
IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.9, September 2015

1

Manuscript received September 5, 2015
Manuscript revised September 20, 2015

Efficient Searching of Action Traces Based on MD5

Juntao GAO, Hongbo ZHOU

School of Computer and Information Technology, Northeast Petroleum University, Daqing, 163318 China

Summary
Searching of action traces is one of basic operators which is
useful in several scenarios during business process management,
such as process mining, process model search, process re-
engineering and so on. One of the challenges to search action
traces is that the scope of searching is too wide to handle and the
time consuming is beyond tolerance. Firstly, a framework of
methodology to search action traces is proposed; secondly, the
algorithm of MD5 are employed to construct index; thirdly, the
algorithm to compute similarity between action traces are
discussed ; Finally, an experiment is given to evaluate the
methodology.
Key words:
 action traces, firing sequence, index.

1. Introduction

Through the application of Business Process
Management(BPM), kinds of process-aware information
systems, such as ERP (Enterprise Resource Planning),
SCM (Supply Chain Management), PDM (Product Data
Management) are employed, then large amount of action
traces have been accumulated in various information
systems. An action trace, also called firing sequence in the
domain of Petri nets, is a finite or infinite sequence of
activities that denotes the order in which the execution of
activities starts in an instance of the process.
These action traces are important intellectual assets of
organizations, so a deep insight into these action traces and
their mutual relationship is necessary to business process
management activities. There are various applications in
business process management that require measuring the
similarity between action traces, such as process mining,
process model search, process reengineering and so on.
For example, the sets of action traces of business processes
are compared to calculate compliance and maturity of an
actual process model to a reference model in process
reengineering [1]. In this context, the compliance degree
and the maturity degree of two traces are defined based on
their longest common subsequence. After that, the overall
compliance and maturity degree between two models are
calculated by summing up the maximum compliance and
maturity degree of traces belong to them. Another example
is to align action traces in quantitative analysis method of
business process [2]. The actual action traces are compared
to the simulated traces from predefined business process
models. According to the result of action trace comparing,

the bottleneck and critical path are identified. In paper [3],
the set of traces are used to construct a reference similarity
of business processes.
A key operation required by nearly all these techniques is
the searching from action traces repository. Given an
action trace (the trace query), we are concerned with
finding all action traces in the repository that contain this
fragment. Because of the number of action traces is
usually very huge, MD5 algorithm is employed to
efficiently search action traces.
This paper is constructed as follows: In the next section,
the framework of methodology to search action traces is
proposed in section 2. Section 3 discussed the method to
construct index of action traces repository. Section 4
presents the algorithm to compute similarity between
action traces. At last, the conclusion is drawn.

2 The Framework of Methodology

In this paper, focus is on the provision of efficient support
for querying action trace repositories. Given an action
trace (the trace query), we are concerned with finding all
action traces in the repository that contain this fragment.
The complexity of finding all action traces is known to be
high of time complexity. To overcome this issue, we
propose a two phase methodology that reduces the number
of action traces needed to be checked for similarity.
As illustrated in Fig 1, firstly, we filter the trace repository
through the use of indexes and obtain a set of candidate
action traces. The query of action traces is denoted as Q in
Fig 1. MD5 algorithm is employed to compress the query
trace into a code. The index is constructed as a B+ tree in
which the MD5 code is selected as key terms.The result of
first phase in this methodology is a subset of action trace
repository.
Secondly, we apply a similarity measure algorithm to
compare those action traces in the result of the first phase.
The advantage of using indexes is that the similarity
measurement is only performed on a subset of the models
in the repository, which is usually much smaller than the
total number of action traces in the repository. The matrix
of action trace is constructed and the reference similarity
measurement is given in the following sections.

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.9, September 2015

2

Fig. 1 the framework of methodology

In this paper, action traces are defined as sequences of
actions. Suppose ∑ denotes the universe of actions, the
action trace α is defined as

1 2, ,...,α =< >mx x x where ∈∑ix , [1,]∈i m

ix denotes the i-th action in trace α , i=1,2,...,n. α
denotes the length of trace α , which is the number of
actions in α .
In the second phase, the similarity between action traces is
computing according to the semantics of actions and the
sequence among them.
Suppose ∑ denotes the universe of actions, there exist two
traces α and β ,

1 2, ,..α =< >mx x x and , [1,]∈∑ ∈ix i m
1 2, ,...,β =< >ny y y and , [1,]∈∑ ∈jy j n

ix denotes the i-th action in trace α , i=1,2,...,n. | |α
denotes the length of trace α , which is the number of

actions in α . jy denotes the j-th action in trace β ,

j=1,2,...,n. | |β denotes the length of trace β , which is
the number of actions in β .
The commonality of α and β is depicted by

(,)α βcommon ,
(,) ,α β =< >common X Y lct , X is the action set of

α , Y is the action set of β . Because the action may occur
more than once, X and Y are both multisets. The
commonality of α and β includes two parts: one is the
common action set X Y , the other is the longest
common subtrace, lcs for short, from the common action
set. It is deployed to measure the similarity of the order of
action occurring.
The combination of trace α and β is depicted by

(,)α βdescription ,
(,) ,{ , }α β α β=< >description X Y ，

The combination of α and β also includes two parts, one
is the union of action set X Y , the other is two

alternative action sequences { , }α β .
According to information theory [5] ， the reference
similarity of action traces is：

log ((,))(,)
log ((,))

α βα β
α β

=
P commonsim

P descritipn (1)
If the probability of trace is known, the above formula can
be computed using the following formula.

2 2
| | | |(,)
| | | |

α β ε ϕ

= × + ×

X Y lctsim
X Y X Y (2)

where ， 0, 0ε ϕ≥ ≥ and 1ε ϕ+ = .
The value of ε and ϕ is determined by the amount of
information contained in the action sets and their orders.
Generally, the cardinality of universal action set is very
large, so the probability of common actions occurring is
very little and the amount of information contained in
action sets is very large. While given the common action
set, the probability of the same order occur is relatively big
and so the amount of information contained in it is
relatively less. Therefore, ε is bigger thanϕ . The process
of compare commonality is discussed in section 4.

3 Index Construction

To enhance the efficiency of action trace indexes, the
items are not stored directly. B+ trees are employed to
store items[4]. A B+ tree is an n-ary tree with a variable
but often large number of children per node. A B+ tree
consists of a root, internal nodes and leaves. The root may
be either a leaf or a node with two or more children. Each
node is denoted as a tuple ,< >IN AT , in which IN is the
MD5 code and AT is the action trace.
As we known, the MD5 message-digest algorithm is a
widely used cryptographic hash function producing a 128-
bit (16-byte) hash value, typically expressed in text format

https://en.wikipedia.org/wiki/B+_tree%23cite_note-Navathe-1
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Hash_value

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.9, September 2015

3

as a 32 digit hexadecimal number. MD5 has been utilized
in a wide variety of cryptographic applications, and is also
commonly used to verify data integrity. In this
methodology, MD5 message-digest algorithm is employed
to compress the action trace to a 32 digit hexadecimal
number[5].
In our methodology, the roots of B+ trees are kept in
memory while the other nodes are stored on disks. Cache
memory can be used for B+ tree nodes and inverted lists to
further improve the efficiency. As we aim to minimise
retrieval time, it is beneficial to keep the depth of B+ trees
minimal and to avoid hash collisions as much as possible.
As labels of actions may be arbitrarily long strings, a MD5
function is applied to map such strings to numbers in order
to save space and speed up querying.

4 Definition of Similarity

Similar traces are defined based on the action similar. In
reality, the action trace is identified by short text. The

result of comparison between action ix and jy is not a
binary value. Therefore, the traditional method to compute
the union and intersection of action sets does not work in
this case. In this section, an alignment-based method is
discussed to compute the commonality of action set. This
method involves three steps: (1) construct the similarity
matrix; (2) pick up best matching; (3) computing the
commonality. Next, each step is going to be explained.

4.1 Constructing the Similarity Matrix

Because the identifiers of action may be made by different
systems, the vocabulary employed to identify actions may
well be different. Therefore, the synonyms and homonyms
are inevitable and make it difficult to compare the actions.
In order to address the semantic heterogeneity, edit
distance [6] and WordNet [7] is combined to measure the
initial action similarities, which is the seeds of similarity
matrix to start the iteration. Next, the process iteration is
presented.
Given two actions α∈x and β∈y , the semantic

similarity is defined as (,) [0,1]∈SimA x y . It is a total
function over α β× and determined by an iterative
computation to simulate the flooding phenomenon of
similarity among action traces. The flooding phenomenon

means that if ix is much similar to jy then the similarity

between 1−ix and 1−jy raise, as well as the similarity

between 1+ix and 1+jy
-1 -1 -1 -1

-1 1 1

(,) (,) (,)

(,)

ω ϕ

λ + +

= +

+
k i j k i j k i j

k i j

SimA x y SimA x y SimA x y
SimA x y (3)

 If 0=i or 0=j , there is no pre-action of action ix or

no pre-action of action jy . Therefore,
-1 -1 1 1(,) (,) (,)ω λ + += +k i j k i j k i jSimA x y SimA x y SimA x y (4)

If =i m or =j n , there is no sub-action of action ix or

no sub-action of action jy . Therefore,
-1 -1 -1 -1(,) (,) (,)ω ϕ= +k i j k i j k i jSimA x y SimA x y SimA x y (5)

The similarity of action pair (,)i jx y is determined by the
last result of iterative computation, its pre-action and sub-
action. Fox example, if the names of two actions are
different, but their pre-action and sub-action are same,
their behavior must be more similar than their names. On
the contrary, if their name seems alike, but pre-action and
sub-action are absolutely different, their behavior must be
less similar than their names. The first action in a trace has
no pre-action and the last action in a trace has no sub-
action. Therefore, the algorithm to compute these two
kinds of action similarity is different from the ordinary
actions. α , ϕ , λ are called propagation coefficients
ranging from 0 to 1 . They can be computed in many
different ways.
After once flooding computation, the sum of similarity
may shift a little. In order to keep the invariance of the
sum of similarity, the result should be normalized, using
the following formula.

[1,m], j [1,n]

1
[1,m], j [1,n]

(,)
(,) (,)

(,)
∈ ∈

−
∈ ∈

= ×
∑
∑

k i j
i

k i j k i j
k i j

i

SimA x y
SimA x y SimA x y

SimA x y
(6)

The computation is performed iteratively until the
Euclidean length of the residual vector

1(,)−∆ n nSimx Simy becomes less than ε for some 0>n . If
the computation does not converge, it is terminated after a
certain number of iterations. The final similarity of actions

is denoted as (,)i jSimA x y .

4.2 Picking up the best Matching

In the last section, all action pairs are assigned values to
denote similarities. This section focuses on the issue how
to pick out the best matching M , which maximizes the
sum of similarity degrees. A mapping is a subset of

activity pairs (ix , jy), in which ix is from trace X and
jy is from trace Y . The combinatorial explosion of the

number of mappings makes the issue difficult to resolve.
Therefore, Hungarian algorithm [8] is expanded to solve
the problem Here, the validity of the algorithm is
discussed.

https://en.wikipedia.org/wiki/Hexadecimal
https://en.wikipedia.org/wiki/Data_integrity

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.9, September 2015

4

(1) Constructing similarity matrix. Computing the

similarity of the action ix in trace α and the action jy in

trace β .Then assigning the value to the element (,)i j in
similarity matrix.
(2) Subtracting off the row min from each row.
(3) Subtracting off the column min from each column.
(4) Starting with the row or column with the least number
of zeros, marks one certain zero element and redlines the
row and the column where the marked zero element exists.
(5) Repeating step 4 until each zero element is marked or
redlined. If the number of marked zero elements is

(), min m n , match the action of trace α in the row in
which the zero element exists to the action of trace β in
the column in which the zero element exists. Otherwise, go
to step 6.
(6) Mark all rows without marked zero with *, and then
mark all zero elements in rows with *, and mark all zero
elements in columns with mark *, until mark * can not be
added.
(7) Redline all the rows and columns without *.
(8) Identify the least one among the elements uncovered

by lines and denoted by ijx .

(9) Subtract ijx from the rows marked with *, and subtract
ijx from the rows marked with *, return to step 4.

4.3 Measuring the Similarity of Action Traces

Using dynamic programming technology, such as
Needleman-Wunsch Algorithm [9] and Smith–Waterman
algorithm [10] the longest common subtrace is determined.
The length of longest common sub-traces between action

traces α and β is denoted as (,)α βlct . If there is no

common sub-traces between α and β , (,) 0α β =lct . If
α is same as β , (,) () ()α β α β= =lct len len ,where

()αlen denotes the length of action trace α .
According to the best matching M , the scores for aligned
actions are computed as following formula.

1 1

1 1

1 1

(,) 1 (,)
((,),(,)

(,)
(,), (,))

− −

− −

− −

+ ∈
= ∉

i j i j

i ji j
i j

i j i j

lct x y x y M
Max lct x ylct x y

x y M
lct x y lct x y

 (8)
Then the length of longest common sub-traces between
action traces α and β can be computed using classical
Needleman-Wunsch Algorithm.
Adopting the result of measure commonality depicted
above, the similarity of action traces drills down to the
following algorithm.

1 2, ,..α =< >mx x x and , [1,]∈∑ ∈ix i m

1 2, ,...,β =< >ny y y and , [1,]∈∑ ∈jy j n

2
2 | |(,) (,)

| |
α β ε α β φ

α β
= × + ×

lctsim SimASet
 (9)

5 Conclusion

In this paper a new approach is proposed to search action
traces. Not only the sequence similarity but also the index
construction is considered in this paper. The approach is
more adaptive to the real application scenarios, in which
the action is described by a textual message. So far, the
work in this paper has been applies into a project of cross
organization ERP implementation. In the future, the
method still needs more projects to verify.

Acknowledgments

The research is supported by the Education Department of
Heilongjiang province science and technology research
projects (No. 12541094).
The research is also supported by the Northeast Petroleum
University youth science and technology research projects
(No. 2013NQ118).

Reference
[1] Gerke, K., Cardoso, J.,Claus, A.: Measuring the compliance

of processes with reference models. In: On the Move to
Meaningful Internet Systems – Confederated International
Conferences 2009, Proceedings, Part I, Springer(2009) :76-
93

[2] LI Yan, FENG Yu-qiang. A Quantitative Analysis Method
of Business Process based on Sequence Alignment. System
Engineering Theory and Practice,2007, 27(4):54-61

[3] Haiping Zha, Jianmin Wang, Lijie Wen, Chaokun Wang,
Jiaguang Sun . A workflow net similarity measure based on
transition adjacency relations. Computers in Industry.2010,
61 (5) :463-471

[4] Navathe, Ramez Elmasri, Shamkant B. (2010).
Fundamentals of database systems (6th ed.). Upper Saddle
River, N.J.: Pearson Education. pp. 652–660.

[5] Ciampa, Mark (2009). CompTIA Security+ 2008 in depth.
Australia ; United States: Course Technology/Cengage
Learning. p. 290.

[6] P. Bouguet, M. Ehrig, J. Euzenat, E. Franconi, P. Hitzler, M.
Krotzscn, L. Serafini, G. Stamou, Y. Sure, and S. Tessaris,
"Specification of A common framework for characterizing
alignment," Knowledge Web Consortium 2005.

[7] P. Pantel and D. Lin, "Discovering Word Senses from
Text," presented at Proceedings of ACM SIGKDD
Conference on Knowledge Discovery and Data Mining,
2002.

http://books.google.co.il/books?id=PfkLAAAAQBAJ&lpg=PA290&dq=MD5%23v=onepage&q=MD5%20

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.9, September 2015

5

[8] Harold W. Kuhn. "The Hungarian Method for the
assignment problem,"Naval Research Logistics Quarterly, 2:
83-97, 1995

[9] Bergroth, L., Hakonen, H., Raita, T.: A survey of longest
common subsequence algorithm. String Processing and
Information Retrieval, International Symposiumon (2000).
39-48

[10] Smith, Temple F.; and Waterman, Michael S..
"Identification of Common Molecular Subsequences".
Journal of Molecular Biology(1981) 147: 195–197.

Juntao GAO received the PhD.
degrees in Computer Science from
BeiHang University in 2009. During 2009-
2014, he stayed in Northeast Petroleum
University to teach software engineering.
His interest and research areas include
process modeling, software requirements,
semantic computing. Email:
gjt@nepu.edu.cn.

Hongbo ZHOU master, he is now
works in the Northeast Petroleum
University. His interest and research areas
include information retrieval, clustering,
and data integration.
Email:jiessie9@126.com

mailto:gjt@nepu.edu.cn

	Reference

