, 2GB RAM, 
40GB hard Disk, Windows XP/7,Eclipse indigo IDE, java 
language, MySQL database.  

 

Fig 6. Sensor node 

Sensor node captures data, sends it to nearest storage node. 
We have simulated 4 sensor nodes in our experiment. 

 

Fig 7. Storage node 

Storage node cannot see the actual values of sensor 
collected data unless it enters the correct password. This 
ensures that an attacker cannot understand the data stored 
on a compromised storage node. By this it can preserves 
the privacy. 

 

Fig 8. Login Page 

From Login page, user can login to sink node. 

 

Fig 9. Sink node(MHT) 

Sink node, which incorporates Merkle Hash Tree(MHT) 
as to provide integrity for query result. Sink node can 
view the received files, misbehave details, file details. It 
can throw a range query to storage node. 

 

Fig 10. Sink node(NC) 

Sink node(NC), which incorporates Neighborhood 
Chaining as to provide integrity for query result. This sink 
also does the same functionalities as that of sink which 
incorporates Merkle hash tree. 
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Fig 11. Performance Comparison with respect to Space Consumption. 

Neighborhood Chaining consumes less space than Merkle 
Hash Tree. 

 

Fig 12. Performance Comparison with respect to Power Consumption. 

Since Merkle Hash Tree does more computation than 
Neighborhood Chaining. So Merkle Hash Tree consumes 
more space than Neighborhood Chaining. So 
Neighborhood Chaining is better than Merkle Hash Tree. 

Viii Conclusion And Future Work 

SafeQ preserves the Privacy and Integrity in two-tired 
sensor wireless sensor networks efficiently. SafeQ uses 
the techniques of prefix membership verification, Merkle 
hash trees, and neighborhood chaining. In terms of 
security, SafeQ significantly strengthens the security of 
two-tiered sensor networks. Unlike prior art, SafeQ 
prevents a compromised storage node from obtaining a 
reasonable estimation on the actual values of sensor 
collected data items and sink issued queries. SafeQ also 
allows a sink to detect compromised storage nodes when 
they misbehave. Neighborhood Chaining is better than 
Merkle Hash Tree in terms of storage space and power 
consumption. Future work on this thesis is to experiment 
SafeQ with multidimensional dimensional data. 
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