
IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.7, July 2015

99

Manuscript received July 5, 2015
Manuscript revised July 20, 2015

Security Preserving Range Queries in Sensor Networks

Madhuri Bijjal † and Vidya Kulkarni ††

Department of CSE, GIT, Belgaum, Karnataka, India.

Summary
The architecture of two-tiered sensor networks, where storage
nodes serve as an intermediate tier between sensors and a sink
for storing data and processing queries, has been widely adopted
because of the benefits of power and storage saving for sensors
as well as the efficiency of query processing. However, the
importance of storage nodes also makes them attractive to
attackers. In this paper, SafeQ, a protocol that prevents attackers
from gaining information from both sensor collected data and
sink issued queries. SafeQ also allows a sink to detect
compromised storage nodes when they misbehave. To preserve
privacy, SafeQ uses a novel technique to encode both data and
queries such that a storage node can correctly process encoded
queries over encoded data without knowing their values. To
preserve integrity, consider two different schemes—one using
Merkle hash trees and another using a new data structure called
neighborhood chains—to generate integrity verification
information so that a sink can use this information to verify
whether the result of a query contains exactly the data items that
satisfy the query.
Keywords:
Integrity, privacy, range queries, sensor networks.

1. Introduction

Wireless sensor networks (WSNs) have been widely
deployed for various applications, such as environment
sensing, building safety monitoring, earthquake prediction
etc. In this, consider a two-tiered sensor network
architecture in which storage nodes gather data from
nearby sensors and answer queries from the sink of the
network. The storage nodes serve as an intermediate tier
between the sensors and the sink for storing data and
processing queries. Storage nodes bring three main
benefits to sensor networks. First, sensors save power by
sending all collected data to their closest storage node
instead of sending them to the sink through long routes.
Second, sensors can be memory-limited because data are
mainly stored on storage nodes. Third, query processing
becomes more efficient because the sink only
communicates with storage nodes for queries.
The inclusion of storage nodes also brings significant
security challenges. As storage nodes store data received
from sensors and serve as an important role for answering
queries, they are more vulnerable to be compromised,
especially in a hostile environment. A compromised
storage node imposes significant threats to a sensor

network. First, the attacker may obtain sensitive data that
has been, or will be, stored in the storage node. Second,
the compromised storage node may return forged data for
a query. Third, this storage node may not include all data
items that satisfy the query.
Therefore, there is a need to design a protocol that
prevents attackers from gaining information from both
sensor collected data and sink issued queries, which
typically can be modeled as range queries, and allows the
sink to detect compromised storage nodes when they
misbehave. For privacy, compromising a storage node
should not allow the attacker to obtain the sensitive
information that has been, and will be, stored in the node,
as well as the queries that the storage node has received,
and will receive. Note that we treat the queries from the
sink as confidential because such queries may leak critical
information about query issuers’ interests, which need to
be protected especially in military applications. For
integrity, the sink needs to detect whether a query result
from a storage node includes forged data items or does not
include all the data that satisfy the query.
 1.1 Technical Challenges
There are two key challenges in solving the privacy and
integrity-preserving range query problem. First, a storage
node needs to correctly process encoded queries over
encoded data without knowing their actual values. Second,
a sink needs to verify that the result of a query contains all
the data items that satisfy the query and does not contain
any forged data.

 1.2 Limitations of Prior Art

Although important, the privacy and integrity preserving
range query problem has been under-investigated. The
prior art solution to this problem was proposed by Sheng
and Li in their recent seminal work. We call it “S&L
scheme”[1]. This scheme has two main drawbacks: 1) it
allows attackers to obtain a reasonable estimation on both
sensor collected data and sink issued queries. 2) the power
consumption and storage space for both sensors and
storage node grow exponentially with the number of
dimensions of collected data.

1.3 Proposed Approach and Key Contributions

Proposed approach uses SafeQ, a novel privacy and
integrity preserving range query protocol for two-tiered

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.7, July 2015 100

sensor networks. The ideas of SafeQ are fundamentally
different from S&L scheme. To preserve privacy, SafeQ
uses a novel technique to encode both data and queries
such that a storage node can correctly process encoded
queries over encoded data without knowing their actual
values. To preserve integrity, we propose a new technique
called neighborhood chaining that allows a sink to verify
whether the result of a query contains exactly the data
items that satisfy the query.
SafeQ excels the-state-of-art S&L[1] scheme in two
aspects. First, SafeQ provides significantly better security
and privacy. While prior art allows a compromised
storage node to obtain a reasonable estimation on the
value of sensor collected data and sink issued queries,
SafeQ makes such estimation very difficult. Second,
SafeQ delivers orders of magnitude better performance on
both power consumption and storage space for data,
which are most common in practice as most sensors are
equipped with multiple sensing modules.

2. Models And Problem Statement

 2.1 System Model

A two-tired sensor network consists of three types of
nodes: sensors, storage nodes, and a sink. Sensors are
inexpensive sensing devices with limited storage and
computing power. They are often massively distributed in
a field for collecting physical or environmental data, e.g.,
temperature. Storage nodes are powerful wireless devices
that are equipped with much more storage capacity and
computing power than sensors. Each sensor periodically
sends collected data to its nearby storage node. The sink is
the point of contact for users of the sensor network. Each
time the sink receives a question from a user, it first
translates the question into multiple queries and then
disseminates the queries to the corresponding storage
nodes, which process the queries based on their data and
return the query results to the sink. The sink unifies the
query results from multiple storage nodes into the final
answer and sends it back to the user.

Fig 1: Architecture of two-tired sensor networks

For the above network architecture, assume that all sensor
nodes and storage nodes are loosely synchronized with the
sink. With loosely synchronization in place, we divide
time into fixed duration intervals and every sensor collects

data once per time interval. From a starting time that all
sensors and the sink agree upon, every n time intervals
form a time slot. From the same starting time, after a
sensor collects data for n times, it sends a message that
contains a 3-tuple (i, t, {d1, · · · , dn}), where i is the
sensor ID and t is the sequence number of the time slot in
which the n data items {d1, · · · , dn} are collected by
sensor si. A range query “finding all the data items, which
are collected at time slot t and whose value is in the range
[a, b]” is denoted as {t, [a, b]}. Note that the queries in
most sensor network applications can be easily modeled
as range queries.

 2.2 Threat Model

For a two-tiered sensor network, assume that the sensors
and the sink are trusted, but the storage nodes are not. In a
hostile environment, both sensors and storage nodes can
be compromised. If a sensor is compromised, the
subsequent collected data of the sensor will be known to
the attacker, and the compromised sensor may send forged
data to its closest storage node. However, the data from
one sensor constitute a small fraction of the collected data
of the whole sensor network. Therefore, we mainly focus
on the scenario where a storage node is compromised.
Compromising a storage node can cause much greater
damage to the sensor network than compromising a sensor.
After a storage node is compromised, the large quantity of
data stored on the node will be known to the attacker, and
upon receiving a query from the sink, the compromised
storage node may return a falsified result formed by
including forged data or excluding legitimate data.
Therefore, attackers are more motivated to compromise
storage nodes.

2.3 Problem Definition

The fundamental problem for a two-tired sensor network
is the following: How to design the storage scheme and
the query protocol in secured manner? Here in this context,
security comes in two flavours such as privacy and
integrity. A satisfactory solution to this problem should
meet the following two requirements:
Data and query privacy: Data privacy means that a storage
node cannot know the actual values of sensor collected
data. This ensures that an attacker cannot understand the
data stored on a compromised storage node. Query
privacy means that a storage node cannot know the actual
value of sink issued queries. This ensures that an attacker
cannot understand, or deduce useful information from, the
queries that a compromised storage node receives.
Data integrity: If a query result that a storage node sends
to the sink includes forged data or excludes legitimate
data, the query result is guaranteed to be detected by the
sink as invalid. Besides these two hard requirements, a
desirable solution should have low power and space

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.7, July 2015 101

consumption because these wireless devices have limited
resources.

3. Privacy Preserving Scheme

To preserve privacy, each sensor si encrypts data items
d1,…,dn using its secret key ki, denoted as
(d1)ki ,... ,(dn)ki. Note that, ki is a shared secret key with
the sink. However, the key challenge is how a storage
node processes encrypted queries over encrypted data
without knowing their values. The idea of our solution is
to convert sensor collected data and sink issued queries to
prefixes, and then use prefix membership
verification[8][9] to check whether a data item satisfies a
range query.
To prevent a storage node from knowing the values of
data items and range queries, sensors and the sink apply
Hash Message Authentication Code (HMAC) to each
prefix converted from the data items and range queries.
For example, consider sensor collected data {1, 4, 5, 7, 9}
and a sink issued query [3,7] in Fig. 2. The sensor first
converts the collected data to ranges [min,1], [1,4], …. ,
[9,max], where min and max denote the lower and upper
bound for all possible data items, respectively. Second,
the sensor converts each range [dj, dj+1] to prefixes,
denoted as p([dj , dj+1]), and then apply HMAC to each
prefix in p([dj , dj+1]), denoted as hg(p([dj , dj+1])). Third,
the sensor sends the result to a storage node. When the
sink performs query [3,7], it first converts 3 and 6 to
prefixes, denoted as p(3) and p(7), respectively, and then
apply HMAC to each prefix in p(3) and p(7), denoted as
hg (p(3)) and hg (p(6)), respectively. Upon receiving
query hg (p(3)) and hg (p7)) from the sink, the storage
node checks which hg(p([dj , dj+1])) has common
elements with hg(p(3)) or Hg(p(7)). Based on prefix
membership verification, if hg (p(a)) ∩ hg (p([dj , dj+1]))
6≠ ∅. , a ∈ [dj , dj+1]. Therefore, hg (p(3)) ∩ hg(p([1,
4])) 6≠ ∅. And hg (p(7)) ∩ hg (p([5, 7])) ≠ ∅.. Finally,
the storage node finds that the query result of [3,7]
includes two data items 4 and 5, and then sends (4)ki and
(5)ki to the sink.

Fig 2: Privacy preserving scheme of SafeQ

4. Integrity Preserving Scheme

The meaning of data integrity is two-fold in this context.
In the result that a storage node sends to the sink in
responding to a query, first, the storage node cannot

include any data item that does not satisfy the query;
second, the storage node cannot exclude any data item
that satisfies the query. To allow the sink to verify the
integrity of a query result, the query response from a
storage node to the sink consists of two parts: (1) the
query result QR, which includes all the encrypted data
items that satisfy the query; (2) the verification object VO,
which includes information for the sink to verify the
integrity of QR. To achieve this purpose, we propose two
schemes based on two different techniques: Merkle hash
trees and neighborhood chains.

 4.1 Merkle Hash Trees

Each time a sensor sends data items to storage nodes, it
constructs a Merkle hash tree for the data items. Fig.
shows a Merkle hash tree constructed for eight data items.
Suppose sensor si wants to send n=2m encrypted data
items (d1)ki,.....(dn)ki to a storage node. Sensor si first
builds a Merkle hash tree for the n=2m data items, which
is a complete binary tree. The terminal nodes are
H1…..Hn, where Hj=h((dj)ki) for every 1 ≤ j ≤ n .
Function is a one-way hash function such SHA-1.

Fig 3 Merkle hash tree for eight data items

The value of each non terminal node v, whose children are
vl and vr, is the hash of the concatenation of vl’s value
and vr’s value. For example, in Fig.3, H12=h(H1|H2) .
Note that if the number of data items n is not a power of 2,
interim hash values that do not have a sibling value to
which they may be concatenated are promoted, without
any change, up the tree until a sibling is found. Note that
the resulting Merkle hash tree will not be balanced. For
the example Merkle hash tree in Fig. 4.4, if we remove the
nodes H6, H7, H8, H78 and let H58 = H56 = H5, the
resulting unbalanced tree is the Merkle hash tree for five
data items.
The Merkle hash tree used in our solution has two special
properties that allow the sink to verify query result
integrity. First, the value of the root is computed using a
keyed HMAC function, where the key is ki, the key
shared between sensor and the sink. For example, in Fig.
4, H18 = HMACki(H14 |H58) . Using a keyed HMAC
function gives us the property that only sensor and the
sink can compute the root value. Second, the terminal
nodes are arranged in an ascending order based on the
value of each data item.

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.7, July 2015 102

We first discuss what a sensor si needs to send to its
nearest storage node along its data items dj. Each time
sensor si wants to send encrypted data items to a storage
node, it first computes a Merkle hash tree over the
encrypted data items, and then sends the root value along
with the n encrypted data items to a storage node. Note
that among all the nodes in the Merkle hash tree, only the
root is sent from sensor si to the storage node because the
storage node can compute all other nodes in the Merkle
hash tree by itself.
Next, can discuss what a storage node needs to send to the
sink along a query result, i.e., what should be included in
a verification object. For the storage node that is near to
sensor , each time it receives a query [a,b] from the sink, it
first finds the data items that are in the range. Second, it
computes the Merkle hash tree (except the root) from the
data items. Third, it sends the query result QR and the
verification object VO to the sink. Given data items
(d1)ki,.....(dn)ki in a storage node, where d1,…dn, and a
range [a,b], where dn-1< a < dn1< …..< dn2 ≤ b < dn2+1
and 1 ≤ n1-1 < n2+1 ≤ n, and the query result QR=
{ (dn1)ki……{(dn2)ki}, the storage node should include
and in the verification object VO= {(dn-1)ki, (dn+2)ki}
because (dn-1)ki and (dn+2)ki ensure that the query result
does include all data items that satisfy the query as the
query result is bounded by them. Let’s call (dn-1)ki the
left bound of the query result, and (dn+2)ki right bound of
the query result. Note that the (dn-1)ki left bound and the
(dn+2)ki right bound may not exist. If a <=d1, then left
bound (dn-1)ki does not exist; if b <= dn, the right bound
(dn+2)ki does not exist. The verification object includes
zero to two encrypted data items and O(log n) proof nodes
in the Merkel hash tree that are needed for the sink to
verify the integrity of the query result.
Taking the example in Fig. 5, suppose a storage node has
received eight data items { (2)ki, (5)ki, (9)ki, (15)ki,
(20)ki, (23)ki, (34)ki, (40)ki } that sensor collected at time
t, and the sink wants to perform the query [10,30] on the
storage node. Using Theorem 4.1, the storage node finds
that the query result includes (15)ki, (20)ki and (23)ki
which satisfy the query. Along with the query result (i.e.,
the three data items), the storage node also sends (9)ki,
(34)ki, H12, H8 and H18 which are marked gray in
Fig.4.5, to the sink as the verification object.

Fig.4 Data integrity verification

Next, we discuss how the sink uses Merkle hash trees to
verify query result integrity. Upon receiving a query result

and its verification object, the sink computes the root
value of the Merkle hash tree and then verifies the
integrity of the query result QR= {(dn1)ki……{(dn2)ki}.
Query result integrity is preserved if and only if the
following four conditions hold.
1) The data items in the query result do satisfy the query.
2) If the left bound (dn-1)ki exists, verify dn-1 < a that
and (dn-1)ki is the nearest left neighbor of in the Merkle
hash tree; otherwise, verify that (dn)ki is the leftmost
encrypted data item in the Merkle hash tree.
3) If the right bound (dn+2)ki exists, verify that b < dn+2
and (dn+2)ki is the nearest right neighbor of (dn2)ki in the
Merkle hash tree; otherwise, verify that (dn2)ki is the
rightmost encrypted data item in the Merkle hash tree.
4) The computed root value is the same as the root value
included in VO.
Note that sorting data items is critical in our scheme for
ensuring the integrity of query result. Without this
property, it is difficult for a storage node to prove query
result integrity without sending all data items to the sink.

4.2 Neighborhood Chaining

A new datastructure to preserve integrity called
neighborhood chains and then discuss its use in integrity
verification. Given n data items d1, · · · , dn, where d0 <
d1 < · · · < dn < dn+1, we call the list of n items
encrypted using key ki, (d0|d1)ki , (d1|d2)ki , · · · ,
(dn−1|dn)ki , (dn|dn+1)ki, the neighborhood chain for the
n data items. Here “|” denotes concatenation. For any item
(dj−1|dj)ki in the chain, we call dj the value of the item
and (dj |dj+1)ki the right neighbor of the item. Figure 4.6
shows the neighborhood chain for the 5 data items 1, 3, 5,
7 and 9.

Fig.5. An example neighborhood chain

Preserving query result integrity using neighborhood
chaining works as follows. After collecting n data items
d1, · · · , dn, sensor si sends the corresponding
neighborhood chain (d0|d1)ki , (d1|d2)ki , · · · ,
(dn−1|dn)ki , (dn|dn+1)ki, instead of (d1)ki , · · ·, (dn)ki ,
to a storage node. Given a range query [a, b], the storage
node computes QR as usual. The corresponding
verification object VO only consists of the right neighbor
of the largest data item in QR. Note that VO always
consists of one item for any query. If QR =
{(dn1−1|dn1)ki , · · · , (dn2−1|dn2)ki }, then VO = {(dn2
| dn2+1)ki }; if QR = ∅ , suppose dn2 < a ≤ b < dn2+1,
then VO = {(dn2 |dn2+1)ki}.
After the sink receives QR and VO, it verifies the
integrity of QR as follows. First, the sink verifies that

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.7, July 2015 103

every item in QR satisfies the query. Second, the sink
verifies that the storage node has not excluded any item
that satisfies the query.
 Let {(dn1−1|dn1)ki , · · ·, (dj−1|dj)ki , · · · ,
(dn2−1|dn2)ki } be the correct query result and QR be the
query result from the storage node. Let’s consider the
following four cases:
1) If there exists n1 < j < n2 such that (dj−1|dj)ki does not
belong to QR, the sink can detect this error because the
items in QR do not form a neighborhood chain.
2) If (dn1−1|dn1)ki does not belong to QR, the sink can
detect this error because it knows the existence of dn1
from (dn1 |dn1+1)ki and dn1 satisfies the query.
3)If (dn2−1|dn2)ki does not belong to QR, the sink can
detect this error because it knows the existence of dn2
from the item (dn2 |dn2+1)ki in VO and dn2 satisfies the
query.
4)If QR = ∅, the sink can verify this fact because the item
(dn2 |dn2+1)ki in VO should satisfy the property dn2 < a
≤ b < dn2+1.
Note that our submission and query protocols are
designed to facilitate integrity verification. To process
query [a, b] over data items d1, · · · , dn, instead of testing
whether each data item di is in [a, b], we test which ranges
among [d0, d1], [d1, d2], · · ·, [dn, dn+1] contain a and
which ranges contain b. Thus, a storage node not only can
find which items satisfy a query, but also can find the
right neighbor of the largest data item in the query result,
which is the verification object.

5. Complexity And Security Analysis

5.1 Complexity Analysis

Assume that a sensor collects n data items in a time-slot,
each attribute of a data item is a w0-bit number, and the
HMAC result of each numericalized prefix is a wh
number. The computation cost, communication cost, and
storage space of SafeQ are described in Table 1. Note that
the communication cost denotes the number of bytes sent
for each submission or query, and the storage space
denotes the number of bytes stored in a storage node for
each submission. Furthermore, note that whether sensor
nodes report to storage nodes periodically or upon some
events has no impact on these costs of one time sending of
data items.

Table 1: Complexity Analysis of SafeQ
 Computation Communication Space

Sensor O(w0n) hash
O(n) encryption

O(w0 wh n) -

Storage
node

O(w0z) hash O(n) O(w0
wh n)

Sink O(w0z) hash O(w0) -

5.2 Privacy Analysis

In a SafeQ protected two-tiered sensor network,
compromising a storage node does not allow the attacker
to obtain the actual values of sensor collected data and
sink issued queries. The correctness of this claim is based
on the fact that the hash functions and encryption
algorithms used in SafeQ are secure. In the submission
protocol, a storage node only receives encrypted data
items and the secure hash values of prefixes converted
from the data items. Without knowing the keys used in the
encryption and secure hashing, it is computationally
infeasible to compute the actual values of sensor collected
data and the corresponding prefixes. In the query protocol,
a storage node only receives the secure hash values of
prefixes converted from a range query. Without knowing
the key used in the secure hashing, it is computationally
infeasible to compute the actual values of sink issued
queries.

Next, we analyze information leaking if HMACg() does
not satisfy the one-wayness property. More formally,
given y, where y = HMACg(x) and x is a numericalized
prefix, suppose that a storage node takes O(T) steps to
compute x. Recall that the number of HMAC hashes sent
from a sensor is O(w0n). To reveal a data item dj , the
storage node needs to reveal all the numericalized prefixes
in HMACg(N(S([dj-1, dj]))). Thus, to reveal n data items,
the storage node would take O(w0nT) steps. Here, T=
2128 for HMAC.

Note that if a storage node and a sensor are both
compromised, the storage node may reveal the sensor
collected data and sink issued queries by employing brute-
force attacks. In this case, the storage node knows the
shared secret key g for the function HMAC. Due to the
one-wayness property of HMACg, the storage node
cannot reveal x directly using HMACg(x) and g. However,
it can compute the HMACg results of the numericalized
prefixes for all possible values in the data domain in a
brute-force manner, and then compare the HMACg results
with the received data and queries. Based on the
comparison, the storage node can reveal the sensor
collected data and sink issued queries. However, in
practice, this computational cost could be prohibitive for a
large data domain.

 5.3 Integrity Analysis

For scheme using Merkle hash trees, the correctness of
this claim is based on the property that any change of leaf
nodes in a Merkle hash tree will change the root value.
Recall that the leaf nodes in a Merkle hash tree are sorted
according to their values. In a query response, the left
bound of the query result (if it exists), the query result,

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.7, July 2015 104

and the right bound of the query result (if it exists) must
be consecutive leaf nodes in the Merkle hash tree. If the
storage node includes forged data in the query result or
excludes a legitimate data item from the query result, the
root value computed at the sink will be different from the
root value computed at the corresponding sensor.

For scheme using neighborhood chains, the correctness of
this claim is based on the following three properties that
QR and VO should satisfy for a query. First, items in
QR ∪ VO form a chain. Excluding any item in the middle
or changing any item violates the chaining property.
Second, the first item in QR ∪ VO contains the value of
its left neighbor, which should be out of the range query
on the smaller end. Third, the last item in QR ∪ VO
contains the value of its right neighbor, which should be
out of the range query on the larger end.

6. Experimental Results

To get desired result,Pentium-4,genuine Intel, 2GB RAM,
40GB hard Disk, Windows XP/7,Eclipse indigo IDE, java
language, MySQL database.

Fig 6. Sensor node

Sensor node captures data, sends it to nearest storage node.
We have simulated 4 sensor nodes in our experiment.

Fig 7. Storage node

Storage node cannot see the actual values of sensor
collected data unless it enters the correct password. This
ensures that an attacker cannot understand the data stored
on a compromised storage node. By this it can preserves
the privacy.

Fig 8. Login Page

From Login page, user can login to sink node.

Fig 9. Sink node(MHT)

Sink node, which incorporates Merkle Hash Tree(MHT)
as to provide integrity for query result. Sink node can
view the received files, misbehave details, file details. It
can throw a range query to storage node.

Fig 10. Sink node(NC)

Sink node(NC), which incorporates Neighborhood
Chaining as to provide integrity for query result. This sink
also does the same functionalities as that of sink which
incorporates Merkle hash tree.

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.7, July 2015 105

Fig 11. Performance Comparison with respect to Space Consumption.

Neighborhood Chaining consumes less space than Merkle
Hash Tree.

Fig 12. Performance Comparison with respect to Power Consumption.

Since Merkle Hash Tree does more computation than
Neighborhood Chaining. So Merkle Hash Tree consumes
more space than Neighborhood Chaining. So
Neighborhood Chaining is better than Merkle Hash Tree.

Viii Conclusion And Future Work

SafeQ preserves the Privacy and Integrity in two-tired
sensor wireless sensor networks efficiently. SafeQ uses
the techniques of prefix membership verification, Merkle
hash trees, and neighborhood chaining. In terms of
security, SafeQ significantly strengthens the security of
two-tiered sensor networks. Unlike prior art, SafeQ
prevents a compromised storage node from obtaining a
reasonable estimation on the actual values of sensor
collected data items and sink issued queries. SafeQ also
allows a sink to detect compromised storage nodes when
they misbehave. Neighborhood Chaining is better than
Merkle Hash Tree in terms of storage space and power
consumption. Future work on this thesis is to experiment
SafeQ with multidimensional dimensional data.

References
[1] B. Sheng and Q. Li, “Verifiable privacy-preserving range

query in two tiered sensor networks,” in Proc. IEEE
INFOCOM, 2008, pp. 46-50.

[2] J. Shi, R. Zhang, and Y. Zhang, “Secure range queries in
tiered sensor networks,” in Proc. IEEE INFOCOM, 2009,
pp. 945–953.

[3] B. Hore, S. Mehrotra, and G.Tsudik, “A privacy-preserving
index for range queries,” in Proc. VLDB, 2004, pp. 720–
731.

[4] D. Boneh and B. Waters, “Conjunctive, subset, and range
queries on encrypted data,” in Proc. TCC, 2007, pp. 535–
554.

[5] M. Narasimha and G. Tsudik, “Authentication of
outsourced databases using signature aggregation and
chaining,” in Proc. DASFAA, 2006, pp. 420–436.

[6] H.Chen, X.Man,W.Hsu, N. Li, and Q.Wang, “Access
control friendly query verification for outsourced data
publishing,” in Proc. ESORICS, 2008, pp. 177–191.

[7] E.-J. Goh, H. Shacham, N. Modadugu, and D. Boneh,
“Sirius: Securing remote untrusted storage,” in Proc. NDSS,
2003, pp. 131–145.

[8] J. Cheng, H. Yang, S. H.Wong, and S. Lu, “Design and
implementation of cross-domain cooperative firewall,” in
Proc. IEEE ICNP, 2007, pp. 284-293.

[9] A. X. Liu and F. Chen, “Collaborative enforcement of
firewall policies in virtual private networks,” in Proc. ACM
PODC, 2008, pp. 29-42.

[10] D. Eastlake and P. Jones, “Us secure hash algorithm 1
(sha1),” RFC 3174, 2001.

[11] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-
hashing for message authentication,” RFC 2104, 1997.

[12] B. Bloom, “Space/time trade-offs in hash coding with
allowable errors,” Commun. ACM vol. 13, no. 7, pp. 422–
426, 1970.

[13] R. Merkle, “Protocols for public key cryptosystems,” in
Proc. IEEE S&P, 1980, pp. 122–134.

[14] F. Chen and A. X. Liu, “SafeQ: Secure and efficient query
processing in sensor networks,” in Proc. IEEE INFOCOM,
2010, pp. 1-9.

[15] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan,
L. Yin, and F. Yu, “Data-centric storage in sensornets with
GHT, a geographic hash table,” Mobile Netw. Appl., vol. 8,
no. 4,, 2003, pp.427-442.

[16] P. Desnoyers, D. Ganesan, H. Li, and P. Shenoy, “Presto:A
predictive storage architecture for sensor networks,” in Proc.
HotOS, 2005.

[17] B. Sheng, C. C. Tan, Q. Li, and W. Mao, “An
approximation algorithm for data storage placement in
sensor networks,” in Proc. WASA, 2007,

[18] J. Shi, R. Zhang, and Y. Zhang, “Secure range queries in
tiered sensor networks,” in Proc. IEEE INFOCOM, 2009.

[19] H. Pang, A. Jain, K. Ramamritham, and K.-L. Tan,
“Verifying completeness of relational query results in data
publishing,” in Proc. ACM SIGMOD, 2005.

