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Summary 
In this article, a new hash function is introduced. The hash 
function is calculated by several parties – the client and one or 
more servers. If a user or attacker wants to calculate the hash of 
any message, he has to query all the servers. This means that if 
the attacker wants to invert the hash function by brute-force 
attack, he has to query the servers frequently. Servers can detect 
a heavy load and deny queries submitted by the attacker, or limit 
them. The calculation is done in a way that no server can detect 
which message is hashed nor trick the client to calculate a wrong 
value. This new decentralised hash function is useful in the case 
of wanting to hide some information by hashing, but the 
information has relatively low entropy, so brute-force attack is 
possible. One example is hashing of passwords to store them. 
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1. Introduction 

The classical hash function h=H(m) assigns the fixed 
length hash h to a variable length message m. There are 
three requirements the that hash function must fulfil [1]: 
Requirement 1   Pre-image resistance - it is not possible 
to find message m for given hash h so h=H(m).  
Requirement 2   Second pre-image resistance - it is not 
possible to find message m2  for given message m1 so 
H(m1)=H(m2). 
Requirement 3   Collision resistance - it is not possible 
to find two messages m1 and m2 so H(m1)=H(m2).  
One possible use of the hash function is to safely store 
passwords. Instead of storing password p we can store 
h=H(p) or better h=H(s||p), where s a is randomly chosen 
string called salt. The salt s is stored with the hash h and is 
a protection against the pre-creation of hash dictionaries, 
called rainbow tables. To verify the password, we simply 
perform the calculation again and compare the calculated 
hash with the stored one. The attacker who gets h and s 
cannot inverse the hash function so, cannot calculate the 
correct password p. If the password p has enough entropy, 
then it is stored safely. But if it has not, the attacker can 
try to hash different passwords and see if the calculated 
hash is the same as the stored one. The only way of 
preventing this brute-force or dictionary attack is to limit 
the number of hash calculations by the attacker. A 
classical method of doing this is to make the hash 
calculation slow by hashing the input many times. In this 

article, another method is described – the use of one or 
more trusted servers. 

2. General definition of decentralized hash 
function 

Let us define the decentralised hash H’ by Equation (1): 
H‘(m)=H2(f(H1(m))||m)  (1) 

H1 and H2 are hash functions and f is a function that can 
be calculated just by the server and returns a fixed length 
byte sequence. We have to prove that this definition 
preserves the properties of the hash function H2. 
We make a substitution g(m)=f(H1(m))||m. Please note 
that g(m) is defined in such a way that it maps different 
messages m to different values g(m) regardless of the 
definition of functions f and H1 provided that the result of 
function f has a constant length. This is ensured by 
concatenation of message m. Now we can prove that 
function H’ has the properties of the hash function 

1. Pre-image resistance: Suppose that we can find 
message m for given hash H’(m). But then we 
can calculate g(m) which means that we can 
invert hash function H2. If hash function H2 is 
pre-image resistant then hash function H‘ is also 
pre-image resistant.  

2. Second pre-image resistance: Suppose that we 
can find message m2 for a given message m1 so 
that H’(m1)=H’(m2). But then g(m1) and h(m2) 
are different messages with the same hash H2. If 
hash function H2 is second pre-image resistant 
for all messages (especially for messages in the 
form of g(m)), then hash function H’ is also 
second pre-image resistant for all messages. 

3. Collision resistance: Suppose that we can find 
two different messages m1 and m2 with the same 
hash H’(m1)=H’(m2). This means that H2(g(m1)) 
= H2(g(m2)) so we have two different messages 
g(m1) and g(m2) with the same value of hash 
function H2. If hash function H2 is collision 
resistant, then hash function H’ is collision 
resistant too.  

If we model hash function H2 as a random oracle, then the 
call of H(m)’ for different messages m means the call of 
H2 with different inputs. This means that H(m)’ can be 
modelled as a random oracle too. 



IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.8, August 2015 

 

17 

If the function f is some kind of message authentication 
code (MAC), then we need to call this MAC function for 
every message m to calculate H(m)’. If the MAC can be 
calculated just by any server, then the server can control 
the ability of H(m)’ calculation. However, further 
problems arise. The server receives H1(m) so it can try a 
brute-force attack on H1(m) to get message m. We have to 
prevent this somehow, to ensure the confidentiality of 
message m. The server can also return a wrong value 
instead of f(H1(m)) so we need a method of auditing the 
server. 

3. Preconditions 

Let us have a group G with generator g and prime order q. 
Requirement 4 must hold on group G: 
Requirement 4   We suppose that the Decision Diffie-
Hellman Theorem (DDH) holds on group G. This theorem 
states that for a given randomly chosen a and b the 
attacker who knows ga, gb and gc cannot decide if c=a*b 
mod q. More information about the DDH theorem can be 
found in [2]. 
Then we need a function Rd that converts a fixed length 
sequence of bytes (hash value) to a group element. We 
also need function Wr that converts the group element to 
sequence of bytes. We suppose that Requirement 5 holds 
on function Rd and hash function H1: 
Requirement 5   For every message m Rd(H1(m)) is 
equivalent to ga for unknown randomly chosen value a.  
We require H2 to be a hash function, so it fulfils 
Requirements 1, 2 and 3. In addition, we have 
a requirement about hash value distribution: 
Requirement 6   For two different randomly chosen 
messages m1 and m2 probability P(H(m1)=H(m2))≤Y for 
some fixed negligible Y.  

4. Definition of decentralised hash 

We define the function f by Equation (2) so the 
decentralised hash is defined by Equation (3). 

F(x)=Wr((Rd(x))k) (2) 
H‘(m)=H2(Wr((Rd(H1(m)))k||m) (3) 

Here, k is a private key known by the server or shared by 
several servers. 

5. Calculation of hash 

Let us have n servers with indices from 1 to n. Each server 
has a private key ki. The compound private key k is 

defined as . The situation is illustrated in 

Figure 1. The algorithm for the calculation of a 
decentralised hash of message m is described below: 

1. Client calculates S0=Rd(H1(m)).  
2. For 1≤i≤n client calculates Si=Ski

i-1 using i-th 
server.  

3. Client calculates H’(m)=H2(Wr(Sn||m). 
Calculation of Si=Ski

i-1 using i-th server is described 
below: 

1. Client obtains server’s certificate with public key 
Li for verification of response signatures. 

2. Client obtains server’s public hashing key Ki 
signed by the server and verifies it’s signature 
using key Li. 

3. Client randomly selects non-empty set S of 
distinct numbers in a range from 1 to Z. The 
order is not important. z is the security parameter 
described later. 

4. For 1≤j≤z do:  
1. Client randomly selects number 1≤v i,j≤q. 
2. If j∈S then client asks server for calculation 

of SKi
i-1:  

1. Client sends ci,j=Svi,j
i-1 to i-th server.  

2. i-th server sends di,j=cki
i,j to the client. 

3. Client verifies message signature using 
public key Li. 

4. Client calculates ei,j=d(vi,j)-1i,j.  
3. If j≠s then client asks server for calculation 

of check value:  
1. Client sends Ci,j=gVi,j to i-th server. 
2. i-th server sends di,j=ck

i,j to the client.  
3. Client verifies message signature using 

public key Li. 
4. Client verifies that di,j=Kvi,j

i. If not, then 
he knows that the server is behaving 
incorrectly and stops the protocol.  

5. The client verifies that all calculated values ei,j 
are the same. If not, then he knows that the 
server is behaving incorrectly and stops the 
protocol. Result Si is one of the calculated equal 
values ei,j. 

Please note that value ei,j does not depend on vi,j because 
ei,j=d(vi,j)-1

i,j= cvi,j•k•v-1
i,j= ck

i,j. The server's responses are 
digitally signed. The signature must be constructed in 
such a way that it also contains a corresponding request. If 
a server cheats, then the client will have proof of that 
cheating. In the case of a wrong response to check value, 
the proof are values vi,j, vd,j and the signature. In the case 
of two different values ei,j, the proof are the value Si-1, 
corresponding values vi,j and vd,j and the signatures.  
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6. Properties of the decentralised hash 
function 

Now we consider some properties of the system. Firstly, 
we should consider the confidentiality of messages. The 
client sends to the first server a set of messages Svi,j

0 for at 
most z different randomly chosen values vi,j. Then the 
client sends a set of values S1

v2,j=S0
k1v2,j to the second 

server and, so on. Generally, the client sends the set of 

values . We can pessimistically assume that 
servers know the private keys Kl of the preceding servers, 
so they know values (cryptograms) Ci,j’=S0

Vi,j for 1≤i≤n 
and 1≤j≤z in the worst case scenario. Please note that for 
every group generator S0 there is exactly one vector of 
random values Vi,j that leads to the vector of cryptograms 
C’i,j. This means that the attacker cannot distinguish 
between different generators S0. So the attacker cannot 
test if a given message is hashed - value S0 is encrypted 
by a one-time pad. Also, the generator g is one of the 
possible values S0. This means that the server cannot 
distinguish between a real query and a check value. 

6.1 Confidentiality of message 

The message m is hashed by the hash function H1. This 
hash is then transformed by the function Wr to a group 
generator and powered by several random values vi,j. As 
previously discussed, this powering is equal to one-time 
padding, so the server(s) or attacker listening on wire 
cannot calculate the message or even test if a given 
message is hashed. 

6.2 Correctness of the calculated hash 

One or more servers can calculate wrong values. Suppose 
that i-th server want to cheat and trick the client to 
calculate the wrong hash. The client sends z different 
requests to the server, some of them are real queries used 
for the calculation of the hash, some ask just for the 
calculation of the check value. To be able to trick the 
client to use the wrong value di,j he has to correctly 
calculate di,j for those indices j where the client has used 
check values and use the same incorrect value for those 
indices j where the client has queried a real message. So 
the server has to guess which queries are real and which 
are just checks - it cannot distinguish between them. The 
probability that this  
 

 

Figure 1: System schema 

guess is correct is  because we have 2z possible sets 
s without one illegal (all queries are checks). 
The client can control how confident he should be about 
the hash value by security parameter z. For instance, if the 
system is used to hash authentication passwords, then 
when the password is established, we need to be confident 
of the correctness of the hash so we can use  to have 
the probability of a successful attack approximately one in 
a million. On the other hand, when the user just logs in, 
we can use z=2 because, in the worst case scenario, he can 
try to log in again. 

6.3  Necessity of communication with servers 

We now prove that without interaction with all the servers 
it is not possible to calculate the hash H’(m). 
Suppose that the attacker can calculate the hash without 
interaction with all of the servers. Without losing 
generality, suppose that the attacker can interact with all 
the servers except j-th. This means that he can calculate 
Sj-1. If S0 is by Requirement 5 equal to ga for an unknown 

randomly chosen value a then Sj-1 is equal to  

where . Because q is prime, then for any fixed 
set of values 1≤ki≤q the relation β → α is bijective so Sj-1 
is equal to gβ with the unknown randomly chosen value β. 
Now suppose that the attacker wants to break the DDH 
theorem and test if value S’j is equal to correct value Sj. 

He can then calculate value . Because mapping sj 
→ sn is bijective then S’n is correct if and only if S’j is 
correct. Then he can calculate H’’(m). If S’j is correct 
then H’’(m) is of course also correct. If S’j is incorrect 
then because of requirement 6 there is very high 
probability that H’’(m) is also incorrect. So if the attacker 
knows the correct hash H’(m) he can use it to break DDH 
theorem. If we suppose that DDH theorem is valid then 
the attacker must query all servers to calculate correct 
hash. 
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7. Implementation 

As a group G we can use the subgroup of quadratic 
residues of the multiplicative group p where p=2q and 
both P and q are primes. We can use the function Rd(x) = 
X2 mod q with x treated as a number in big endian. 
Squaring by two makes the number a quadratic residue. 
More can be found in [3]. We can use function Wr which 
simply converts a number into a fixed length sequence in 
big endian notation. 
We can define H1(m) = SHAKE256(‘A’||m, 128+8 • 
log256(p)) and H2(m)=SHAKE256(‘BB||m,512). The 
shake is a hash function with configurable output length. 
The length of  is at least 128 bit greater than the bit 
width of . This ensures that after  all 
remainders have nearly the same probability of occurrence. 
Please note that the choice of hash functions is on the 
client; the same server will work with any hash function. 
For the server only group G is mandatory. If the client 
uses more servers, they must use the same group G. 
The client communicates with the server using any 
transport protocol. For simplicity we have used Java RMI, 
but any protocol, for instance TCP or TLS over TCP, can 
be used. There are several methods that the client can call 
on the server: 

• int getProtocolVersion() - returns maximal 
supported version of the protocol, 1 for now.  

• Certificate getCertificate() - returns certificate of the 
server with public key for verification of signatures.  

• int getKeyCount() - returns keyCount, the number of 
hashing keys.  

• SignedResponse getKeyAt (final int keyIndex) - 
returns hashing key with given index. This key 
contains public key Ki and parameters of group G.  

• SignedResponse powerByKey (final int keyIndex, 
final byte[] base) - powers group element encoded 
in field base by public key with index keyIndex.  

SignedResponse contains a response from the server with 
a digital signature. The signature is computed from the 
request and response, so if the server sends a wrong 
response, the client will have proof of this cheating. The 
signing key with certificate can be obtained by method 
getCertificate. Hashing public keys ki can be obtained by 
method getKeyAt. Keys are numbered by index 0 ≤ 
keyIndex < keyCount. The server can add new keys or 
make old ones deprecated but it should not delete or 
change them. This ensures backward compatibility. The 
structure of response with request can be seen in Figure 2. 
The signature is calculated from both request and 
response (the structure of request is specified just for the 
purpose of the signature; of course that request is not sent 
back). 

 

Figure 2: Key request and response 

Another type of request is the query for calculation of the 
decentralised hash. The client sends ci,j to the server and 
the server replies di,j=ck

i,j. It is realised by the method 
powerByKey. Hash request and response can be seen in 
Figure 3. 

 

Figure 3: Hash response 

For the present, only one group type is defined: the 
subgroup of quadratic residues of group p where p=2q and 
both p and q are primes. This group has groupType = 0. 
Domain parameters contains just a number q and the 
public key is just is just a number Ki. Hash query is 
a number ci,j and hash response is a number di,j. All 
numbers are encoded as shown in Figure 4. In the 
beginning, there is a number of bytes required for 
encoding of the number. This size is written as 4 bytes in 
big endian. There after a number is encoded as big endian 
using size bytes. 

 

Figure 4: Number encoding 

Conclusion 

This decentralised hash function can be used instead of 
the classic hash function anywhere we have access to the 
server. It is beneficial to use it in situations where we are 
hashing some secret information with possibly low 
entropy, e.g. passwords or security questions. The testing 
server and the client are implemented in the AALG library, 
see [4]. 
We have proved that the decentralised hash function is at 
least as secure as the hash function H2. We also know that 
it is necessary to query the server(s) to calculate the hash 
value; this depends on the DDH theorem. We have also 
proved that the server cannot obtain a hashed message nor 
even test if any concrete message is hashed. The server 
also cannot trick the client to calculate a wrong hash value. 
These properties are unconditional as long as random 
values vi,j and set S are true random and the security 
parameter z is large enough. 
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