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Abstract 
Now days, finding the association rule from large number of 
item-set become very popular issue in the field of data mining. 
To determine the association rule researchers implemented a lot 
of algorithms and techniques. FP-Growth is a very fast algorithm 
for finding frequent item-set. This paper, give us a new idea in 
this field. Itreplaces the role of frequent item-set to frequent sub 
graph discovery. It uses the processing of datasets and describes 
modified FP-algorithm for sub-graph discovery. The document 
clustering is required for this work. It can use self-similarity 
function between pair of document graph that similarity can use 
for clustering with the help of affinity propagation and efficiency 
of algorithm can be measure by F-measure function. 
Keywords 
clustering, document-graph, FP-growth, graph mining, frequent 
sub graphs clustering. 

1. Introduction 

Data mining techniques is used to extracting information 
from that data. Many researchers developed a lot of 
algorithm and techniques for finding useful information in 
the database. Frequent item-set mining is a core data 
mining operation and has been extensively studied over 
last decade. It plays an essential role in many important 
data mining tasks. Algorithms for frequent item-set 
mining form the basis for algorithms for a number of other 
mining problems, including association rule mining, 
correlations mining, and mining sequential and emerging 
patterns. Association rule mining technique is very 
effective data mining technique to finding the useful 
hidden information in the data, its aim to extract 
correlation, frequent pattern, association by transaction 
database or other data repository. This rules generated by 
datasets and it derives by measurement of support and 
confidence of every role, which define the frequency of 
that role. Association rule is a rule which is depends on 
the association relationship of objects and items. For 
example data item interrelation ship which is occurs 
simultaneous with other data items. This rule is calculated 
by data and association calculated with the help of 
probability. Share market and recommended system etc. 
are its practical applications. 

To concept of document based clustering, association rule 
mining is very effective algorithm and useful approach. It 
utilizes that FP-Growth approach discovers frequent 
patterns and modified it to frequent sub graph discovery. 
Originally this algorithm is design to frequent item-set 
mine in market basket analysis. In this paper, analyse FP-
Growth approach to document clustering. For graph 
mining, change in FP-Growth algorithm which discover 
frequent connected graph and perform better for thick 
connected graph. 
This Paper consists of five main sections. The second 
section describes the Basic Theory of this work. The 
frame work of this approach is describes in third section, 
Experimental Result analysis is forth section and finally 
section five is devoted to conclusion and future work. 

2. Basic Theory 

The association rule mining [2] approaches were 
established to determine frequent item-sets in market 
basket datasets [4].The two most common approaches to 
association rule mining are Frequent Pattern growth (FP-
growth) [3]and apriori [5].The apriori algorithm uses prior 
information of frequent item-sets to produce the 
candidates for larger frequent item-sets. It relies on 
interactions between item-sets and subsets. If an item-set 
is frequent, then all of its subsets must also be frequent. 
But generating candidates and checking their support at 
each level of iteration can become expensive. FP-growth 
introduces a different approach here. Instead of generating 
the candidates, it compresses the database into a compact 
tree form, known as the FP-tree, and extracts the frequent 
patterns by traversing the tree. 
In this work, Exchanged the concept of the frequent item-
setin to frequent sub graph. However, there are some 
famous sub graph discovery systems like FSG (Frequent 
Sub graph Discovery) [6], gSpan (graph-based 
Substructure pattern mining) [7], DSPM (Diagonally Sub 
graph Pattern Mining) [8], and SUBDUE [9]. It does allow 
us to believe that the concept of the creation of document-
graphs and discovering frequent sub graphs to execute a 
sense-based clustering is currently feasible. All these 
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systems deal with multiple aspects of efficient frequent 
sub graph mining. Most of them have been tested on real 
and artificial datasets of chemical compounds. Yet none of 
them has been applied to the mining of text data. It’s 
developed a graph-based approach for document 
clustering using FP-growth. Since in this system the 
documents are represented by graphs, made the necessary 
changes to the FP-growth algorithm so that instead of 
generating frequent item-sets it can generate frequent sub 
graphs. 

3. Frame Work of This Approach 

Our overall method is briefly portrayed in this section. 
The system is divided into four major parts: Document 
Pre-processing, FP-Growth approach, Document 
clustering and Similarity Measures. Detailed mechanisms 
are described in the following subsections. 

3.1. Document Pre-processing 

The work use stemming to repossess the relationship 
betweenthe keywords of a document. In stemming, words 
are related to each other based on different semantic 
relationships among them. This Paper use the relation of 
keywords, which is a super-ordinate or IS-A (“a kind 
of”)relationship. This work believes that, for sense-based 
document clustering, this relation is more suitable than the 
others because it provides the generalization of a concept 
or a word. It builds a document-graph by traversing the 
hierarchy of the keywords up to Entity. Once there have 
all of the document-graphs, create a Master Document 
Graph (MDGph) [11] based on the traversal of all of the 
keywords up to the topmost level. 
Now use the MDGph for a number of reasons. Instead of 
taking the entirety of Words as the background knowledge. 
Use MDGph that contains the ontology related to the 
keywords only. This allows us to focus on the area of the 
Words which is applicable to our dataset. Another purpose 
why use the MDGph is that it can facilitate the use of the 
DFS codes. The code is produced by traversing the 
MDGph in Depth First Search (DFS) order. This gives us 
the DFS traversal order (DFS code) for the entire MDGph. 
The DFS codes of the edges of the MDGph are applied to 
the edges of the document-graphs. Thus, the DFS codes of 
the edges of the MDGph help us to mark each edge of the 
document-graphs in a DFS order specific manner. 
Therefore, the same subgraph acting in two document-
graphs can be identified by the DFS codes of the edges of 
that subgraph. Additionally, the MDGphhelps in testing 
the connectivity between nodes during the subgraph 
discovery process. The graph representation of the 
documents to a table consisting of the list of edges 
appearing in each document. 
 

Table1:ModifiedFP-growthalgorithm 
Input Documentgraphs’databaseDGB,  
MasterDocumentgraphMDGph,  
Minimumsupportmin_sup 
Output Frequentsub graphssubGphj 
1. CreatealistcalledtransactionDGBforallDGphi ∈DGB 
2. CreateheaderTableforalledgeai ∈MDGph 
3. FilterDGB(transactionDGB,headerTable,min_sup) 
4. FPTreeConstrcutor() 
5. FPMining()//seeTable2fordetails 

This helps us to fit the frequent sub graph discovery task 
to the frequent item-set discovery problem of the market 
basket data analysis. Each edge of a document-graph is 
considered to be an item of a transaction, a sub graph is 
considered to be an item-set and each document is 
considered to be a transaction. 

3.2. FP-growth Approach for Frequent Sub graph 
Discovery 

The original FP-growth algorithm, when applied to our 
problem generates a set of frequent edges which do not 
necessarily constitute to a connected sub graph. 
Generation of all possible frequent patterns not only 
outputs all possible frequent sub graphs but also generates 
a lot of overhead in the form of all possible sets of 
frequent, but disconnected, edges. This causes 
unnecessary costs during the mining of the document-
graphs as only looking for frequent sub graphs and these 
sets of frequent disconnected edges tolerate no useful 
information for the document clustering. The time and 
space required to generate and store these disconnected 
frequent edges have negative impact on the overall 
performance of the FP-growth approach. To overcome 
these problems itrestricts the discovery of frequent item-
sets in the FP-growth approach. Instead of discovering all 
possible frequent combination of edges we only discover 
the frequent edges that founds to a graph. We also control 
the maximum size of the frequent sub graph by the SP 
Threshold value. 
The shape of modified FP-growth approach is given in 
Table 1. The method Filter DGB reconstructs both the lists 
transaction DGB and header Table by eliminating the 
infrequent edges based on the minimum support provided 
by the user. It sorts the edges of transaction DGB and 
header Table in descending order by support. After this 
step, the top of the header covers the most frequent edges 
and the bottom contains the least frequent ones. The edges 
at the top level of the header table are the representative 
edges of the topmost levels of our MDGph. Since these 
edges denote very abstract relationships between synsets 
[10], they appear in too many document-graphs implying 
that they are not good candidates for clustering. In contrast, 
edges at the bottom of the header table are least frequent 
and denote relations between very specific concepts in the 
MDGph. Since they appear in very few document-graphs, 
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they too provide less information for clustering. This 
motivated us to crop the edges a second time from the top 
and bottom of the header table before constructing the FP-
tree. Transaction DB is updated accordingly to reflect this 
change in the header table. After this refinement, create 
the FP-treebycalling the FPTree Constructor() method. 
Later, FP-Mining () generates the frequent sub graphs by 
traversing the FP-tree. 

Table2:AlgorithmforFP-Mining:FPMining(). 
Input FP-treeFpT 
FListheaderTable 
Frequentpatterna(initially,a=null) 
 
OutputFrequentsub graphsb 
1. ifFpTcontainsasinglepath 
2. if(FpT.length>SPThreshold) 
3. Delete (FpT.length - SPThreshold)numberofedges 
fromthetopofFpT. 
4. foreachcombination(denotedasb)ofthenodes inpathT 
5. if(isConnected(b,a)==true)//seeTable3fordetails 
6. generateb ⋃a,support =M) 
7. elseforeachaiintheheaderTableofFpT 
8. generatepatternb=ai ⋃aw ithsuppo 
9. if(isConnected(b,ai)==true) 
10. constructb’sconditionalpatternbaseanduseittobuild 
b’sconditionalFP-
treeTreebandb’sconditionalheadertableheaderTableb 
11. if(Treeb ≠∅ ) 
12. FP-Mining(Treeb,headerTableb,b); 
 

In the original FP-growth approach a node from an FP-tree 
indicates an item. In that case, a node of the FP-tree 
contains the DFS-code of an edge. If the original FP-
growth approach is directly used in graph-mining, it does 
not guarantee the connectivity property of a subgraph. It 
can generate a disconnected set of edges in a 
representation of a frequent subgraph. The difference 
between the original FP-growth approach and our 
modified approach is that the system crops the single paths 
of the FP-tree and maintains connectivity of edges for 
discovering frequent sub graphs. The modified FP-growth 
algorithm for our sub graph discovery method is described 
in Table 2. 
If at any point, a single-path is encountered in the FP-tree, 
we crop nodes from the top of the single path based on the 
user-provided threshold SPThreshold. Removing a node 
from the singlepath refersto eliminating the corresponding 
edge denoted by that node. SPThreshold provides control 
to the number of combinations of edges appearing in a 
single path. Depending on the connectivity (Table3) of the 
edges, a combination of the edges may or may not 
generate a frequent sub graph. Let b be a sub graph for 
which a single path is generated by traversing the branches 
of the FP-tree ending with b. this say that the discovery of 
the newly joint frequent sub graphs is conditional on the 
frequent sub graphb (Table 2). The supports of these new 

sub graphs are determined by the support of b before the 
merging (step 6 of Table 2). 

Table3:Checkingconnectivity:isConnected(b,a). 
InputCombinationofedges,b 
Frequentpattern,a 
OutputReturns true if b and a composes a connected 
subgraph, otherwise returns false. 
GlobalVariableconnectedList 
Method isConnected(b,a) 
1. connectedList=null; 
2. edge=thefirstedgeofb; 
3. Iterate (edge,b); //isbconnected 
4. if(connectedList.size≠b.size) 
5. returnfalse; 
6. foreachedgeeiinb//isaandbconnected 
7. edge=thefirstedgeinb 
8. if(isConnected(edge,a)==true) 
9. returntrue; 
10. returnfalse; 
Method Iterate (edge,subset) 
11. connectedList=connectedList ⋃edge 
12. neighbors=allincomingandoutgoingedgesofedg 
13. foreachedgeeiinneighbours 
14. if(subsetcontainsei&&connectedListdoesnot containei) 
15. Iterate(ei,subset) 

The depth of the MDGph can reach up to 18 levels, which 
is the maximum height of the hierarchy of Words. Since 
our document-graphs contain hundreds of edges, the depth 
of the FP- tree can reach up to hundreds of levels 
depending on the number of edges in a document-graph. 
Conventional FP-growth generates all possible subsets of 
a single path for every edge-conditional FP-tree. Instead of 
accepting all possible combinations of a single path itonly 
keeps the combinations of edges that generate connected 
frequent sub graphs. Whenever a single path is 
encountered in the FP-tree (or recursively generated 
conditional FP-trees), each of its combinations is 
generated and checked to make sure that it follows the 
connectivity constraint. This is done by first taking one of 
the edges from the combination of the single path and then 
adding it to a list called connectedList (Table 3). In the 
Iterate () method, a neighboring edge list, neighborListi is 
created for an edge i using the MDGph. The neighborListi 
is checked to see if it contains any edge from the 
combination of the conditional FP-tree’s single path. If 
there are such edges it followed the same procedure for all 
of them until no new edges from the combination of the 
single path are added to the connectedList. At the end, the 
size of the connectedList is compared with the size of the 
combination (in step 4 of Table 3). If both of their sizes 
are the same, then the whole combination must be 
connected generating a subgrapha. Then an attempt is 
made by step 6 through 9 of Table 3 to combine the 
subgraphb with sub grapha. The method isConnected() 
returns true if a and b can be merged together to generate a 
connected subgraph. It should be noted that the 
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isConnected method checks for the connectivity of one 
combination at a time. If the edges under consideration of 
this combination do not compose a connected subgraph, 
but compose multiple disconnected sub graphs, then some 
other combinations of the single path will generate these 
smaller connected sub graphs. So, do not lose disjoint but 
smaller connected sub graphs of a larger disconnected 
combination of the single path. 
Additionally, control the single path length by using 
SPThreshold so that our FP-growth approach performs 
faster. The length of the single path can be as large as the 
number of all the edges appearing in a document-graph. 
Taking each combination of a large single path and 
checking the connectivity constraints is computationally 
intensive. The construction of the FP-tree forces the edges 
with higher frequencies to appear at the top of the FP-tree. 
So, it is more likely that nodes at the top levels of the FP-
tree indicate edges at more abstract levels of the MDGph. 
After observing that a higher abstraction level of the 
MDGph does not provide enough information for reliable 
clustering, we restricted the generation of combination of 
a single path of the FP-tree to a certain length. 
(SPThreshold) 
When he mines the FP-tree, he starts from the edges 
appearing the least in the pruned header table. Thus, if 
hereaches a single path of length greater than SPThreshold, 
heprunes the upper part of the single path above the 
threshold and generates each combination of the lower 
part only. This mechanism prunes nodes of single paths of 
the FP-tree at the upper levels which are representative of 
top level edges of the MDGph. 

3.3. Document Clustering 

This used the discovered frequent sub graphs to cluster the 
document-graphs. These sub graphs can be viewed as 
concepts appearing frequently within the documents. If 
itevaluate the similarity of documents based on the co-
occurrence of frequent sub graphs, and then use these 
similarity values to cluster the documents, it will get a 
sense-based clustering of the text documents. Heuses 
Hierarchical Agglomerative Clustering (HAC) [12] for the 
clustering phase of that work. Now it implements the 
Group Average method to cluster the documents where 
the distance between two clusters is defined by the 
average distance between points in both clusters. 
A number of similarity measures exist that can be used to 
find the closest or most distant pair of documents to merge 
during HAC. Among them, the cosine measure [13] is the 
most frequently used one. It penalizes less in cases where 
the number of frequent sub graphs on each document 
differs significantly. Since the cosine measure focuses 
more on the components in the documents and is not 
influenced by the document length, it has been used 
widely in document clustering.  

3.4. Similarity Measures 

In this work chose this measure to compute the similarity 
between two document-graphs (DG1 and DG2) based on 
the frequent sub graphs (FS) appearing in them: 

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐜𝐜𝐜𝐜𝐜𝐜𝐒𝐒𝐜𝐜𝐜𝐜(𝐃𝐃𝐃𝐃𝐃𝐃,𝐃𝐃𝐃𝐃𝐃𝐃)

=
𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐒𝐒 (𝐅𝐅𝐒𝐒(𝐃𝐃𝐃𝐃𝐃𝐃) ∩ (𝐃𝐃𝐃𝐃𝐃𝐃))

�𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐒𝐒�𝐅𝐅𝐒𝐒(𝐃𝐃𝐃𝐃𝐃𝐃)� ∗ 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐒𝐒�𝐅𝐅𝐒𝐒(𝐃𝐃𝐃𝐃𝐃𝐃)�
 

To cluster the documents use a dissimilarity matrix which 
stores the dissimilarity between every pair of document-
graphs using the formula, dissimilarity = 1– similarity. 
The value of dissimilarity can range from 0 to 1. 
It can use self-similarity in work in place of similarity 
function this self-similarity can be define as K-means 
algorithm adopts the widely used similarity measurement 
Cosine coefficient, namely equation [1].Because k-means 
needs to compute on the vector space model, for X = 
(x1,…, xn) and Y = (y1, …, yn), the component form of 
their similarity measurement can be expressed as: 

𝑺𝑺(𝑿𝑿,𝒀𝒀) =
∑ 𝒙𝒙𝒊𝒊𝒚𝒚𝒊𝒊𝒏𝒏
𝒊𝒊=𝐃𝐃

(∑ 𝒙𝒙𝒊𝒊𝐃𝐃𝒏𝒏
𝒊𝒊=𝐃𝐃 )

𝐃𝐃
𝐃𝐃(∑ 𝒚𝒚𝒊𝒊𝐃𝐃𝒏𝒏

𝒊𝒊=𝐃𝐃 )
𝐃𝐃
𝐃𝐃

 

Where n is the number of the features in the whole vector 
space. Similar with k-means, AP (CC) and SAP (CC) also 
use Cosine coefficient (equation (2)) as the similarity 
between two documents. However, unlike k-means, a 
document in AP (CC) and SAP (CC) does not need to be 
represented into the whole vector space, but only into its 
own vector space. Therefore the similarity measurement 
computation complexity of the latter two algorithms is 
reduced greatly in respect to the one of k-means. The self-
similarities of AP (CC) are defined as: 
𝒔𝒔(𝒍𝒍, 𝒍𝒍) = 𝐒𝐒𝐒𝐒𝐜𝐜

𝐃𝐃≤𝒊𝒊,𝒋𝒋≤𝑵𝑵,𝒊𝒊≠𝒋𝒋
{𝒔𝒔(𝒊𝒊, 𝒋𝒋)}−𝝋𝝋( 𝐒𝐒𝐒𝐒𝐦𝐦

𝐃𝐃≤𝒊𝒊,𝒋𝒋≤𝑵𝑵,𝒊𝒊≠𝒋𝒋
{𝒔𝒔(𝒊𝒊, 𝒋𝒋)}− 𝐒𝐒𝐒𝐒𝐜𝐜

𝐃𝐃≤𝒊𝒊,𝒋𝒋≤𝑵𝑵,𝒊𝒊≠𝒋𝒋
{𝒔𝒔(𝒊𝒊, 𝒋𝒋)}) 

Where φ is an adjustable factor? 
This similarity can be used for clustering with help of 
affinity propagation and efficiency of algorithm can be 
measured be F-Measure function using precision and 
recall value and Entropy function. 

4. Experimental Result Analysis 

Experimental Results of Modified FP Growth Approach 
Table 5 contains some of our experimental results with the 
subset of 768 documents from 7 different groups of items. 
The avg. min_sup was kept 49.2 and we selected 568 
items from the middle of the 768 documents to use them 
in our FP-growth approach. 
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Table 5- Parameters of Mining FP-Tree and Generate association rules. 

No. 
of 

Grou
ps 

Min_s
up 

FP-
Tree 
Stor
age 

(Byte
s) 

FP-
Tree 
upda
tes 

FP-
Tre

e 
Nod
es 

Genera
ting 

Time 
(Second

s) 

T-
Tree 
Stor
age 

(Byte
s) 

No. of 
Frequ

ent 
Sub 

graph 
Nodes 

10 2.0 580 59 24 0.39 8992 639 
25 5.0 602 186 25 0.44 8516 607 
50 10.0 1284 364 56 0.34 8800 623 

101 20.2 1702 759 75 0.27 8284 590 
200 40.0 2516 1534 112 0.33 8816 629 
568 113.6 3770 4473 169 0.3 8360 596 
768 153.6 4386 6090 197 0.3 8460 604 
The Table 5 shows the outputs of FP-Growth algorithm in 
which taken a combination of groups like 10, 25, 50, 101, 
200, 568, 768, and so on. This table shows the variation of 
minimum support, FP-Tree Storage in bytes, FP-tree 
updates after pruning nodes in the header table, No. of FP-
Tree Nodes, time for generating association rules in 
seconds, T-Tree storage in Bytes and last No. of frequent 
Sub graph Nodes 
Here take an experimental result of table 5 and plot a 
graph of minimum support value of all the no. of groups 
which show the efficiency of minimum support of FP-
Growth algorithm. 

 

Figure 5.1- Graph for minimum support of FP-Growth Algorithm. 

 

Figure 5.4- Graph for Generating time in second of FP-Growth. 

Experimental Results of Document Clustering 

We used the frequent sub graphs find by the FP-growth 
approach in the earlier section to cluster the corresponding 
documents took dissimilar numbers of keywords from 
each dataset for the clustering. To examine the accuracy of 
our clustering, we analyse the results with the commonly 
used frequency-based clustering technique. 
Table 6 contains our experimental results of document 
clustering with affinity propagation for different 
documents. Here table shows 8 different data files 
clustering outputs of documents.  

Table 6 - Parameters of document files generated in clustering. 
No. of Files 

 5 10 20 30 40 50 60 70 

No. of 
Identified 1 2 6 8 12 15 18 19 

Data point 
(net 

similarity) 

5.7 
e-

306 

4.4
6 

12.
69 

20.
32 

25.
99 

31.
88 

39.
07 

47.
55 

Preference of 
selected 

exemplars 
0 0 4.9

1 
6.6
2 

9.6
0 

9.9
0 

14.
26 

15.
68 

No. of 
iterations 126 131 114 108 121 114 122 120 

Elapsed Time 2.5 2.7
2 

2.2
2 

2.1
4 

2.3
9 

2.2
9 

2.6
4 

2.4
1 

No. of cluster 1 2 6 8 12 15 18 19 
Fitness 

(net 
similarity) 

5.7 
e-

306 

4.4
6 

17.
66 

26.
95 

35.
59 

41.
79 

53.
33 

63.
23 

Table 6 shows the overall parameters of document 
clustering which shows that when clustering method apply 
on the document file, the number of iteration and elapsed 
time in this method will be constant and overall process 
take average iteration for all clustering is 119.5 and 
average time is 2.41375 second for every clustering. 
Now consider result with respect to files and elapsed time, 
graph of elapsed time and documents is shown below. 
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Figure 5.5- Elapsed time in second for documents in clustering. 

Now consider result with respect to files and no of 
iteration, graph of no. of iteration and document files is 
shown below. 

 

Figure 5.6 - No. of iterations for documents in clustering. 

For the number of documents, if we raise the number of 
keywords, the MDGph has the affinity to contain more 
edges. More keywords better illuminate the concept of the 
documents. In such case, the edges in the mid-level of the 
MDGph will have more relations between them. As a 
result, more sub graphs will appear in the middle of the 
MDGph. So, our methodology has the affinity to take the 
advantage of attachment of keywords by determining 
more sub graphs and using them in the clustering. It 
requires inclusion of thousands of keywords for better 
clustering. 

5. Conclusion 

In Data mining document clustering is very active 
research area.to find suitable information system much 
suitable idea has been implemented in document 
clustering. It is very challenging task to find human-like 

clustering. In this work, a graph based clustering with 
affinity propagation. That find a new way to clustering 
document based more on the keywords they contain 
document based clustering techniques mostly depend on 
the keywords. The work modifying the FP-mining 
algorithm to find the frequent sub graph with clustering 
affinity propagation in graph. 
It can evaluate some techniques for computing the 
combination of large scale paths which can improve the 
performance of mining algorithms. In future will plan to 
study more application related to that feature and try to 
implement batter way and improve their performance. 
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