
IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.9, September 2015

85

Manuscript received September 5, 2015
Manuscript revised September 20, 2015

Design and implementation of massive MYSQL data intelligent
export system to excel by using Apache – POI libraries

KAMALAKANT L BAWANKULE

M.Tech 4th (CSE) Student, N.U.V.A. College of Engineering, Nagpur

Abstract
To export nearly 1,0000 attribute from database to excel of 10-20
column information of students and papers of database format into
the target Excel sheet, we developed the intelligent export system
which distinguished the simple export system. The system uses
Netbeans/Eclipse as the development tool, object-oriented
language java as the programming language, MySQL as the
background database, POI-HSSF as the apache Library for
reading & writing data from excel, used AWT and SWING for
design of an application ,and uses the mysql-connector as
connection technology to database. The system realizes to export
the massive data of database into the Excel format intellectually
that convenient for integrating and managing the multiple data
required for regular examination process in the institutes and
universities. HSSF is the POI Project's pure Java implementation
of the Excel '97(-2007) file format. XSSF is the POI Project's pure
Java implementation of the Excel 2007 OOXML (.xlsx) file
format.HSSF and XSSF provide ways to read spreadsheets create,
modify, read and write XLS spreadsheets.
Index Terms
Database, JAVA, POI-HSSF, HSSF, MySQL, XSSF.

1. Introduction

Today in many industries employee data, salary data,
purchase data and etc is present in database. To create
reports, manipulate and update data we need to search data
in the database. Data analysis in database is very tedious,
while generating report and formats. Many industries also
has their old data in database so they need an application to
export data from database (MySQL) to excel database
(MySQL).Industry should be able to reuse their old data.
POIFSFileSystem is the complete file system which will be
used to handle excel files.FileInputStream is used to load the
excel file to the application .Data export application has
facility to read data from database and export it into
database (MySQL).Excel data is in table format same as
database, apache library functions are used to read each
column in the database and store data into Spreadsheet.
The data in vector or an array is compiled in a single vector.
Direct export of data from database to the excel spreadsheet
is done through connecting to mysql.Thier is no limit of
writing data massive data can be read through database and
can be write into Excel spreadsheet. Exporting data from
database will help to generate report and make it easy way to

analyze data. Data exported can be read, write and can be
updated if needed. It becomes very much easy way for
exporting data with apache library HSSF.

2. APACHE POI-HSSF

1) HSSF is the POI Project's pure Java implementation of
the Excel '97(-2007) file format. XSSF is the POI Project's
pure Java implementation of the Excel 2007 OOXML
(.xlsx) file format.
2) HSSF and XSSF provide ways to write spreadsheets
create, modify, read and write XLS spreadsheets. They
provide:
• low level structures for those with special needs
• an event model api for efficient read-only access
• a full usermodel api for creating, reading and modifying
XLS files
3) An alternate way of generating a spreadsheet is via
the Cocoon serializer (yet you'll still be using HSSF
indirectly). With Cocoon you can serialize any XML
datasource (which might be a ESQL page outputting in SQL
for instance) by simply applying the stylesheet and
designating the serializer.
4) If you're merely reading spreadsheet data, then use the
eventmodel api in either the
org.apache.poi.hssf.eventusermodel package, or the
org.apache.poi.xssf.eventusermodel package, depending on
your file format.
5) If you're modifying spreadsheet data then use the
usermodel api. You can also generate spreadsheets this
way.Note that the usermodel system has a higher memory
footprint than the low level eventusermodel, but have the
major advantage of being much simpler to work with. Also
please be aware that as the new XSSF supported Excel 2007
OOXML (.xlsx) files are XML based, the memory footprint
for processing them is higher than for the older HSSF
supported (.xls) binary files.
6) SXSSF is an API-compatible streaming extension of
XSSF to be used when very large spreadsheets have to be
produced, and heap space is limited. SXSSF achieves its
low memory footprint by limiting access to the rows that are
within a sliding window, while XSSF gives access to all

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.9, September 2015 86

rows in the document. Older rows that are no longer in the
window become inaccessible, as they are written to the disk.

In auto-flush mode the size of the access window can be
specified, to hold a certain number of rows in memory.
When that value is reached, the creation of an additional row
causes the row with the lowest index to to be removed from
the access window and written to disk. Or, the window size
can be set to grow dynamically; it can be trimmed
periodically by an explicit call to flushRows(int keepRows)
as needed.
Due to the streaming nature of the implementation, there are
the following limitations when compared to XSSF:

• Only a limited number of rows are accessible at a
point in time.

• Sheet.clone() is not supported.
• Formula evaluation is not supported

3. Database (MySQL)

The MySQL development project has made its source code
available under the terms of the GNU General Public
License, as well as under a variety of proprietary agreements.
MySQL was owned and sponsored by a single for-profit
firm, the Swedish company MySQL AB, now owned by
Oracle Corporation.

MySQL is a popular choice of database for use in web
applications, and is a central component of the widely used
LAMP open source web application software stack (and
other 'AMP' stacks). LAMP is an acronym for "Linux,
Apache, MySQL, and Perl/PHP/Python."
Free-software-open source projects that require a
full-featured database management system often use
MySQL.

Database has to be maintained by the system to store
information about students, invigilators, class rooms etc.
The various updates must be saved and stored in the
database of the system. Therefore MySQL, relational

database that can handle large amount of data on relatively
cheap hardware has been used.
All the reports, formats will be made available on a single
button click. The automated system helps to save the time
and the laborious work. MySQL is the world's most used
open source relational database management system
(RDBMS) that runs as a server providing multi-user access
to a number of databases.
 The SQL phrase stands for Structured Query Language.
Universities, internet service providers and nonprot
organizations are the main users of MySQL, mainly because
of its price. Free software-open source projects that require
a full-featured database management system often use
MySQL. For commercial use, several paid editions are
available and over additional functionality.

4. Design and Implementation

i] DESIGN

Create a blank Excel workbook which is in the form of table.
Create object of HSSFWorkbook, HSSFSheet and row
Iterator which will help to write in the excel sheet present in
the workbook. Create object of HSSFRow, and cell Iterator
to read excel sheet row by row and each cell in each row.

Declare an object of class TreeMap class to map the values
in particular row and column in the excel spreadsheet.
Mapping values from database to the excel need to connect
to the database. Connect with database and read the
particular date and time and particular data which we want
to export to the excel sheet.

Once the data collected in the particular vectors after
reading the particular data from the database write/export
the massive amount of data with the help of Apache –Poi
function. Exporting data can be done with the help of put
function of Map class. In the below given implementation
we need to iterate the complete excel sheet to put the data
with the help of Keyset object.

ii] IMPLEMENTATION/CODE

import com.mysql.jdbc.Connection;
import com.mysql.jdbc.ResultSet;
import com.mysql.jdbc.Statement;
import java.io.File;
import java.io.FileOutputStream;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.util.Map;
import java.util.Set;
import java.util.TreeMap;

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.9, September 2015 87

import java.util.Vector;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.swing.JOptionPane;
import org.apache.poi.hssf.usermodel.HSSFSheet;
import org.apache.poi.hssf.usermodel.HSSFWorkbook;
import org.apache.poi.ss.usermodel.Cell;
import org.apache.poi.ss.usermodel.Row;

public class MastersFile extends javax.swing.JFrame {

 Vector seatno = new Vector(0);
 Statement pst1 = null;
 ResultSet rs1 = null;
 Statement pst = null;
 ResultSet rs = null;
 String roomno;
 String dates;
 String timesel;
 String instcode;
 String coursecode;
 String yearcode;
 String mastercode;
 String subjcode;
 String subjabbr;
 String seatfrom;
 String seatto;
 String total;
 String ctotal;
 int counter = 0;
 String date, time;
 //Blank workbook
 HSSFWorkbook workbook = new HSSFWorkbook();
 //Create a blank sheet

 HSSFSheet sheet =
workbook.createSheet("MASTERSEATING");

public MastersFile() throws SQLException,
ClassNotFoundException {

 initComponents();
 jProgressBar1.setVisible(false);
 //Fetch Data for Combo Box from DB
 String[] columnNameroom =
columName_room("date", 1);
 jComboBox1.setModel(new
javax.swing.DefaultComboBoxModel(columnNameroom))
;
 String[] columnNameroom2 =
columName_room("time", 1);
 jComboBox2.setModel(new
javax.swing.DefaultComboBoxModel(columnNameroom2
)); jComboBox1.setSelectedIndex(-1);
 jComboBox2.setSelectedIndex(-1);
 //Fetch Date and tme from combo box

 }
 public void CreateExcel() throws
ClassNotFoundException {
 date = (String) jComboBox1.getSelectedItem();
 time = (String) jComboBox2.getSelectedItem();
 //Blank workbook
 HSSFWorkbook workbook = new HSSFWorkbook();

 //Create a blank sheet
 HSSFSheet sheet =
workbook.createSheet("MASTERSEATING");

 //This data needs to be written (Object[])
 Map<String, Object[]> data = new TreeMap<String,
Object[]>();
 data.put(Integer.toString(counter), new
Object[]{"Dates", "Time", "MASTERSEATING
CHART"});
 counter++;
 data.put(Integer.toString(counter), new
Object[]{"ROOMNO", "INSTCODE", "COURSECODE",
"PAPERCODE", "FROM", "TO", "TOTAL",
"CLASSTOTAL"});
 try {
 Class.forName("com.mysql.jdbc.Driver");
 Connection con1 = null;
 con1 = (Connection)
DriverManager.getConnection("jdbc:mysql://localhost/exa
mination", "root", "root");
 String query = "(SELECT * FROM masterseating
where Date='" + date + "' AND Time='" + time + "')";
 pst = (Statement) con1.createStatement();
 rs = (ResultSet) pst.executeQuery(query);
 while (rs.next()) {
 counter++;
 roomno = rs.getString(3);
 System.out.println(roomno);
 instcode = Integer.toString(rs.getInt(4));
 coursecode = rs.getString(5);
 yearcode = Integer.toString(rs.getInt(6));
 mastercode = rs.getString(7);
 subjcode = rs.getString(8);
 subjabbr = rs.getString(9);
 seatfrom = Integer.toString(rs.getInt(10));
 seatto = Integer.toString(rs.getInt(11));
 total = rs.getString(12);
 ctotal = rs.getString(13);
 String code = coursecode + yearcode +
mastercode;
 System.out.println("Data Collected");

 data.put(Integer.toString(counter), new
Object[]{roomno, instcode, code, subjcode, seatfrom,
seatto, total, ctotal});

 //Iterate over data and write to sheet

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.9, September 2015 88

 Set<String> keyset = data.keySet();
 int rownum = 0;
 for (String key : keyset) {
 Row row = sheet.createRow(rownum++);
 Object[] objArr = data.get(key);
 int cellnum = 0;
 for (Object obj : objArr) {
 Cell cell = row.createCell(cellnum++);
 if (obj instanceof String) {
 cell.setCellValue((String) obj);
 } else if (obj instanceof Integer) {
 cell.setCellValue((Integer) obj);
 }
 }
 }
 try {
 //Write the workbook in file system

 FileOutputStream out = new
FileOutputStream(new
File("C:/Users/Documents/NetBeansProjects/Re
adExel/src/WriteExcel6.xls"));

 workbook.write(out);
 out.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 } catch (SQLException ex) {

Logger.getLogger(MasterClasssromplan.class.ge
tName()).log(Level.SEVERE, null, ex);

 }
 }

public String[] columName_room(String colName,
int index) throws SQLException,
ClassNotFoundException {

 Vector str = new Vector(0);
 str.removeAllElements();
 Class.forName("com.mysql.jdbc.Driver");

com.mysql.jdbc.Connection con1 =
(com.mysql.jdbc.Connection)
DriverManager.getConnection("jdbc:mysql://localhos
t/examination", "root", "root");
String query1 = "(SELECT DISTINCT " + colName +
" FROM masterseating)";

 pst1 = (Statement) con1.createStatement();
 rs1 = (ResultSet) pst1.executeQuery(query1);
 while (rs1.next()) {
 String accno2 = rs1.getString(index);
 str.addElement(accno2);
 }
 int length = str.capacity();
 String arrayinst[] = new String[length];

 str.copyInto(arrayinst);
 return arrayinst;
 }

private void
jButton2ActionPerformed(java.awt.event.ActionEv
ent evt) {

 // TODO add your handling code here:
 String arg = evt.getActionCommand();
 if (arg.equals("Cancel")) {
 System.exit(0);
 }
 }

private void
jButton1ActionPerformed(java.awt.event.ActionEven
t evt) {

 // TODO add your handling code here:

 String arg = evt.getActionCommand();
 if (arg.equals("Download")) {
 try {
 jProgressBar1.setVisible(true);
 CreateExcel();

 JOptionPane.showMessageDialog(null,
"FileSaved:");

 jProgressBar1.setVisible(false);
 JOptionPane.showMessageDialog(null,
"File Location :C:/Users/govt. poly
sakoli/Documents/NetBeansProjects/ReadExel/src/W
riteExcel6.xls");

 System.exit(0);
 } catch (ClassNotFoundException ex) {

Logger.getLogger(MastersFile.class.getName()).
log(Level.SEVERE, null, ex);

 }
 }
 }

private void
jComboBox1ActionPerformed(java.awt.event.Acti
onEvent evt) {

 // TODO add your handling code here:
 }

 /**
 * @param args the command line arguments
 */
 public static void main(String args[]) {

 java.awt.EventQueue.invokeLater(new Runnable() {
 public void run() {
 try {

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.9, September 2015 89

 new MastersFile().setVisible(true);
 } catch (SQLException ex) {

Logger.getLogger(MastersFile.class.getName()).log(
Level.SEVERE, null, ex);

 } catch (ClassNotFoundException ex) {

Logger.getLogger(MastersFile.class.getName()).log(
Level.SEVERE, null, ex);

 }
 }
 });
 }
 // Variables declaration - do not modify
 private javax.swing.JButton jButton1;
 private javax.swing.JButton jButton2;
 private javax.swing.JComboBox jComboBox1;
 private javax.swing.JComboBox jComboBox2;
 private javax.swing.JDesktopPane jDesktopPane1;
 private javax.swing.JLabel jLabel1;
 private javax.swing.JLabel jLabel2;
 private javax.swing.JLabel jLabel3;
 private javax.swing.JLabel jLabel4;
 private javax.swing.JProgressBar jProgressBar1;
 // End of variables declaration
}

5. System design

The below image shows the application system developed
for the massive excel data intelligent export system to Excel
Spreadsheet by using apache POI libraries.
The data read from the database is been mapped to excel
cells with the help of use of Apache –POI library. After
reading the data it is being exported to Excel Spreadsheet.
Application is very much useful during the massive export
of data from database to excel, so that user can perform
different types of operation on the data present in database.

The above developed system is useful to export the data
related to examination different formats. Exam related data
is always massive and it needs the rigid system. The system
developed has many advantages and save much more time
of resources required to copy and paste the data from web to
excel and database to excel. Implementation of the
complete system is done with the help of JAVA .To read
data from database here used the apache poi library. Data
from database (MySQL) with the help of J-Connector of
MySQL is exported to excel .

6. Conclusion

Massive Data read from database in table format and
exported same directly to Excel with the help of APACHE
POI-HSSF.Less time required for planning and no need of
typing the complete details of particular seat number of
candidate.Less man power required for planning and
arranging the table data.No tiredness and No frustration.No
chance for mistake as all the reports are system
generated.Proposed System will be helping to save the time,
man power and laborious work.Java application will occupy
very less memory in the system in the bytes.The system will
be user friendly which will help user to make the
examination a grand success.

References
[1] http://howtodoinjava.com/2013/06/19/readingwriting-excel-

files-in-java-poi-tutorial/, “Reading/writing excel files in
java : POI tutorial”.

[2] http://poi.apache.org/spreadsheet/quick-guide.html “Busy
Developers' Guide to HSSF and XSSF Features”.

[3] http://www.vogella.com/articles/JavaExcel/article.html,“Exc
el and Java - Read and Write Excel with Java”

[4] http://mrbool.com/reading-excel-file-with-java/24562,”Read
ing Excel file with Java”.

[5] http://www.javacoderanch.com/how-to-read-excel-file.html,
“How to read Excel file ?”.

[6] http:// java-read-write-excel-file-apache,“Read / Write Excel
File In Java Using Apache POI”

[7] http://javabeginnerstutorial.com/code-base/write-excel-file/,
“ Read and Write Excel with Java using PoI”.

[8] Andrew C. Oliver, Nicola Ken Barozzi “POI-HSSF and
POI-XSSF - Java API To Access Microsoft Excel Format
Files.”

[9] Zhang Ning, Jia Zi-Yan, Shi Zhong-Zhi, Research on
Technology of ETL in Data Warehouse Computer
Engineering and Applications, vol.24, no.12, 2002,
pp.212-216.

[10] http://dev.mysql.com/doc/connector-j-usagenotes-connect-d
rivermanager.html,“Connecting to MySQL Using the
JDBC DriverManager Interface”.

[11] http://java67.blogspot.in/2013/02/how-to-connect-mysql-dat
abase-from-java.html,“ Java program to connect MySQL
database to execute query”.

http://howtodoinjava.com/2013/06/19/readingwriting-excel-files-in-java-poi-tutorial/
http://howtodoinjava.com/2013/06/19/readingwriting-excel-files-in-java-poi-tutorial/
http://poi.apache.org/spreadsheet/quick-guide.html
http://www.vogella.com/articles/JavaExcel/article.html
http://mrbool.com/reading-excel-file-with-java/24562,%E2%80%9DReading
http://mrbool.com/reading-excel-file-with-java/24562,%E2%80%9DReading
http://www.javacoderanch.com/how-to-read-excel-file.html
http://javabeginnerstutorial.com/code-base/write-excel-file/
http://dev.mysql.com/doc/connector-j-usagenotes-connect-drivermanager.html
http://dev.mysql.com/doc/connector-j-usagenotes-connect-drivermanager.html
http://java67.blogspot.in/2013/02/how-to-connect-mysql-database-from-java.html
http://java67.blogspot.in/2013/02/how-to-connect-mysql-database-from-java.html

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.9, September 2015 90

[12] http://www.javaworkspace.com/connectdatabase/connectMy
sql.do, “CONNECT TO MYSQL 5.1”.

[13] http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel
/HSSFDataFormat.html, “Class HSSFDataFormat”.

[14] http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel
/HSSFRichTextString.html “ Class HSSFRichTextString”.

[15] http://poi.apache.org/spreadsheet/ ,“POI-HSSF and
POI-XSSF – Java API To Access Microsoft Excel Format
Files”.

[16] http://docs.oracle.com/cd/B10501_01/server.920/a96652/ch
02.htm, “What Is the Import Utility?”.

http://www.javaworkspace.com/connectdatabase/connectMysql.do
http://www.javaworkspace.com/connectdatabase/connectMysql.do
http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFDataFormat.html
http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFDataFormat.html
http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFRichTextString.html
http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFRichTextString.html
http://poi.apache.org/spreadsheet/
http://docs.oracle.com/cd/B10501_01/server.920/a96652/ch02.htm
http://docs.oracle.com/cd/B10501_01/server.920/a96652/ch02.htm

