
IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.9, September 2015

44

Manuscript received September 5, 2015
Manuscript revised September 20, 2015

Expansion of Existing Use Cases Using Extend Relationship

Prashant Nidhi Sharma Achint Gupta
Gurgaon College of Engg., Gurgaon Gurgaon College of Engg., Gurgaon Gurgaon College of Engg., Gurgaon

Abstract
In this paper, we have discussed the Extend relationship for the
use cases, when subsequent modifications are performed on a
system or some later versions are added to the existing use cases.
The extend relationship makes it easier to read and understand
the model. Use case may be extended by more than one use case.
Keyword
Extend relationship, usecase

1. Introduction

A. Extend Relationship

When subsequent iterations in a project are performed or
when later versions of a system's use-case model are
developed, completely new use cases are often added to
the model and new actions are inserted into existing use
cases. This means that the existing services are extended
with some additional features that did not exist in the
previous versions of the model. However, the different
stakeholders often do not want to modify the existing use
cases because these have already been reviewed and
approved. They are only willing to have certain features
added to the existing use cases. Therefore, the developers
will have to express these additions without modifying the
existing use cases. To solve the situation, it is possible to
use the extend relationship. An extend relationship states
that the flow of a use case is extended by the flow defined
in another use case. The original use case is often called
the base use case, and the use case capturing the addition
is called the extension use case as shown in Figure. 1 . We
can compare these labels to those involved in an include
relationship in the sense that this labeling is relative to the
extend relationship, and not to the use cases as such.

B is a base usecase to A B is a extension usecase

to C

Figure 1. The terms base use case and extension use case are relative
terms.

The fact that the relationship is defined from the extension
use case to the base use case that is, from the new use case
to the already existing one makes it very useful. The
direction implies that the extension use case is dependent

on the base use case, whereas the base use case is in fact
independent of the extension. In other words, the
dependency goes to the base use case that is, in the
opposite direction compared with the include situation
where the dependency goes from the base use case.
Therefore, an extend relationship can be added to a model
without affecting the base use case; that is, the definition
of the base use case will not be modified at all when the
sub flow of the extension use case is added. We have
considered an example of a warehouse (fig.2.). In the
business where this system is used, there are, among
others, managers and salespersons. We have two business
roles: Manager and Salesperson.

Fig. 2. Example of a Warehouse.

In the example, both managers and salespersons expedite
orders that customers want to place. Therefore, from the
business roles' perspective, both of them are performing
the Order Item use case. There is only one actor, called
Clerk, interacting with the Order Item use case as shown
in Fig. 3.

Fig. 3. Use case of Warehouse

mk:@MSITStore:C:%5CUsers%5CHello%5CDesktop%5CDesktop%5Cprashant%20research%5Cse%20books%5CAddison.Wesley.Use.Cases.Patterns.and.Blueprints.eBook-LiB.chm::/0131451340/gloss01.html%23gloss01entry17

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.9, September 2015 45

The use case receives the order information from the Clerk,
creates the order, and prints it to the Clerk. In the
warehouse system example, The use case Order Item that
describes how a collection of items is ordered, how the
registered numbers of these items are decreased in the
system, and how a pick list is generated and sent to the
warehouse personnel instructing them to deliver the items
to the customer. In the first version of the system, the head
buyer of the warehouse must manually check whether the
number of an item is running low; if so, it must be
restocked. Obviously, it would be desirable that the
system automatically informs the head buyer when an
item has to be restocked. Therefore, in the next version of
the system, a new use case, Restock Item, is added to the
use-case model. The added functionality implies that when
the registered number of an item falls below a specified
threshold, a restock order is generated and sent to the
warehouse's head buyer. The Restock Item use case has an
extend relationship to the Order Item use case stating that
when the latter use case is performed, the actions
described in Restock Item will be inserted into the
performed sequence of actions (Fig. 4.)

Fig. 4. The use-case instance to the right follows the description of the

Order Item use case extended by the description of the Restock Item use
case, as indicated by the hatching.

In the first version of the warehouse system, the use-case
instance will perform the actions described in the Order
Item use case, whereas in the second, enhanced version,
the use-case instance will perform the actions of Order
Item extended by the actions of Restock Item. There will
not be two communicating use-case instances, because
use-case instances do not communicate with each other,
there is only one flow of events; in the latter version, this
flow will include the actions modeled by two use cases.
The extend relationship is also used when the flow of a
use case includes a part that from a conceptual point of
view does not belong to the rest of the flow in other words,
when the flow includes a part that, in some sense, is
orthogonal to the rest of the flow. This could be logging,
for example, which in itself usually has nothing to do with
what is being logged; in this sense, it is orthogonal to the
rest of the flow. How logging is done can be described
separately (Fig.5.)

Fig. 5. Modeling behavior that conceptually does not belong together
with the rest of the behavior of a use case is often done using an

extension use case.

Used in this way, the extend relationship makes it easier to
read and understand the model. In our telephone exchange
system, assume that all telephone calls are to be charged.
Hence, the flow of Local Call must include the actions
that cause the charging to take place. However, the
information about the charging procedure may be
distracting to readers of the Local Call use case. Instead,
we describe charging in a separate use case extending
Local Call (Fig.6.).

Fig. 6. Extracting behavior into an extension use case may increase

readability and understandability.

One important motivation for the extend relationship is
that it makes it possible to model services that are optional
in a configuration of (an installation of) the system,
enabling the customers buying the system to decide
whether to include a certain service. In the warehouse
system example, there can be one basic version of the
system and a collection of additional services, including
automatic restocking. Different warehouses can buy
different configurations of the system by selecting
different sets of use cases (Fig.7.). This implies that the
inclusion or exclusion of optional services must not affect
the other parts of the model. Because we have related
Restock Item to Order Item using an extend relationship,
we can add as well as remove it without influencing the
rest of the model, thus obtaining the desired structure of
the model.

Fig. 7. In different configurations of the system, optional use cases can
be added. Some of these may expand mandatory use cases using extend

relationships.

If for some reason the use-case model must be modified
depending on whether some optional parts are supplied,
the model will of course have to be structured differently.
One use case may, of course, extend several other use
cases like the Charging use case, which probably extends
all the use cases that model the performance of some kind
of telephone call, as is shown in Fig. 8. There will be an
extend relationship from the Charging use case to each of

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.9, September 2015 46

the extended use cases, which means that each of them is
extended with the sequence of actions described by the
Charging use case.

Fig. 8. One use case may extend several use cases, and several use cases

may extend the same (base) use case.

Furthermore, one use case may be extended by more than
one use case. The Local Call use case may be extended
not only by the Charging use case but also by, for example,
the Call Waiting, the Present Caller Line Identification,
and the Survey Quality of Call use cases.

B. Characteristics of the Extend Relationship

As mentioned previously, the relationship is directed from
the extension use case to the base use case. This implies
that the base use case is independent of the extension.
Only the extending use case is dependent on the extend
relationship. This means that the extend relationship can
be used only to model additional behavior it cannot be
used for modifying or removing behavior within the base
use case. The rationale for this restriction is to make sure
that the base use case will not have to be reviewed and
approved after the introduction of an extension. When we
extract behavior from a base use case and put it in an
extension use case, the base use case must still be
complete, understandable, and meaningful in itself. There
must not be an apparent hole in the sequence of the base
use case; that is, it must not be possible to conclude by
just looking at the description of the base use case that
there has to be an extension of this use case, because
something is apparently missing. Remember that the base
use case is independent of any extensions and hence, at
least in theory, it must be possible to perform just the base
use case without any extension. If the base use case is of
no value to the stakeholders without the insertion of an
extension, it is not a justifiable use case and the model
should be restructured. Similarly, if the description of the
base use case necessitates a reference to an extending use
case, it is evident that the extend relationship is
inappropriate. Again, the base use case must be
independent of the existence of extension use cases. In this
situation, two straightforward solutions exist. One is to
merge the behavior of the extension use case with the
behavior of the base use case. In cases where the extension
use case is shared with other base use cases, the solution is
to use an include relationship instead of the extend
relationship. This is appropriate because in this case the
additional parts are referenced from the base use case.

C. Extension Points

Clearly, it is not enough to state only that the behavior of
the extension use case is to be added into the sequence of
the base use case. The exact location in the sequence of
actions where the extending sequence is to be inserted
must also be defined. A straightforward way to do this is
to reference an explicit location in the base use case's
sequence. This is how this was done in the early days of
use-case modeling. It soon became obvious that an
indirect reference would be preferable, however. There
were two reasons for this change. One was that to
understand where to insert the extending behavior, the
use-case modeler must read and understand the detailed
description of the base use case to find exactly where the
extension was to take place, which is not always an easy
task. The other reason was that if the base use case were
later to be modified, the explicit reference might prove to
have become invalid: The referenced location might have
been removed or might no longer be the desired location.
Therefore, extension points were introduced. An extension
point declared in a use case consists of a name and a
reference to a location in the sequence of actions of the
use case where it may be extended (Fig. 9). Therefore, the
extension point belongs to the base use case, implying that
the reference to the exact location in the flow is
encapsulated within that use case.

Fig. 9. Two of the extension points defined in the Order Item use case.
Each of them has a name and references a location in the flow of the use

case.

An extend relationship will now not only identify the
extending and the base use cases, but it will also define at
which extension point in the base use case the behavior of
the extension use case is to be inserted. When an extend
relationship is to be added, use-case modelers check the
list of extension points declared in the base use case to
identify at which point the additional behavior is to be
inserted. In this way, they have to read and understand
only the extension points, not the complete description of
the base use case. Therefore, the use case might be slightly
reorganized without affecting the extending use cases. A
major reorganization of a use case may affect all the use
cases that have relationships to it. The name of an
extension point should describe what happens at this
location in the use case, not the actual location in the
sequence of actions. In this way, the extension points will
be easier to understand and the behavior of the use case

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.9, September 2015 47

will be kept encapsulated. The name of the extension point
must not reveal what is to be inserted at that point,
because that would make the extended use case dependent
on the extending use case.
In Fig.9 the extension points of the use case Order Item
are enumerated. Assume that this use case is extended
with the Restock Item use case to check whether the
number of items is below a given threshold so that
additional items must be purchased. The Restock Item use
case extends the Order Item use case at the point where
the total number of the relevant items is updated. A
common mistake is to name the extension point Check for
Restocking, because it indicates what is to be inserted.
The proper name states what happens in the base use case,
which in this case is Number of Items Updated. Another
advantage of extension points, often forgotten, is that they
also make it possible in the implementation to prepare for
extensions that might occur in the future.

D. Conditional Extensions

The extend relationship has another useful property: a
condition is connected to it. This condition determines
whether the extension is to be inserted when performance
of the use case's flow reaches the extension point
referenced by the extend relationship. If the condition then
evaluates to true, the extending flow is inserted into the
flow of the base use case, and the result is a flow
complying with the description of the base use case and
the description of the extending use case. Again, there is
no communication, no calling of other use cases, no
delegation, no invoking of other use cases. The condition
can be stated in terms of both values inside the system and
events caused by actors of the system. An example of the
former is the extend relationship from the Restock Item
use case in the warehouse model, where the generation of
the restocking order takes place only if the number of the
specific item is lower than the predefined threshold level
(see the left part of Figure 8.8). This indicates that the
Restock Item extension will not be inserted if the current
number of the item exceeds the threshold level.

Fig.10. An extend relationship has a condition that states under what
circumstances the extension is to take place. The condition can include
references to information inside the system and to interactions between

an actor and the system.

The warehouse model also contains an example of an
extend relationship where the condition is stated in terms
of actor interaction. If the customer, when the Order Item

use case is performed, wants to know the total cost of the
items currently ordered, the customer can request that the
system calculate the price, for example, by clicking a
button. By defining an extend relationship from the
Calculate Price use case to the Order Item use case, and by
defining the condition to be The Customer requests the
current total of the order, we get a model that captures this
situation (Fig. 10.). If there is a use-case instance
performing the sequence of actions described by the Order
Item use case, and the customer presses the button that is,
requests that the sum total be stated the condition of the
extend relationship is fulfilled, which in turn means that
the sequence of Calculate Price is inserted into the use-
case instance. The conditions of extend relationships are
usually not shown in diagrams, simply because they make
the diagrams messy and harder to read, but they may be
included if that adds clarity to the diagram. The fact that
an extend relationship is conditional has led to the
misunderstanding that an extend relationship is
appropriate in any situation where the performance of a
certain subflow is ruled by a condition. However, a
condition is not always as useful an indicator as one might
think. Instead, the criterion for determining whether an
extend relationship can be used is whether the part
proposed to be factored out can be extracted without
making the remaining behavior incomplete and therefore
not properly expressed as a use case. It turns out that there
is often a condition involved where part of the use case
can be extracted into an extension use case. For the
convenience of the developer, the definition of the extend
relationship therefore includes a condition. However,
some extensions' conditions are always true. In the
telephone exchange example, Charging is always inserted
into Local Call; therefore, the condition of this extend
relationship is true. We sometimes see models where the
condition in such situations is left out. As always with
implicit information like this, the risk for
misunderstanding is obvious. We therefore strongly
recommend that use-case modelers explicitly state also
those cases where the condition is true.
E. Documentation Of The Extend Relationship

An extend relationship is documented in the description of
the extending use case. Note that this is the only place
available, because the base use case must include no
information about the extension. The relationship should
be documented as part of the flow description, explaining
how the insertion is initiated (Fig. 11.). If the use case is
extending several use cases, each extend relationship
should be given a paragraph of its own. It should consist
of a reference to the use case that is to be extended, a
reference to the extension point where the additional
behavior is to be inserted, and the condition that must be
fulfilled if the extension is to take place.

mk:@MSITStore:C:%5CUsers%5CHello%5CDesktop%5CDesktop%5Cprashant%20research%5Cse%20books%5CAddison.Wesley.Use.Cases.Patterns.and.Blueprints.eBook-LiB.chm::/0131451340/ch08lev1sec4.html%23ch08fig08

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.9, September 2015 48

Fig. 11. The description of Restock Item includes a description of the
extend relationship as a description of where and why the flow is added.

The end of the flow description is also slightly affected by the extend
relationship.

Likewise, for each base use case the extension use case
extends, there is a paragraph at the end of the description
of the flow. (Fig. 11.) Apart from the start and the end of
the flow, an extension use case is described as an ordinary
use case. Note, however, that an extension use case
usually models only part of a usage and not a complete
usage, implying that an extension use case is often abstract.
Just as for inclusion use cases, this means that the flow of
an abstract extension use case does not necessarily start
with an input from an actor; nor is it required to include
any output or to have a well-defined end of the sequence
of actions. The base use case is described as an ordinary
use case, and it must not include anything that depends on
the fact that there are extension use cases to be inserted
into it. The extension points are defined entirely within the
base use case, and they are therefore documented in the
description of that use case (Fig. 9.). This may seem to
contradict the fact that the base use case should be
independent of any extensions. However, an extension
point does not reveal whether something (and if so, what)
may be inserted at that extension point. It is therefore very
important to assign to extension points names that are
completely understandable within the use case itself, and
that in a simple way describe their location in the use-case
flow.

2. Dependencies Between Extending Use
Cases

As stated previously, the base use case is independent of
the extension use cases, and the extension use cases and
their extend relationships are defined independently of
each other. If more than one extend relationship refers to
the same extension point in a use case, it is therefore not
possible to deduce in what order the extensions will take
place if at all, depending on the evaluation of their
conditions. Consequently, extend relationships can
reference the same extension point only if no particular
order is required. Otherwise, different extension points
must be used, so that the order in which the extension use
cases are to be inserted into the base use case is defined by
the locations referenced by the extension points (Fig. 12.).

Fig. 12. The order in which Restock Item and Log Transaction will be
inserted into Order Item is not deterministic, because they both reference
the same extension point in this model. If the transaction must be logged

before the item is restocked, Log Transaction must be inserted at an
extension point located at a place defined earlier in the flow than the

extension point Number of Items Updated.

 3. Conclusion

Here in this paper, we have studied and explained the
extend relation for a use-case patterns that is proven useful
when developing maintainable and reusable use-case
models. These patterns focus on designs and techniques
used in high-quality models. Further, The extend
relationship makes it easier to read and understand the
model. Use case may be extended by more than one use
case.

REFERENCES:
[1] Adolph, S., and P. Bramble . 2002. Patterns for effective

use cases.Addison-Wesley.
[2] Alexander, C., S. Ishikawa, and M. Silverstein . 1977. A

pattern language: towns, buildings, construction. Oxford
University Press.

[3] Bass, L., P. Clements, and R. Kazman . 2003. Software
architecture in practice. Addison-Wesley.

[4] Bittner, K., and I. Spence . 2002. Use case modeling.
Addison-Wesley.

[5] Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal . 1996. Pattern-oriented software architecture,
volume 1: a system of patterns. John Wiley and Sons.

[6] Jacobson, I. Concepts for modeling large real time systems.
Ph.D. thesis, Royal Institute of Technology, Stockholm,
Sweden.

[7] Jacobson, I."Object-oriented development in an industrial
environment." Proceedings of OOPSLA'87. Sigplan Notices
22(12) :183191.

[8] Jacobson, I. 2003 (March). "Use cases yesterday, today, and
tomorrow." The Rational Edge.

[9] Jacobson, I., G. Booch, and J. Rumbaugh . 1999. The
unified software development process. Addison-Wesley.

[10] Jacobson, I., M. Christerson, P. Jonsson, and G. Övergaard .
1993. Object-oriented software engineering: a use- case
driven approach. Addison-Wesley.

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.9, September 2015 49

Nidhi Sharma is working as Deputy
Registrar in Gurgaon College of
Engineering., Gurgaon. She did her
B.Sc., M.Sc. in Computer Science,
MBA, & currently pursuing her Ph.D.
in Computer Science. Her area of
interest includes Software
engineering, MIS, ERP & E-
Commerce

Prashant is working as an Assistant
Professor in the Dept. of C.S.E. & I.T.
at Gurgaon College of Engineering.,
Gurgaon. He did his B.tech., M.tech.
in IT & currently pursuing his Ph.D.
in Computer Engineering. His area of
interest includes Software
Engineering, Software testing, OOSE.

Achint Gupta is working as an
Assistant Professor in the Dept. of
C.S.E. & I.T. at Gurgaon College of
Engineering., Gurgaon. He did his
B.tech. & M.tech. in IT.

