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Abstract 
It is obvious that testing consumes more than fifty percent of 
development effort. Hence it may be advantageous for any 
organization if the testing effort is reduced. Various fault 
prediction models have been proposed but their effectiveness in 
reducing testing effort or improving quality is not addressed. An 
approach(TERA) is proposed which uses the machine learning 
techniques in order to reduce the testing effort. Initially by using 
the prediction models the number of defects are predicted and 
based on these defects appropriate testing effort is allocated to 
each module. The test effort can be reduced only if the suitable 
test strategy is used with appropriate fault-prediction accuracy. 
Keywords 
Fault Prediction, Machine Learning, Software Testing, Test 
Effort 

1. Introduction 

As recent software systems have grown in size and 
complexity, quality assurance activities such as testing and 
inspections have become increasingly important, for 
software developers. Since resources are limited and 
scheduling is tight in most cases, quality assurance must 
be performed as efficiently as possible. Advance 
knowledge of which files of a software system are most 
likely to contain faults can be a valuable asset. To 
prioritize quality assurance efforts, various models for 
predicting fault-prone modules have been proposed in 
order to select software modules based on their probability 
of having a fault, the number of expected faults or the 
fault density. The basic hypothesis of software quality 
prediction is that a module currently under development is 
likely to be fault prone, if a module with the similar 
product or process metrics in an earlier project was fault 
prone.  
Based on the prediction results, practitioners can allocate 
limited testing (or inspection) efforts to fault-prone 
modules so as to find more faults with smaller effort [1]. 
Based on the prediction results, practitioners can allocate 
limited testing efforts to fault-prone modules so as to find 
more faults with smaller effort. Here fault prediction 
models refer to machine learning techniques. To adopt 

fault prediction techniques in industry, one needs to be 
able to assess the cost effectiveness of the prediction 
because not  
only poor predictions but also a poor resource allocation 
strategy could even increase the test effort. Fault 
prediction allows software practitioners to direct their 
resources into the areas with the highest impact on the 
bottom line. However, while the prediction performances 
of  have been evaluated in terms of recall/ precision/F1-
measure[1] Alberg diagrams and/or ROC curves, the final 
goal of reducing the test effort or increasing software 
quality has been rarely explored. To adopt fault prediction 
techniques in industry, one needs to be able to assess the 
cost effectiveness of the prediction because not only poor 
predictions but also a poor resource allocation strategy 
could even increase the test effort. 
From Fig. i, the collected data i.e. the historical data is 
categorized into two parts: a training dataset for building 
learning models with the available learning schemes or 
techniques, and a test dataset for evaluating the 
performances of the learner models or conducting 
prediction. It is very important that the test dataset is not 
used in any way to build the learning model initially. This 
is a necessary condition to evaluate the generalization 
ability of a model that is built according to a learning 
technique and to further determine whether or not to apply 
the learning technique or select one best scheme from the 
given schemes. 

 

Fig. 1 Software Fault Prediction Methodology 
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At the defect prediction stage, according to the 
performance report generated from the first stage, a 
learning technique is selected and used to build a 
prediction model which can be used predict software fault. 
From Fig. 1.1, it is observed that all of the historical data 
are used to build the prediction model here. This is very 
different from the first stage; it can be used for improving 
the generalization ability of the prediction model. After 
the prediction model is built, the same model can be used 
to predict the defective nature of new software 
components or similar software components. 
The primary goal of TERA is to estimate the reduction of 
test effort that fault prediction can achieve. Apart from 
this, at the end after implementation following questions 
are required to be answered: 
 
(Q1) What is the appropriate strategy to allocate test effort 
to each module after prediction? 
This question is difficult to answer although several 
strategies can be easily developed. The simplest one is to 
allow the test effort be proportional to the predicted 
number of  faults in a module. The concern with this 
strategy is that it does not consider the size of a module, 
which may affect the ease of discovering a fault. Another 
strategy is to allocate test effort based on the fault density, 
but this may also not be the best choice because it 
concentrates on modules with high fault density no matter 
what their size, even though larger modules will contain 
more faults than smaller ones. Moreover, the best strategy 
may depend on the available test effort. To answer this 
question, we need to be able to find the expected number 
of discoverable faults that can be discovered with respect 
to the given test resources, the effort allocation strategy 
(with fault prediction result), and the set of modules to be 
tested. Then, we could estimate the test effort needed to 
discover a desired number of faults. In this approach a 
fault discovery model that can represent the relationship 
among the prediction results, test efforts, module sizes, 
and the probability of fault discovery. 
 
(Q2) How prediction accuracy is calculated for a 
prediction model? 
If the prediction accuracy is very low, we cannot rely on 
any test effort allocation strategy that uses the prediction 
result. Among various evaluation measures such as recall, 
precision, F-value, Alberg diagram and ROC curve we 
decided to use the normalized Popt because it can evaluate 
the prediction performance in terms of testing effort while 
ROC curve assumes equal test effort among all modules.   
 
(Q3) How much is test effort reduced by the prediction? 
This is the primary question everyone want answered. To 
answer this question, an assumption is made that there are 
still some faults remaining after testing because most 
software systems contain faults after release. Therefore, a 

parameter called the remaining fault rate is defined 
required test effort is computed that potentially discovers 
as many faults as actual testing. 

2. Related Work 

In 2005, Thomas J. Ostrand, Elaine J. Weyuker and 
Robert M. Bell proposed a model to predict which files 
are likely to have the largest concentrations of faults in the 
next release of a system. They used negative binomial 
regression theorem in their prediction model. Their 
predictions allowed testers to target their efforts on those 
files with high fault rates, enabling them to identify faults 
more quickly. But their model required a lot of statistical 
experience to conduct the prediction[2]. How testing effort 
was allocated to fault prone modules was also not 
addressed. 
In 2008, Stefan Lessmann and Christophe Mues used 
ROC(receiver operating characteristic area)curve to 
evaluate the prediction[3]. The ROC graph is a 2D 
illustration of TPR(true positive rate) on the Y-axis versus 
FPR(false positive rate) on the X-axis. An ROC curve is 
obtained by varying the classification threshold over all 
possible values. Thereby, each ROC curve passes through 
the points (0, 0), representing a classifier that always 
predicts nfp(non fault-prone) and(1, 1),the opposite case. 
In[4] the prediction performance was evaluated in terms of 
F1 which was a combination of precision and Recall 
values. In[5][6] also different prediction models were used 
but how test effort can be reduced was not addressed.  

3. Tera Approach 

A. Approach Implementation: Initially prediction models 
are implemented and the predicted number of faults are 
used to calculate the test effort with different test effort 
allocation strategies. With this test effort the total number 
of discoverable faults are calculated and reported. Then 
the 6 strategies are compared considering faults 
discovered by each strategy.  

i) Train/Test Dataset: The size of dataset (for building 
a prediction model) has a great impact on the 
quality of prediction, training and testing datasets 
must be prepared with at most care. 

ii) Objective Variable: There are three candidates for 
the objective variable. They are the probability of 
having a fault, the number of faults and the fault 
density. In this approach the number of faults and 
fault density are predicted. 

iii) Predictor Variables: Metrics for each module can 
be computed from the code and design documents. 
LOC, Cyclomatic Complexity, Design Complexity 
are some of the metrics used. 
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iv) Prediction Models: Until now, various types of 
fault-prone module predictors have been used. Since 
we need to predict a “number” (the number of 
faults) rather than predicting a probability or 
conducting a classification, we decided to use 
random forest, which can predict a number and is 
one of the promising approaches in fault-prone 
module prediction. Linear Regression and CART 
also are implemented. 
Random Forest: Random Forest is a machine 
learning algorithm for classification and regression 
that operates by constructing multitude of decision 
trees at training time and outputting the class that is 
the mode of the classes output by individual trees. 
The term random forest came from random decision 
forests that was first proposed by “Tin Kam Ho” of 
Bell Labs in 1995. The method combines Breiman's 
bagging idea and the random selection of features. 
Linear Regression: Linear regression has the 
longest history in statistics, well understood and is 
the most popular machine learning model.  It is 
based on the assumption of a linear relationship 
exist between the input x1, x2 ... and output variable 
y (numeric). If only one predictor variable is used it 
is called as simple linear regression. If more than 
one predictor variable is used then it is called as 
multiple linear regression. In TERA multiple linear 
regression is used. 
CART(Classification and Regression trees): 
Classification tree analysis is used when the 
predicted result is the class to which the data 
belongs. Regression tree analysis is used when the 
predicted result can be considered a numeric value. 
In TERA regression tree analysis is implemented as 
we have to predict a numeric outcome. 

B. R-Statistical Computing and Graphics Tool Kit 
R provides an Environment for both statistical computing 
and graphics. It is Free and Open Source Software. It 
provides Data Storage, Analysis and Graphing. To build 
prediction models, the statistical computing and graphics 
toolkit R and its MASS, rpart and randomForest libraries 
are used. To implement Random Forest prediction model 
in R following syntax is used:                                     
randomForest(obj_var,  data=train, mtry=sqrt(p), 
ntree=200)    
p: no of predictor variables 
ntree: no of trees to grow 
To implement linear regression in R following syntax is 
used: 
 lm(response_var ~ var1+var2+var3- - -+varp) 
To implement CART following syntax is used: 
rpart(obj_var ~ var1+var2+var3- - -+varp, ethod=“anova”, 
data=train) 

C. Effort Allocation Strategies: There are several possible 
strategies to assign test effort to each module after 
prediction. In TERA Following strategies are used to 
allocate test effort: 
i) Equal test effort to all modules: This is the most naïve 
strategy, which we  consider as a baseline strategy. 
ii)  Test effort α module size: Given a module 
set(m1;...;mn,) the allocated test effort ti for the ith 
module mi is defined as 
                                     ti= ttotal.Si/Stotal                (1) 
iii) Test effort α # of predicted faults: Allocated test effort 
ti is defined as: 
                                     ti= ttotal.Fi/Ftotal                (2)  
where Fi is the number of predicted faults in the ith 
module and Ftotal is the total number of predicted faults in 
all modules.                                                                                                                                                                                       
iv) Test effort α predicted fault density:-  Allocated test 
effort ti is defined as  

                            ti=ttotal(Fi/Si) / 
∑
=

n

i 1 (Fi/Si)      (3) 
v) Test effort α # of predicted faults × module size: 
Allocated test effort is defined as 

                        ti =ttotal.Fi.Si / 
∑
=

n

i 1 (Fi.Si)           (4) 
vi) Test effort α # of predicted faults × log(module size): 
Allocated test effort is defined as 

                  ti =ttotal.Fi.log(Si) /  
∑
=

n

i 1 (Fi.log(Si)) (5) 

D. Fault Discovery Model: A fault discovery model is 
used in order to compute the number of discoverable 
faults with respect to the given test resources, the effort 
allocation strategy, and the set of software modules to be 
tested. The relationship between testing time (effort)and 
the cumulative number of detected faults as shown in 
below equation: 
Hi(ti)=a[1-exp(biti)]  , bi=b0/Si                                 (6) 
H(t): Expected value of the cumulative number of faults 
detected by a given testing effort. 
t: Testing time (effort). 
b: Probability of detecting each fault per unit time. 
a: The number of initial faults before testing 
 
The value of a is estimated as per the equation below 
       ai=Hi+(R. Si /1000)                                         (7) 
H: Actual faults 
R: 0.3,0.5,1.0 (Remaining fault rate for new code) 
b0=-Stotal/t total .log(1-Htotal/atotal) 

E. Evaluation Criteria of Fault Prediction: Among 
various evaluation measures such as recall, precision,    F-
value[4], Alberg diagram and ROC curve the normalized 
Popt is used  because it can evaluate the prediction 
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performance in terms of testing effort. Popt is defined as 
10-Δopt, where Δopt is the area between the LOC-based 
cumulative lift charts of the optimal model and the 
prediction model. In the Fig.ii a sample graph is shown 
where x-axis is considered as  SLOC  y-axis represents 
defects.  

 

Fig  2 Example of LOC based Popt chart 

4. Results 

Fault prediction is meaningless when plenty of resources 
are available. Prediction is used only when resources are 
less. R-3.0.2 is used to build prediction models. The 
dataset used is one of the NASA Metrics Data Program 
defect data sets. It is a Promise Software Engineering 
Repository data set made publicly available in order to 
encourage predictive models of Software Engineering. 
The dataset had 145 modules information out of which 
140 modules are used for training dataset and remaining 
five are used for testing dataset. The dataset contained 
only static code measures. For Random Forest all 
variables were used as predictor variables where as for 
linear regression and CART only few variables were 
selected. Among the available static measures the 
measures which had impact on prediction were selected in 
case of CART and Linear Regression(LOC, Cyclomatic 
Complexity). The selection of predictor variables also has 
a great impact on prediction.  

 
(Q1) What is the appropriate strategy to allocate test effort 
to each module after prediction? 
After conducting prediction and allocating test effort with 
three different remaining fault rate values strategy A5 
showed best results. 
 
(Q2) How prediction accuracy is calculated for a 
prediction model? 
The following table below shows the Popt value of three 
prediction models. The three machine learning models are 
evaluated and rated on a scale of ten. 

Table I 
Prediction Model Popt Value 

Random Forest 8.8 

Linear Regression 8 

CART 6.6 

Random Forest has shown best performance in terms of 
Popt value. The next step is to allocate test effort based 
upon the predicted number of faults. Effort is allocated 
based upon the faults predicted by Random Forest Model 
as it has shown best performance among the three models. 
 
(Q3) How much is test effort reduced by the prediction? 
This is the most important requirement that has to be 
answered. The test effort required for discovering faults is 
calculated based upon the prediction results of best 
prediction model. Table 2 shows the test required to 
discover 100 percent of faults by each strategy based on 
the prediction results of each model. CART and Linear 
Regression have shown similar results with three 
remaining fault rates whereas Random Forest has shown a 
bit different. 

Table II. Test Effort Required to Discover 100 Percent Faults 

(a) Remaining Fault Rate=1 

Prediction Model Popt Testing Effort(%) 

A1 A2 A3 A4 A5 A6 

Random Forest 8.8 100 87 95 104 83 95 

CART 6.6 100 86 101 101 93 103 

Linear Regression 8 100 85 98 95 98 101 

(b) Remaining Fault Rate=0.5 

Prediction Model Popt 
Testing Effort(%) 

A1 A2 A3 A4 A5 A6 

Random Forest 8.8 100 85 91 98 81 96 

CART 6.6 100 86 102 102 93 103 

Linear Regression 8 100 85 98 95 98 101 
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(c) Remaining Fault Rate=0.3 

Prediction Model Popt 
Testing Effort(%) 

A1 A2 A3 A4 A5 A6 

Random Forest 8.8 100 85 91 91 81 96 

CART 6.6 100 86 102 102 93 106 

Linear Regression 8 100 85 98 95 98 101 

 

Fig. 3 Comparison with R=1 

 

Fig. 4 Comparison with R=0.5 

 

Fig. 5: Comparison with R=0.3 

5. Conclusion 

This approach compares test allocation strategies.  The 
results suggest that strategy A5detects more number of 
defects with less test effort among all strategies. When 
prediction is evaluated Random Forest showed the best 
performance. The graphs in Fig iii,iv,v shows the 
comparison of all strategies. The results also suggest that 
reduction of the test effort is achieved only if the suitable 
test strategy is employed with appropriate prediction 
accuracy. However, where sufficient data are available to 
fit a prediction model and develop good fault prediction 
accuracy, the best test strategy can significantly reduce the 
amount of test effort while still maintaining the same level 
of fault detection rate or provide a better level of fault 
detection with the same amount of test effort. The strategy 
A5 is able to detect 100% of faults with only 80-85% of 
effort. Thus by using fault prediction 15-20% of effort can 
be reduced. Fault Prediction allows the testers to focus 
more on fault prone modules. Considerable future work is 
required to generalize these results. TERA is evaluated 
only on one dataset(KC1). As part of future work TERA 
can be evaluated on other datasets. 
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