
IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.8, August 2015

16

Manuscript received August 5, 2015
Manuscript revised August 20, 2015

Decentralised Hash Function

Petr Ležák†

Faculty of Electrical Engineering and Communication Brno University of Technology

Summary
In this article, a new hash function is introduced. The hash
function is calculated by several parties – the client and one or
more servers. If a user or attacker wants to calculate the hash of
any message, he has to query all the servers. This means that if
the attacker wants to invert the hash function by brute-force
attack, he has to query the servers frequently. Servers can detect
a heavy load and deny queries submitted by the attacker, or limit
them. The calculation is done in a way that no server can detect
which message is hashed nor trick the client to calculate a wrong
value. This new decentralised hash function is useful in the case
of wanting to hide some information by hashing, but the
information has relatively low entropy, so brute-force attack is
possible. One example is hashing of passwords to store them.
Key words:
Hash function, security, confidentiality, decentralisation

1. Introduction

The classical hash function h=H(m) assigns the fixed
length hash h to a variable length message m. There are
three requirements the that hash function must fulfil [1]:
Requirement 1 Pre-image resistance - it is not possible
to find message m for given hash h so h=H(m).
Requirement 2 Second pre-image resistance - it is not
possible to find message m2 for given message m1 so
H(m1)=H(m2).
Requirement 3 Collision resistance - it is not possible
to find two messages m1 and m2 so H(m1)=H(m2).
One possible use of the hash function is to safely store
passwords. Instead of storing password p we can store
h=H(p) or better h=H(s||p), where s a is randomly chosen
string called salt. The salt s is stored with the hash h and is
a protection against the pre-creation of hash dictionaries,
called rainbow tables. To verify the password, we simply
perform the calculation again and compare the calculated
hash with the stored one. The attacker who gets h and s
cannot inverse the hash function so, cannot calculate the
correct password p. If the password p has enough entropy,
then it is stored safely. But if it has not, the attacker can
try to hash different passwords and see if the calculated
hash is the same as the stored one. The only way of
preventing this brute-force or dictionary attack is to limit
the number of hash calculations by the attacker. A
classical method of doing this is to make the hash
calculation slow by hashing the input many times. In this

article, another method is described – the use of one or
more trusted servers.

2. General definition of decentralized hash
function

Let us define the decentralised hash H’ by Equation (1):
H‘(m)=H2(f(H1(m))||m) (1)

H1 and H2 are hash functions and f is a function that can
be calculated just by the server and returns a fixed length
byte sequence. We have to prove that this definition
preserves the properties of the hash function H2.
We make a substitution g(m)=f(H1(m))||m. Please note
that g(m) is defined in such a way that it maps different
messages m to different values g(m) regardless of the
definition of functions f and H1 provided that the result of
function f has a constant length. This is ensured by
concatenation of message m. Now we can prove that
function H’ has the properties of the hash function

1. Pre-image resistance: Suppose that we can find
message m for given hash H’(m). But then we
can calculate g(m) which means that we can
invert hash function H2. If hash function H2 is
pre-image resistant then hash function H‘ is also
pre-image resistant.

2. Second pre-image resistance: Suppose that we
can find message m2 for a given message m1 so
that H’(m1)=H’(m2). But then g(m1) and h(m2)
are different messages with the same hash H2. If
hash function H2 is second pre-image resistant
for all messages (especially for messages in the
form of g(m)), then hash function H’ is also
second pre-image resistant for all messages.

3. Collision resistance: Suppose that we can find
two different messages m1 and m2 with the same
hash H’(m1)=H’(m2). This means that H2(g(m1))
= H2(g(m2)) so we have two different messages
g(m1) and g(m2) with the same value of hash
function H2. If hash function H2 is collision
resistant, then hash function H’ is collision
resistant too.

If we model hash function H2 as a random oracle, then the
call of H(m)’ for different messages m means the call of
H2 with different inputs. This means that H(m)’ can be
modelled as a random oracle too.

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.8, August 2015

17

If the function f is some kind of message authentication
code (MAC), then we need to call this MAC function for
every message m to calculate H(m)’. If the MAC can be
calculated just by any server, then the server can control
the ability of H(m)’ calculation. However, further
problems arise. The server receives H1(m) so it can try a
brute-force attack on H1(m) to get message m. We have to
prevent this somehow, to ensure the confidentiality of
message m. The server can also return a wrong value
instead of f(H1(m)) so we need a method of auditing the
server.

3. Preconditions

Let us have a group G with generator g and prime order q.
Requirement 4 must hold on group G:
Requirement 4 We suppose that the Decision Diffie-
Hellman Theorem (DDH) holds on group G. This theorem
states that for a given randomly chosen a and b the
attacker who knows ga, gb and gc cannot decide if c=a*b
mod q. More information about the DDH theorem can be
found in [2].
Then we need a function Rd that converts a fixed length
sequence of bytes (hash value) to a group element. We
also need function Wr that converts the group element to
sequence of bytes. We suppose that Requirement 5 holds
on function Rd and hash function H1:
Requirement 5 For every message m Rd(H1(m)) is
equivalent to ga for unknown randomly chosen value a.
We require H2 to be a hash function, so it fulfils
Requirements 1, 2 and 3. In addition, we have
a requirement about hash value distribution:
Requirement 6 For two different randomly chosen
messages m1 and m2 probability P(H(m1)=H(m2))≤Y for
some fixed negligible Y.

4. Definition of decentralised hash

We define the function f by Equation (2) so the
decentralised hash is defined by Equation (3).

F(x)=Wr((Rd(x))k) (2)
H‘(m)=H2(Wr((Rd(H1(m)))k||m) (3)

Here, k is a private key known by the server or shared by
several servers.

5. Calculation of hash

Let us have n servers with indices from 1 to n. Each server
has a private key ki. The compound private key k is

defined as . The situation is illustrated in

Figure 1. The algorithm for the calculation of a
decentralised hash of message m is described below:

1. Client calculates S0=Rd(H1(m)).
2. For 1≤i≤n client calculates Si=Ski

i-1 using i-th
server.

3. Client calculates H’(m)=H2(Wr(Sn||m).
Calculation of Si=Ski

i-1 using i-th server is described
below:

1. Client obtains server’s certificate with public key
Li for verification of response signatures.

2. Client obtains server’s public hashing key Ki
signed by the server and verifies it’s signature
using key Li.

3. Client randomly selects non-empty set S of
distinct numbers in a range from 1 to Z. The
order is not important. z is the security parameter
described later.

4. For 1≤j≤z do:
1. Client randomly selects number 1≤v i,j≤q.
2. If j∈S then client asks server for calculation

of SKi
i-1:

1. Client sends ci,j=Svi,j
i-1 to i-th server.

2. i-th server sends di,j=cki
i,j to the client.

3. Client verifies message signature using
public key Li.

4. Client calculates ei,j=d(vi,j)-1i,j.
3. If j≠s then client asks server for calculation

of check value:
1. Client sends Ci,j=gVi,j to i-th server.
2. i-th server sends di,j=ck

i,j to the client.
3. Client verifies message signature using

public key Li.
4. Client verifies that di,j=Kvi,j

i. If not, then
he knows that the server is behaving
incorrectly and stops the protocol.

5. The client verifies that all calculated values ei,j
are the same. If not, then he knows that the
server is behaving incorrectly and stops the
protocol. Result Si is one of the calculated equal
values ei,j.

Please note that value ei,j does not depend on vi,j because
ei,j=d(vi,j)-1

i,j= cvi,j•k•v-1
i,j= ck

i,j. The server's responses are
digitally signed. The signature must be constructed in
such a way that it also contains a corresponding request. If
a server cheats, then the client will have proof of that
cheating. In the case of a wrong response to check value,
the proof are values vi,j, vd,j and the signature. In the case
of two different values ei,j, the proof are the value Si-1,
corresponding values vi,j and vd,j and the signatures.

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.8, August 2015 18

6. Properties of the decentralised hash
function

Now we consider some properties of the system. Firstly,
we should consider the confidentiality of messages. The
client sends to the first server a set of messages Svi,j

0 for at
most z different randomly chosen values vi,j. Then the
client sends a set of values S1

v2,j=S0
k1v2,j to the second

server and, so on. Generally, the client sends the set of

values . We can pessimistically assume that
servers know the private keys Kl of the preceding servers,
so they know values (cryptograms) Ci,j’=S0

Vi,j for 1≤i≤n
and 1≤j≤z in the worst case scenario. Please note that for
every group generator S0 there is exactly one vector of
random values Vi,j that leads to the vector of cryptograms
C’i,j. This means that the attacker cannot distinguish
between different generators S0. So the attacker cannot
test if a given message is hashed - value S0 is encrypted
by a one-time pad. Also, the generator g is one of the
possible values S0. This means that the server cannot
distinguish between a real query and a check value.

6.1 Confidentiality of message

The message m is hashed by the hash function H1. This
hash is then transformed by the function Wr to a group
generator and powered by several random values vi,j. As
previously discussed, this powering is equal to one-time
padding, so the server(s) or attacker listening on wire
cannot calculate the message or even test if a given
message is hashed.

6.2 Correctness of the calculated hash

One or more servers can calculate wrong values. Suppose
that i-th server want to cheat and trick the client to
calculate the wrong hash. The client sends z different
requests to the server, some of them are real queries used
for the calculation of the hash, some ask just for the
calculation of the check value. To be able to trick the
client to use the wrong value di,j he has to correctly
calculate di,j for those indices j where the client has used
check values and use the same incorrect value for those
indices j where the client has queried a real message. So
the server has to guess which queries are real and which
are just checks - it cannot distinguish between them. The
probability that this

Figure 1: System schema

guess is correct is because we have 2z possible sets
s without one illegal (all queries are checks).
The client can control how confident he should be about
the hash value by security parameter z. For instance, if the
system is used to hash authentication passwords, then
when the password is established, we need to be confident
of the correctness of the hash so we can use to have
the probability of a successful attack approximately one in
a million. On the other hand, when the user just logs in,
we can use z=2 because, in the worst case scenario, he can
try to log in again.

6.3 Necessity of communication with servers

We now prove that without interaction with all the servers
it is not possible to calculate the hash H’(m).
Suppose that the attacker can calculate the hash without
interaction with all of the servers. Without losing
generality, suppose that the attacker can interact with all
the servers except j-th. This means that he can calculate
Sj-1. If S0 is by Requirement 5 equal to ga for an unknown

randomly chosen value a then Sj-1 is equal to

where . Because q is prime, then for any fixed
set of values 1≤ki≤q the relation β → α is bijective so Sj-1
is equal to gβ with the unknown randomly chosen value β.
Now suppose that the attacker wants to break the DDH
theorem and test if value S’j is equal to correct value Sj.

He can then calculate value . Because mapping sj
→ sn is bijective then S’n is correct if and only if S’j is
correct. Then he can calculate H’’(m). If S’j is correct
then H’’(m) is of course also correct. If S’j is incorrect
then because of requirement 6 there is very high
probability that H’’(m) is also incorrect. So if the attacker
knows the correct hash H’(m) he can use it to break DDH
theorem. If we suppose that DDH theorem is valid then
the attacker must query all servers to calculate correct
hash.

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.8, August 2015

19

7. Implementation

As a group G we can use the subgroup of quadratic
residues of the multiplicative group p where p=2q and
both P and q are primes. We can use the function Rd(x) =
X2 mod q with x treated as a number in big endian.
Squaring by two makes the number a quadratic residue.
More can be found in [3]. We can use function Wr which
simply converts a number into a fixed length sequence in
big endian notation.
We can define H1(m) = SHAKE256(‘A’||m, 128+8 •
log256(p)) and H2(m)=SHAKE256(‘BB||m,512). The
shake is a hash function with configurable output length.
The length of is at least 128 bit greater than the bit
width of . This ensures that after all
remainders have nearly the same probability of occurrence.
Please note that the choice of hash functions is on the
client; the same server will work with any hash function.
For the server only group G is mandatory. If the client
uses more servers, they must use the same group G.
The client communicates with the server using any
transport protocol. For simplicity we have used Java RMI,
but any protocol, for instance TCP or TLS over TCP, can
be used. There are several methods that the client can call
on the server:

• int getProtocolVersion() - returns maximal
supported version of the protocol, 1 for now.

• Certificate getCertificate() - returns certificate of the
server with public key for verification of signatures.

• int getKeyCount() - returns keyCount, the number of
hashing keys.

• SignedResponse getKeyAt (final int keyIndex) -
returns hashing key with given index. This key
contains public key Ki and parameters of group G.

• SignedResponse powerByKey (final int keyIndex,
final byte[] base) - powers group element encoded
in field base by public key with index keyIndex.

SignedResponse contains a response from the server with
a digital signature. The signature is computed from the
request and response, so if the server sends a wrong
response, the client will have proof of this cheating. The
signing key with certificate can be obtained by method
getCertificate. Hashing public keys ki can be obtained by
method getKeyAt. Keys are numbered by index 0 ≤
keyIndex < keyCount. The server can add new keys or
make old ones deprecated but it should not delete or
change them. This ensures backward compatibility. The
structure of response with request can be seen in Figure 2.
The signature is calculated from both request and
response (the structure of request is specified just for the
purpose of the signature; of course that request is not sent
back).

Figure 2: Key request and response

Another type of request is the query for calculation of the
decentralised hash. The client sends ci,j to the server and
the server replies di,j=ck

i,j. It is realised by the method
powerByKey. Hash request and response can be seen in
Figure 3.

Figure 3: Hash response

For the present, only one group type is defined: the
subgroup of quadratic residues of group p where p=2q and
both p and q are primes. This group has groupType = 0.
Domain parameters contains just a number q and the
public key is just is just a number Ki. Hash query is
a number ci,j and hash response is a number di,j. All
numbers are encoded as shown in Figure 4. In the
beginning, there is a number of bytes required for
encoding of the number. This size is written as 4 bytes in
big endian. There after a number is encoded as big endian
using size bytes.

Figure 4: Number encoding

Conclusion

This decentralised hash function can be used instead of
the classic hash function anywhere we have access to the
server. It is beneficial to use it in situations where we are
hashing some secret information with possibly low
entropy, e.g. passwords or security questions. The testing
server and the client are implemented in the AALG library,
see [4].
We have proved that the decentralised hash function is at
least as secure as the hash function H2. We also know that
it is necessary to query the server(s) to calculate the hash
value; this depends on the DDH theorem. We have also
proved that the server cannot obtain a hashed message nor
even test if any concrete message is hashed. The server
also cannot trick the client to calculate a wrong hash value.
These properties are unconditional as long as random
values vi,j and set S are true random and the security
parameter z is large enough.

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.8, August 2015 20

References
[1] SMART, N. Cryptography: An Introduction. [online]. 3rd

Edition. URL
(http://www.cs.bris.ac.uk/~nigel/Crypto_Book/)

[2] BONEH, D. The decision Diffie-Hellman problem. In:
Third Algorithmic Number Theory Symposium: Lecture
Notes in Computer Science. Springer-Verlag, 1998 Vol.
1423. [online]. URL
(http://crypto.stanford.edu/~dabo/pubs/abstracts/DDH.html)

[3] Wolfram Research, Inc. Quadratic Residue [online]. URL
(http://mathworld.wolfram.com/QuadraticResidue.html)

[4] LEŽÁK, P. The abstract algebra library [online]. URL
(http://sourceforge.net/projects/aalg/)

http://www.cs.bris.ac.uk/%7Enigel/Crypto_Book/
http://crypto.stanford.edu/%7Edabo/pubs/abstracts/DDH.html
http://mathworld.wolfram.com/QuadraticResidue.html
http://sourceforge.net/projects/aalg/

