
IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.8, August 2015

96

Manuscript received August 5, 2015
Manuscript revised August 20, 2015

Selfish Node Handling In the context of Replica Allocation in
MANET’s

K.Navatha , N.Sravanthi, L.Sunitha, E. Venkata Ramana

Department of Computer Science Engineering, Vidya Vikas Institute of Technology, Hyderabad, India.

Abstract
In a Mobile Adhoc Network (MANET), the mobility and
resource constraints of mobile nodes may lead to network
partitioning and performance degradation. All mobile nodes
should participate fully by sharing memory space to increase
data accessibility. But, some of the nodes can act as selfish nodes,
only for partial participation or fully selfish with other nodes.
Such selfish nodes are handled in replica allocation.
Key Terms
Selfish node, SCF-Tree, mobile ad-hoc network

1. Introduction

A Mobile Adhoc Network is a collection of autonomous
wireless devices that move unpredictably, forms a
temporary network without any fixed backbone
infrastructure. In these networks each node acts as an end
system and a router. These nodes are capable of both
single hop & multi hop communication.
In MANET, the nodes are moving frequently. This lead to
frequent network partitioning, causing some data to be
often inaccessible to some of the nodes. Hence, data
accessibility is often an important performance metric in
MANET. Data are replicated at nodes other than owners
to increase data accessibility to cope with frequent
network partitions and also reduces query response time,
if mobile nodes in a MANET have sufficient memory to
store both all the replicas and the original data. Storing
same replica by all nodes will lead to decrease of data
accessibility. Hence, to maximize data accessibility, a
node should not hold the same replica that is also held by
many other nodes. This will increase its own query delay.
A selfish node may not share its own memory space to
store replica for the benefit of other nodes.

2. Behavior of Selfish Nodes in Manet

Selfishness for nodes are categorized into two types based
on their behavior. Fully selfish nodes-The nodes do not
hold replicas allocated by other nodes, but allocate
replicas to other nodes for their accessibility. Partial
selfish nodes-The nodes use their memory space partially
for allocated replicas by other nodes. These nodes allocate
replicas to other nodes for their accessibility. Each node in

a MANET has limited memory locally and each node acts
as a data provider, it provides several data items and as
well as a data consumer. Each node holds data item
replicas and maintains the replicas in local memory space.

The replicas are relocated in a specific period. There are
‘m’ nodes, N1,N2,…Nm. Any node can freely joins in a
MANET.A mobile adhoc network is an undirected graph
G=(IN,IL).Where ‘IN’ is a finite set of nodes and ‘IL’ is a
finite set of communication links. Each node in a MANET
has a unique identifier and they are denoted by
N={N1,N2,…Nm}, where ‘m’ is the total number of
nodes. Each node holds data items of equal size, and first
data item in a memory is considered as its original data.
Every data item has a unique identifier, denoted by
D={D1,D2,…Dn}, where ‘n’ is the total number of data
items. The remaining data items in a memory are treated
as replicas for its particular node. Each node Ni has its
own access frequency for data item and it does not change
always. When a node Ni sends a request (query) for
accessing of data item, first, the search has takes place in
its own memory. The request is successful, when the node
Ni holds the data item as its original data item (or) replica,
otherwise the request is broadcasted. The request is also
successful, when the node Ni gets reply from its adjacent
nodes connected to Ni with one hop or multi hops.
Otherwise, the request fails.

Fig.1. Selfish replica allocation

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.8, August 2015 97

In above figure, there are 6 nodes name as N1,N2,..N6 and
their memory spaces are M1,M2,..M6. Each node access
the frequency information from the access frequency table.

Table 1. Access frequency of nodes
Data Nodes

N1 N2 N3 N4 N5 N6
D1 0.65 0.25 0.17 0.22 0.31 0.24
D2 0.44 0.62 0.41 0.40 0.42 0.46
D3 0.35 0.44 0.50 0.25 0.45 0.37
D4 0.31 0.15 0.10 0.60 0.09 0.10
D5 0.51 0.41 0.43 0.38 0.71 0.20
D6 0.08 0.07 0.05 0.15 0.20 0.62
D7 0.38 0.32 0.37 0.33 0.40 0.32
D8 0.22 0.33 0.21 0.23 0.24 0.17
D9 0.18 0.16 0.19 0.17 0.24 0.21
D10 0.09 0.08 0.06 0.11 0.12 0.09

Where each memory location contains 3 data items. First
data item is a original one, and the remaining 2 data items
are replica allocated.
In the above figure, Node ‘N3’ behaves ‘selfish’ by
maintaining M3’, instead of M3 to prefer the locally
frequently accessed data for low query delay.
Due to the selfish behavior, D3, D5, D2, the three top
most local frequent accessed items are maintained instead
of D3, D9, D2. The nodes N1, N2, N4 in the above figure
are no longer able to access D9. This will results in
degradation of data accessibility.
Node ‘N4’ behaves partially selfish. This want to hold
‘D2’ locally as one of the locally frequently accessed data
items. So, in this case N4 uses a part of its storage for its
own frequently accessed data, where the remaining part is
used for the benefit of overall data accessibility. So that
N4 is decided to maintain M4’ instead of M4.Data
accessibility is degraded with the partial selfishness also.
The nodes N1,N2,N3 are cannot access D10 because of
partial selfishness in ‘N4’.

3. Handling Selfish Nodes in Replica
Allocation

 To handle selfish nodes in MANET, 3 steps have to
follow. They are

3.1. SELFISH Node Detection

In MANET, each node detects the selfish nodes based on
credit risk.
Credit Risk=expected risk ∕ expected value

The size of shared memory space and the number of
shared data items are used to represent ‘expected risk’ and
the node specific features are used to represent ‘expected
value’. Algorithm for selfish node detection is given in
List1.

List1: Algorithm for selfish node detection

Every node should execute this algorithm in order to
detect the selfish node at relocation period. The following
algorithm is to update selfish features in selfish node.

List2: Algorithm for update selfish features

The algorithm in list2 is executed to update the selfishness
features in selfish node.

3.2. SCF-TREE Construction

Selfish nodes are not participated in Self Centered
Friendship Tree based replica allocation. Degree of
selfishness should be measured by using credit risk score
for each non selfish node participated.

1. SELFISH NODE DETECTION
2. SCF-TREE CONSTRUCTION
3. REPLICA ALLOCATION

10. Else {
11. NDik=1;
12. SSik=Size of data item;}}}

10. Detection()
11. For(each connected Nk) {
12. If(nCRki > δ) Nk is selfish node
13. Else Nk is non selfish node
14. Wait until replica allocation is done;
15. For(each connected node Nk){
16. If(Ni has allocated replica to Nk)
17. NDik=Number of allocated replica;
18. SSik=Total size of allocated replica;

1. SF_Update() {
2. For(during the predefined time w) {
3. If(the query is served by the expected node Nk)
4. Pik--;
5. If(the query is served by the unexpected node

Nj)
6. NDij +=1;
7. SSij +=(Data item size);}}
8. If(query is not served by the expected node Nk)

{
9. Pik++;
10. NDik -=1;
11. SSik -=(data item size); } }

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.8, August 2015 98

 List3: Algorithm For Scf-Tree Construction

3.2.1. Sample SCF-Tree Construction

In this example, we assume all the nodes are non-selfish in
nature. Multiple roots are possible among the nodes in a
MANET. First, select one node as root node for SCF-Tree.
The neighbors of root nodes are its Childs. Later connect
its neighbors as sub Childs and so on.

Fig 2.1: Graph

3.3. Replica Allocation

After construction of SCF-Tree, a node allocates replica at
every relocation period.

The following algorithm list out the steps for replica
allocation. List 4.

Fig 2.2:SCF-Tree of N1

4. Performance Evolution

The results are noted by made an experiment in a PC with
3GB RAM and CORE2 dual processor. The simulations
are tested using NS2.Creation of MANET, detection of
selfish node, selfish node handling while allocating
replicas are shown in simulations. The parameters
considered for simulations are shown in table2.

Table 2: Simulation Parameters
Parameter(unit) Value(default)
No.of nodes 40
No.of data items 40
Radius of communication Range 1~19(7)
Size of network 50*50
Size of memory space 2~40(10)
Percentage of selfish
Nodes

0~100(70)

Maximum velocity of
Nodes

1

Relocation period 64~8,192(256)
Zipf parameter 0.8

Fig 3: Relocation period Vs. overall selfishness alarm

1. SCF-tree_Construct() {
2. Append Ni to SCF-tree as root node;
3. Checkchildnodes(Ni);
4. Return SCF-Tree;}
5. Checkchildnodes(Nj) {
6. For(each node Na belong to INja) {
7. If (d < distance between Na and the root)
8. Continue;
9. Else if(Na is an ancestor of Nj in Tiscf)
10. Continue;
11. Else { append Na to Tiscf as a child of Nj;
12. Checkchildnodes(Na); } }}

1. Allocate_replica()
2. Li=make_priority(TiSCF);
3. For(each data item belong to IDi) {
4. If(Ms is not full)
5. Allocate replica of the data to Ms;
6. Else {
7. Allocate replica of the data to the target

node;
8. If(Mp is not full)
9. Allocate replica of the data to Mp;
10. }}while(during relocation period){

11. If(Nk requests for the allocation of Dq)
12. allocate_replica_others(Nk,Dq); }}
13. make_priority(TiSCF){
14. for(all vertices in TiSCF){
15. select a vertex in TiSCF in order of BFS;
16. append the selected vertex id to Li;}
17. return Li;}
18. allocate_replica_others(Nk,Dq){
19. if(Nk is in TiSCF and Ni does not hold Dq){
20. if(Mp is not full)allocate Dq to Mp;
21. else{
22. if(Ni holds any replica of local intrest in Mp)
23.replace the replica will Dq;
24.else { if(nCRik>nCRik) replace the replica
requested by Nh with Dq;}}}}

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.8, August 2015 99

In Fig.3. X-axis represents relocation period and Y-axis
represents overall selfishness alarm. The results shows
that overall selfishness alarm of DCG+ shows very less.

Fig4. Size of memory Vs. overall selfishness alarm

In Fig.4. X-axis represents Size of memory and Y-axis
represents overall selfishness alarm. The result shows that
overall selfishness alarm of DCG+ shows very less.

Fig 5. Varying relocation period Vs. hop count of data transmission

In Fig 5. X-axis represents Relocation period and Y-axis
represents hop count of data transmission.

Fig 6. Varying size of memory Vs. hop count of data transmission

In Fig6. X-axis represents size of memory space and Y-
axis represents hop count of data transmission. The results
shows that, both size of memory and hop count of data
transmission are directly proportional. Communication

cost of SAF is very less when compared with other
techniques.

Fig 7. Time Vs. Energy Consumption

In Fig.7. X-axis represents time in milli seconds and Y-
axis represents energy consumption. Time and energy are
indirect proportional.

Conclusion

MANET is a network with collection of movable nodes.
Some of the nodes are selfish in nature. These selfish
nodes are making a problem in replica allocation. The
selfish nodes are detected and handled by the algorithms
mentioned. The simulation results are showing that the
algorithms are capable of reducing query delay and
improve the data accessibility and overall performance.

References

[1] A text book on Mobile Adhoc Networks: Current status and
Future Trends by Jonathan Loo, Jaime Lloret Mauri, Jesús
Hamilton Ortiz

[2] Brian B. Luu, Barry J. O’Brien, David G. Baran, and
Rommie L. Hardy, “A Soldier-Robot AdHoc Network”
Proceedings of the Fifth Annual IEEE International
Conference on Pervasive Computing and Communications
Workshops (PerComW'07)

[3] Murthy, S. and J.J. Garcia-Luna-Aceves, “An Efficient
Routing Protocol for Wireless Networks”, ACM Mobile
Networks and App. J., Special Issue on Routing in Mobile
Communication Networks, Oct. 1996, pp. 183-97

[4] Yongguang Zhang and Wenke Lee. Intrusion detection in
wireless ad-hoc networks. In Mobile Computing and
Networking, pages 275–283, 2000. also available as
http://citeseer.nj.nec.com/zhang00intrusion.html.

[5] V.P.Sundararajan1, Dr.A.Shanmugam2, Modeling the
Behavior of Selfish Forwarding Nodes to Stimulate
Cooperation in MANET, International Journal of Network
Security & Its Applications (IJNSA), Volume 2, Number 2,
April 2010

[6] Djamel DJENOURI, NadjibBADACHE, ”A Gradual
Solution to Detect Selfish Nodes in Mobile Ad

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.8, August 2015 100

hocNetworks,”Proc.14th European Conf.Research in
computer networks, pp.355-370, 2009

[7] K. Balakrishnan, J. Deng, and P.K. Varshney, “TWOACK:
Preventing Selfishness in Mobile Ad Hoc Networks,” Proc.
IEEE Wireless Comm. and Networking, pp. 2137-2142,
2005.

[8] Jae-Ho Choi, Kyu-Sun Shim, SangKeun Lee, and Kun-
Lung Wu, Fellow, IEEE, “Handling Selfishness in Replica
Allocationover a Mobile AdHoc Network”, IEEE
Transactions on mobilecomputing, vol.11, no. 2, Feb. 2012.

[9] S. Marti, T. Giuli, K. Lai, and M. Baker, “Mitigating
Routing Misbehavior in Mobile Ad hoc Networks,” Proc.
ACM MobiCom, pp. 255-265,2000.

[10] Y. Yoo and D.P. Agrawal, “Why Does It Pay to be Selfish
in a MANET,” IEEE Wireless Comm., vol. 13, no. 6, pp.
87-97, Dec. 2006.

[11] M. Li, W.-C. Lee, and A. Sivasubramaniam, “Efficient
Peer-to-Peer Information Sharing over Mobile Ad Hoc
Networks,” Proc. World Wide Web (WWW) Workshop
Emerging Applications for Wireless and Mobile Access, pp.
2-6, 2004.

