
IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.9, September 2015

38

Manuscript received September 5, 2015
Manuscript revised September 20, 2015

Frequent Document Mining Algorithm with Clustering

Rakesh Kumar Soni

Neetesh Gupta

Amit Sinhal

Shiv K Sahu

Department of Information Technology
Technocrats Institute of Technology

Rajiv Gandhi Technical University, Bhopal

Abstract
Now days, finding the association rule from large number of
item-set become very popular issue in the field of data mining.
To determine the association rule researchers implemented a lot
of algorithms and techniques. FP-Growth is a very fast algorithm
for finding frequent item-set. This paper, give us a new idea in
this field. Itreplaces the role of frequent item-set to frequent sub
graph discovery. It uses the processing of datasets and describes
modified FP-algorithm for sub-graph discovery. The document
clustering is required for this work. It can use self-similarity
function between pair of document graph that similarity can use
for clustering with the help of affinity propagation and efficiency
of algorithm can be measure by F-measure function.
Keywords
clustering, document-graph, FP-growth, graph mining, frequent
sub graphs clustering.

1. Introduction

Data mining techniques is used to extracting information
from that data. Many researchers developed a lot of
algorithm and techniques for finding useful information in
the database. Frequent item-set mining is a core data
mining operation and has been extensively studied over
last decade. It plays an essential role in many important
data mining tasks. Algorithms for frequent item-set
mining form the basis for algorithms for a number of other
mining problems, including association rule mining,
correlations mining, and mining sequential and emerging
patterns. Association rule mining technique is very
effective data mining technique to finding the useful
hidden information in the data, its aim to extract
correlation, frequent pattern, association by transaction
database or other data repository. This rules generated by
datasets and it derives by measurement of support and
confidence of every role, which define the frequency of
that role. Association rule is a rule which is depends on
the association relationship of objects and items. For
example data item interrelation ship which is occurs
simultaneous with other data items. This rule is calculated
by data and association calculated with the help of
probability. Share market and recommended system etc.
are its practical applications.

To concept of document based clustering, association rule
mining is very effective algorithm and useful approach. It
utilizes that FP-Growth approach discovers frequent
patterns and modified it to frequent sub graph discovery.
Originally this algorithm is design to frequent item-set
mine in market basket analysis. In this paper, analyse FP-
Growth approach to document clustering. For graph
mining, change in FP-Growth algorithm which discover
frequent connected graph and perform better for thick
connected graph.
This Paper consists of five main sections. The second
section describes the Basic Theory of this work. The
frame work of this approach is describes in third section,
Experimental Result analysis is forth section and finally
section five is devoted to conclusion and future work.

2. Basic Theory

The association rule mining [2] approaches were
established to determine frequent item-sets in market
basket datasets [4].The two most common approaches to
association rule mining are Frequent Pattern growth (FP-
growth) [3]and apriori [5].The apriori algorithm uses prior
information of frequent item-sets to produce the
candidates for larger frequent item-sets. It relies on
interactions between item-sets and subsets. If an item-set
is frequent, then all of its subsets must also be frequent.
But generating candidates and checking their support at
each level of iteration can become expensive. FP-growth
introduces a different approach here. Instead of generating
the candidates, it compresses the database into a compact
tree form, known as the FP-tree, and extracts the frequent
patterns by traversing the tree.
In this work, Exchanged the concept of the frequent item-
setin to frequent sub graph. However, there are some
famous sub graph discovery systems like FSG (Frequent
Sub graph Discovery) [6], gSpan (graph-based
Substructure pattern mining) [7], DSPM (Diagonally Sub
graph Pattern Mining) [8], and SUBDUE [9]. It does allow
us to believe that the concept of the creation of document-
graphs and discovering frequent sub graphs to execute a
sense-based clustering is currently feasible. All these

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.9, September 2015 39

systems deal with multiple aspects of efficient frequent
sub graph mining. Most of them have been tested on real
and artificial datasets of chemical compounds. Yet none of
them has been applied to the mining of text data. It’s
developed a graph-based approach for document
clustering using FP-growth. Since in this system the
documents are represented by graphs, made the necessary
changes to the FP-growth algorithm so that instead of
generating frequent item-sets it can generate frequent sub
graphs.

3. Frame Work of This Approach

Our overall method is briefly portrayed in this section.
The system is divided into four major parts: Document
Pre-processing, FP-Growth approach, Document
clustering and Similarity Measures. Detailed mechanisms
are described in the following subsections.

3.1. Document Pre-processing

The work use stemming to repossess the relationship
betweenthe keywords of a document. In stemming, words
are related to each other based on different semantic
relationships among them. This Paper use the relation of
keywords, which is a super-ordinate or IS-A (“a kind
of”)relationship. This work believes that, for sense-based
document clustering, this relation is more suitable than the
others because it provides the generalization of a concept
or a word. It builds a document-graph by traversing the
hierarchy of the keywords up to Entity. Once there have
all of the document-graphs, create a Master Document
Graph (MDGph) [11] based on the traversal of all of the
keywords up to the topmost level.
Now use the MDGph for a number of reasons. Instead of
taking the entirety of Words as the background knowledge.
Use MDGph that contains the ontology related to the
keywords only. This allows us to focus on the area of the
Words which is applicable to our dataset. Another purpose
why use the MDGph is that it can facilitate the use of the
DFS codes. The code is produced by traversing the
MDGph in Depth First Search (DFS) order. This gives us
the DFS traversal order (DFS code) for the entire MDGph.
The DFS codes of the edges of the MDGph are applied to
the edges of the document-graphs. Thus, the DFS codes of
the edges of the MDGph help us to mark each edge of the
document-graphs in a DFS order specific manner.
Therefore, the same subgraph acting in two document-
graphs can be identified by the DFS codes of the edges of
that subgraph. Additionally, the MDGphhelps in testing
the connectivity between nodes during the subgraph
discovery process. The graph representation of the
documents to a table consisting of the list of edges
appearing in each document.

Table1:ModifiedFP-growthalgorithm
Input Documentgraphs’databaseDGB,
MasterDocumentgraphMDGph,
Minimumsupportmin_sup
Output Frequentsub graphssubGphj
1. CreatealistcalledtransactionDGBforallDGphi ∈DGB
2. CreateheaderTableforalledgeai ∈MDGph
3. FilterDGB(transactionDGB,headerTable,min_sup)
4. FPTreeConstrcutor()
5. FPMining()//seeTable2fordetails

This helps us to fit the frequent sub graph discovery task
to the frequent item-set discovery problem of the market
basket data analysis. Each edge of a document-graph is
considered to be an item of a transaction, a sub graph is
considered to be an item-set and each document is
considered to be a transaction.

3.2. FP-growth Approach for Frequent Sub graph
Discovery

The original FP-growth algorithm, when applied to our
problem generates a set of frequent edges which do not
necessarily constitute to a connected sub graph.
Generation of all possible frequent patterns not only
outputs all possible frequent sub graphs but also generates
a lot of overhead in the form of all possible sets of
frequent, but disconnected, edges. This causes
unnecessary costs during the mining of the document-
graphs as only looking for frequent sub graphs and these
sets of frequent disconnected edges tolerate no useful
information for the document clustering. The time and
space required to generate and store these disconnected
frequent edges have negative impact on the overall
performance of the FP-growth approach. To overcome
these problems itrestricts the discovery of frequent item-
sets in the FP-growth approach. Instead of discovering all
possible frequent combination of edges we only discover
the frequent edges that founds to a graph. We also control
the maximum size of the frequent sub graph by the SP
Threshold value.
The shape of modified FP-growth approach is given in
Table 1. The method Filter DGB reconstructs both the lists
transaction DGB and header Table by eliminating the
infrequent edges based on the minimum support provided
by the user. It sorts the edges of transaction DGB and
header Table in descending order by support. After this
step, the top of the header covers the most frequent edges
and the bottom contains the least frequent ones. The edges
at the top level of the header table are the representative
edges of the topmost levels of our MDGph. Since these
edges denote very abstract relationships between synsets
[10], they appear in too many document-graphs implying
that they are not good candidates for clustering. In contrast,
edges at the bottom of the header table are least frequent
and denote relations between very specific concepts in the
MDGph. Since they appear in very few document-graphs,

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.9, September 2015 40

they too provide less information for clustering. This
motivated us to crop the edges a second time from the top
and bottom of the header table before constructing the FP-
tree. Transaction DB is updated accordingly to reflect this
change in the header table. After this refinement, create
the FP-treebycalling the FPTree Constructor() method.
Later, FP-Mining () generates the frequent sub graphs by
traversing the FP-tree.

Table2:AlgorithmforFP-Mining:FPMining().
Input FP-treeFpT
FListheaderTable
Frequentpatterna(initially,a=null)

OutputFrequentsub graphsb
1. ifFpTcontainsasinglepath
2. if(FpT.length>SPThreshold)
3. Delete (FpT.length - SPThreshold)numberofedges
fromthetopofFpT.
4. foreachcombination(denotedasb)ofthenodes inpathT
5. if(isConnected(b,a)==true)//seeTable3fordetails
6. generateb ⋃a,support =M)
7. elseforeachaiintheheaderTableofFpT
8. generatepatternb=ai ⋃aw ithsuppo
9. if(isConnected(b,ai)==true)
10. constructb’sconditionalpatternbaseanduseittobuild
b’sconditionalFP-
treeTreebandb’sconditionalheadertableheaderTableb
11. if(Treeb ≠∅)
12. FP-Mining(Treeb,headerTableb,b);

In the original FP-growth approach a node from an FP-tree
indicates an item. In that case, a node of the FP-tree
contains the DFS-code of an edge. If the original FP-
growth approach is directly used in graph-mining, it does
not guarantee the connectivity property of a subgraph. It
can generate a disconnected set of edges in a
representation of a frequent subgraph. The difference
between the original FP-growth approach and our
modified approach is that the system crops the single paths
of the FP-tree and maintains connectivity of edges for
discovering frequent sub graphs. The modified FP-growth
algorithm for our sub graph discovery method is described
in Table 2.
If at any point, a single-path is encountered in the FP-tree,
we crop nodes from the top of the single path based on the
user-provided threshold SPThreshold. Removing a node
from the singlepath refersto eliminating the corresponding
edge denoted by that node. SPThreshold provides control
to the number of combinations of edges appearing in a
single path. Depending on the connectivity (Table3) of the
edges, a combination of the edges may or may not
generate a frequent sub graph. Let b be a sub graph for
which a single path is generated by traversing the branches
of the FP-tree ending with b. this say that the discovery of
the newly joint frequent sub graphs is conditional on the
frequent sub graphb (Table 2). The supports of these new

sub graphs are determined by the support of b before the
merging (step 6 of Table 2).

Table3:Checkingconnectivity:isConnected(b,a).
InputCombinationofedges,b
Frequentpattern,a
OutputReturns true if b and a composes a connected
subgraph, otherwise returns false.
GlobalVariableconnectedList
Method isConnected(b,a)
1. connectedList=null;
2. edge=thefirstedgeofb;
3. Iterate (edge,b); //isbconnected
4. if(connectedList.size≠b.size)
5. returnfalse;
6. foreachedgeeiinb//isaandbconnected
7. edge=thefirstedgeinb
8. if(isConnected(edge,a)==true)
9. returntrue;
10. returnfalse;
Method Iterate (edge,subset)
11. connectedList=connectedList ⋃edge
12. neighbors=allincomingandoutgoingedgesofedg
13. foreachedgeeiinneighbours
14. if(subsetcontainsei&&connectedListdoesnot containei)
15. Iterate(ei,subset)

The depth of the MDGph can reach up to 18 levels, which
is the maximum height of the hierarchy of Words. Since
our document-graphs contain hundreds of edges, the depth
of the FP- tree can reach up to hundreds of levels
depending on the number of edges in a document-graph.
Conventional FP-growth generates all possible subsets of
a single path for every edge-conditional FP-tree. Instead of
accepting all possible combinations of a single path itonly
keeps the combinations of edges that generate connected
frequent sub graphs. Whenever a single path is
encountered in the FP-tree (or recursively generated
conditional FP-trees), each of its combinations is
generated and checked to make sure that it follows the
connectivity constraint. This is done by first taking one of
the edges from the combination of the single path and then
adding it to a list called connectedList (Table 3). In the
Iterate () method, a neighboring edge list, neighborListi is
created for an edge i using the MDGph. The neighborListi
is checked to see if it contains any edge from the
combination of the conditional FP-tree’s single path. If
there are such edges it followed the same procedure for all
of them until no new edges from the combination of the
single path are added to the connectedList. At the end, the
size of the connectedList is compared with the size of the
combination (in step 4 of Table 3). If both of their sizes
are the same, then the whole combination must be
connected generating a subgrapha. Then an attempt is
made by step 6 through 9 of Table 3 to combine the
subgraphb with sub grapha. The method isConnected()
returns true if a and b can be merged together to generate a
connected subgraph. It should be noted that the

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.9, September 2015 41

isConnected method checks for the connectivity of one
combination at a time. If the edges under consideration of
this combination do not compose a connected subgraph,
but compose multiple disconnected sub graphs, then some
other combinations of the single path will generate these
smaller connected sub graphs. So, do not lose disjoint but
smaller connected sub graphs of a larger disconnected
combination of the single path.
Additionally, control the single path length by using
SPThreshold so that our FP-growth approach performs
faster. The length of the single path can be as large as the
number of all the edges appearing in a document-graph.
Taking each combination of a large single path and
checking the connectivity constraints is computationally
intensive. The construction of the FP-tree forces the edges
with higher frequencies to appear at the top of the FP-tree.
So, it is more likely that nodes at the top levels of the FP-
tree indicate edges at more abstract levels of the MDGph.
After observing that a higher abstraction level of the
MDGph does not provide enough information for reliable
clustering, we restricted the generation of combination of
a single path of the FP-tree to a certain length.
(SPThreshold)
When he mines the FP-tree, he starts from the edges
appearing the least in the pruned header table. Thus, if
hereaches a single path of length greater than SPThreshold,
heprunes the upper part of the single path above the
threshold and generates each combination of the lower
part only. This mechanism prunes nodes of single paths of
the FP-tree at the upper levels which are representative of
top level edges of the MDGph.

3.3. Document Clustering

This used the discovered frequent sub graphs to cluster the
document-graphs. These sub graphs can be viewed as
concepts appearing frequently within the documents. If
itevaluate the similarity of documents based on the co-
occurrence of frequent sub graphs, and then use these
similarity values to cluster the documents, it will get a
sense-based clustering of the text documents. Heuses
Hierarchical Agglomerative Clustering (HAC) [12] for the
clustering phase of that work. Now it implements the
Group Average method to cluster the documents where
the distance between two clusters is defined by the
average distance between points in both clusters.
A number of similarity measures exist that can be used to
find the closest or most distant pair of documents to merge
during HAC. Among them, the cosine measure [13] is the
most frequently used one. It penalizes less in cases where
the number of frequent sub graphs on each document
differs significantly. Since the cosine measure focuses
more on the components in the documents and is not
influenced by the document length, it has been used
widely in document clustering.

3.4. Similarity Measures

In this work chose this measure to compute the similarity
between two document-graphs (DG1 and DG2) based on
the frequent sub graphs (FS) appearing in them:

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐜𝐜𝐜𝐜𝐜𝐜𝐒𝐒𝐜𝐜𝐜𝐜(𝐃𝐃𝐃𝐃𝐃𝐃,𝐃𝐃𝐃𝐃𝐃𝐃)

=
𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐒𝐒 (𝐅𝐅𝐒𝐒(𝐃𝐃𝐃𝐃𝐃𝐃) ∩ (𝐃𝐃𝐃𝐃𝐃𝐃))

�𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐒𝐒�𝐅𝐅𝐒𝐒(𝐃𝐃𝐃𝐃𝐃𝐃)� ∗ 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐒𝐒�𝐅𝐅𝐒𝐒(𝐃𝐃𝐃𝐃𝐃𝐃)�

To cluster the documents use a dissimilarity matrix which
stores the dissimilarity between every pair of document-
graphs using the formula, dissimilarity = 1– similarity.
The value of dissimilarity can range from 0 to 1.
It can use self-similarity in work in place of similarity
function this self-similarity can be define as K-means
algorithm adopts the widely used similarity measurement
Cosine coefficient, namely equation [1].Because k-means
needs to compute on the vector space model, for X =
(x1,…, xn) and Y = (y1, …, yn), the component form of
their similarity measurement can be expressed as:

𝑺𝑺(𝑿𝑿,𝒀𝒀) =
∑ 𝒙𝒙𝒊𝒊𝒚𝒚𝒊𝒊𝒏𝒏
𝒊𝒊=𝐃𝐃

(∑ 𝒙𝒙𝒊𝒊𝐃𝐃𝒏𝒏
𝒊𝒊=𝐃𝐃)

𝐃𝐃
𝐃𝐃(∑ 𝒚𝒚𝒊𝒊𝐃𝐃𝒏𝒏

𝒊𝒊=𝐃𝐃)
𝐃𝐃
𝐃𝐃

Where n is the number of the features in the whole vector
space. Similar with k-means, AP (CC) and SAP (CC) also
use Cosine coefficient (equation (2)) as the similarity
between two documents. However, unlike k-means, a
document in AP (CC) and SAP (CC) does not need to be
represented into the whole vector space, but only into its
own vector space. Therefore the similarity measurement
computation complexity of the latter two algorithms is
reduced greatly in respect to the one of k-means. The self-
similarities of AP (CC) are defined as:
𝒔𝒔(𝒍𝒍, 𝒍𝒍) = 𝐒𝐒𝐒𝐒𝐜𝐜

𝐃𝐃≤𝒊𝒊,𝒋𝒋≤𝑵𝑵,𝒊𝒊≠𝒋𝒋
{𝒔𝒔(𝒊𝒊, 𝒋𝒋)}−𝝋𝝋(𝐒𝐒𝐒𝐒𝐦𝐦

𝐃𝐃≤𝒊𝒊,𝒋𝒋≤𝑵𝑵,𝒊𝒊≠𝒋𝒋
{𝒔𝒔(𝒊𝒊, 𝒋𝒋)}− 𝐒𝐒𝐒𝐒𝐜𝐜

𝐃𝐃≤𝒊𝒊,𝒋𝒋≤𝑵𝑵,𝒊𝒊≠𝒋𝒋
{𝒔𝒔(𝒊𝒊, 𝒋𝒋)})

Where φ is an adjustable factor?
This similarity can be used for clustering with help of
affinity propagation and efficiency of algorithm can be
measured be F-Measure function using precision and
recall value and Entropy function.

4. Experimental Result Analysis

Experimental Results of Modified FP Growth Approach
Table 5 contains some of our experimental results with the
subset of 768 documents from 7 different groups of items.
The avg. min_sup was kept 49.2 and we selected 568
items from the middle of the 768 documents to use them
in our FP-growth approach.

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.9, September 2015 42

Table 5- Parameters of Mining FP-Tree and Generate association rules.

No.
of

Grou
ps

Min_s
up

FP-
Tree
Stor
age

(Byte
s)

FP-
Tree
upda
tes

FP-
Tre

e
Nod
es

Genera
ting

Time
(Second

s)

T-
Tree
Stor
age

(Byte
s)

No. of
Frequ

ent
Sub

graph
Nodes

10 2.0 580 59 24 0.39 8992 639
25 5.0 602 186 25 0.44 8516 607
50 10.0 1284 364 56 0.34 8800 623

101 20.2 1702 759 75 0.27 8284 590
200 40.0 2516 1534 112 0.33 8816 629
568 113.6 3770 4473 169 0.3 8360 596
768 153.6 4386 6090 197 0.3 8460 604
The Table 5 shows the outputs of FP-Growth algorithm in
which taken a combination of groups like 10, 25, 50, 101,
200, 568, 768, and so on. This table shows the variation of
minimum support, FP-Tree Storage in bytes, FP-tree
updates after pruning nodes in the header table, No. of FP-
Tree Nodes, time for generating association rules in
seconds, T-Tree storage in Bytes and last No. of frequent
Sub graph Nodes
Here take an experimental result of table 5 and plot a
graph of minimum support value of all the no. of groups
which show the efficiency of minimum support of FP-
Growth algorithm.

Figure 5.1- Graph for minimum support of FP-Growth Algorithm.

Figure 5.4- Graph for Generating time in second of FP-Growth.

Experimental Results of Document Clustering

We used the frequent sub graphs find by the FP-growth
approach in the earlier section to cluster the corresponding
documents took dissimilar numbers of keywords from
each dataset for the clustering. To examine the accuracy of
our clustering, we analyse the results with the commonly
used frequency-based clustering technique.
Table 6 contains our experimental results of document
clustering with affinity propagation for different
documents. Here table shows 8 different data files
clustering outputs of documents.

Table 6 - Parameters of document files generated in clustering.
No. of Files

 5 10 20 30 40 50 60 70

No. of
Identified 1 2 6 8 12 15 18 19

Data point
(net

similarity)

5.7
e-

306

4.4
6

12.
69

20.
32

25.
99

31.
88

39.
07

47.
55

Preference of
selected

exemplars
0 0 4.9

1
6.6
2

9.6
0

9.9
0

14.
26

15.
68

No. of
iterations 126 131 114 108 121 114 122 120

Elapsed Time 2.5 2.7
2

2.2
2

2.1
4

2.3
9

2.2
9

2.6
4

2.4
1

No. of cluster 1 2 6 8 12 15 18 19
Fitness

(net
similarity)

5.7
e-

306

4.4
6

17.
66

26.
95

35.
59

41.
79

53.
33

63.
23

Table 6 shows the overall parameters of document
clustering which shows that when clustering method apply
on the document file, the number of iteration and elapsed
time in this method will be constant and overall process
take average iteration for all clustering is 119.5 and
average time is 2.41375 second for every clustering.
Now consider result with respect to files and elapsed time,
graph of elapsed time and documents is shown below.

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160

0 50 100150200250300350400450500550600650700750

M
in

_s
up

No. of Groups

0.25

0.27

0.29

0.31

0.33

0.35

0.37

0.39

0.41

0.43

0.45

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

G
en

er
at

in
g

tim
e

(S
ec

on
ds

)

No. of Groups

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.9, September 2015 43

Figure 5.5- Elapsed time in second for documents in clustering.

Now consider result with respect to files and no of
iteration, graph of no. of iteration and document files is
shown below.

Figure 5.6 - No. of iterations for documents in clustering.

For the number of documents, if we raise the number of
keywords, the MDGph has the affinity to contain more
edges. More keywords better illuminate the concept of the
documents. In such case, the edges in the mid-level of the
MDGph will have more relations between them. As a
result, more sub graphs will appear in the middle of the
MDGph. So, our methodology has the affinity to take the
advantage of attachment of keywords by determining
more sub graphs and using them in the clustering. It
requires inclusion of thousands of keywords for better
clustering.

5. Conclusion

In Data mining document clustering is very active
research area.to find suitable information system much
suitable idea has been implemented in document
clustering. It is very challenging task to find human-like

clustering. In this work, a graph based clustering with
affinity propagation. That find a new way to clustering
document based more on the keywords they contain
document based clustering techniques mostly depend on
the keywords. The work modifying the FP-mining
algorithm to find the frequent sub graph with clustering
affinity propagation in graph.
It can evaluate some techniques for computing the
combination of large scale paths which can improve the
performance of mining algorithms. In future will plan to
study more application related to that feature and try to
implement batter way and improve their performance.

REFERENCES
[1] RenchuGaun, XiaohuShi,MaurizioMarchese, Chen yang

and Yanchun Liang, “Text Clustering with seeds Affinity
Propagation” European Commission under grant No.
155776-EM-1-2009-1-IT-ERAMUNDUS-ECW-L12, 2009.

[2] ABM Rezbaul Islam, Tae-Sun Chung, “an improved
frequent pattern tree based association rule mining
tree”,IEEE,2011

[3] Jiawei Han, Jian Pei, and Yiwen Yin, “Mining Frequent
Patterns without CandidateGeneration”, SIGMOD Paper
ID: 196, 2000

[4] Han, J., and Kamber, M., “Data Mining: Concepts and
Techniques”, 2nd edition, ISBN, 2006.

[5] Agrawal, R. and Srikant, R., “Fast Algorithms for Mining
AssociationRules”,Proc.ofthe20th Int'l Conference on Very
Large Databases, Santiago, Chile, pp.487-499, (September
1994).

[6] Monika Akbar, Rafal A. Angryk, “Frequent Pattern-Growth
Approach for Document Organization”, Napa Valley,
California, USA, 2008.

[7] Kuramochi, M., and Karypis, G., “An efficient algorithm
for discovering frequent sub graphs”, IEEE Trans. on KDE,
pp.1038-1051, 16, 9 (2004).

[8] Yan, X., and Han, J., “gSpan, Graph–Based Substructure
Pattern Mining”, Proc. IEEE Int’l Conf. on Data Mining
ICDM, Maebashi City, Japan, pp.721–723, (November
2002).

[9] Cohen, M., and Gudes, E., “Diagonally sub graphs pattern
mining”, Workshop on Research Issues on Data Mining and
Knowledge Discovery proceedings, pp.51–58, (2004).

[10] Ketkar, N., Holder, L., Cook, D., Shah, R., and Coble, J.
“Subdue: Compression-based Frequent Pattern Discovery in
Graph Data”, ACM KDD Workshop on Open-Source Data
Mining, pp.71-76, (August 2005).

[11] http://www.wordnet.princeton.edu
[12] Hossain, M. S., and Angryk, R. A., “GDClust: A Graph-

Based Document Clustering Technique”, IEEE ICDM
Workshop on Mining Graphs and Complex Structures, USA,
pp.417-422, (2007).

[13] Xiaojin Zhu, jerryzhu@cs.wisc.edu, “Clustering”, CS769
Spring Advanced Natural Language Processing, 2010.

[14] Anna Huang, “Similarity Measures for Text Document
Clustering”, proceedings of the New Zealand Computer
Science Research Student Conference, 2008

[15] Kaufman, L. and Rousseeuw, P. J., “Finding Groups in
Data: an Introduction to Cluster Analysis”, John Wiley &
Sons, (1990).

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60 70

El
ap

se
d

Ti
m

e(
Se

co
nd

s)

No. of files

100

105

110

115

120

125

130

135

0 10 20 30 40 50 60 70

N
o.

 o
f i

te
ra

tio
ns

No. of files

