
IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.9, September 2015

99

Manuscript received September 5, 2015
Manuscript revised September 20, 2015

An Approach to Reduce Test Effort by Using Machine Learning
Techniques

Mohammed Inayathulla, Silpa C
Department of Information Technology

Sree Vidyanikethan Engineering College
Tirupathi, AP, India

Abstract
It is obvious that testing consumes more than fifty percent of
development effort. Hence it may be advantageous for any
organization if the testing effort is reduced. Various fault
prediction models have been proposed but their effectiveness in
reducing testing effort or improving quality is not addressed. An
approach(TERA) is proposed which uses the machine learning
techniques in order to reduce the testing effort. Initially by using
the prediction models the number of defects are predicted and
based on these defects appropriate testing effort is allocated to
each module. The test effort can be reduced only if the suitable
test strategy is used with appropriate fault-prediction accuracy.
Keywords
Fault Prediction, Machine Learning, Software Testing, Test
Effort

1. Introduction

As recent software systems have grown in size and
complexity, quality assurance activities such as testing and
inspections have become increasingly important, for
software developers. Since resources are limited and
scheduling is tight in most cases, quality assurance must
be performed as efficiently as possible. Advance
knowledge of which files of a software system are most
likely to contain faults can be a valuable asset. To
prioritize quality assurance efforts, various models for
predicting fault-prone modules have been proposed in
order to select software modules based on their probability
of having a fault, the number of expected faults or the
fault density. The basic hypothesis of software quality
prediction is that a module currently under development is
likely to be fault prone, if a module with the similar
product or process metrics in an earlier project was fault
prone.
Based on the prediction results, practitioners can allocate
limited testing (or inspection) efforts to fault-prone
modules so as to find more faults with smaller effort [1].
Based on the prediction results, practitioners can allocate
limited testing efforts to fault-prone modules so as to find
more faults with smaller effort. Here fault prediction
models refer to machine learning techniques. To adopt

fault prediction techniques in industry, one needs to be
able to assess the cost effectiveness of the prediction
because not
only poor predictions but also a poor resource allocation
strategy could even increase the test effort. Fault
prediction allows software practitioners to direct their
resources into the areas with the highest impact on the
bottom line. However, while the prediction performances
of have been evaluated in terms of recall/ precision/F1-
measure[1] Alberg diagrams and/or ROC curves, the final
goal of reducing the test effort or increasing software
quality has been rarely explored. To adopt fault prediction
techniques in industry, one needs to be able to assess the
cost effectiveness of the prediction because not only poor
predictions but also a poor resource allocation strategy
could even increase the test effort.
From Fig. i, the collected data i.e. the historical data is
categorized into two parts: a training dataset for building
learning models with the available learning schemes or
techniques, and a test dataset for evaluating the
performances of the learner models or conducting
prediction. It is very important that the test dataset is not
used in any way to build the learning model initially. This
is a necessary condition to evaluate the generalization
ability of a model that is built according to a learning
technique and to further determine whether or not to apply
the learning technique or select one best scheme from the
given schemes.

Fig. 1 Software Fault Prediction Methodology

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.9, September 2015 100

At the defect prediction stage, according to the
performance report generated from the first stage, a
learning technique is selected and used to build a
prediction model which can be used predict software fault.
From Fig. 1.1, it is observed that all of the historical data
are used to build the prediction model here. This is very
different from the first stage; it can be used for improving
the generalization ability of the prediction model. After
the prediction model is built, the same model can be used
to predict the defective nature of new software
components or similar software components.
The primary goal of TERA is to estimate the reduction of
test effort that fault prediction can achieve. Apart from
this, at the end after implementation following questions
are required to be answered:

(Q1) What is the appropriate strategy to allocate test effort
to each module after prediction?
This question is difficult to answer although several
strategies can be easily developed. The simplest one is to
allow the test effort be proportional to the predicted
number of faults in a module. The concern with this
strategy is that it does not consider the size of a module,
which may affect the ease of discovering a fault. Another
strategy is to allocate test effort based on the fault density,
but this may also not be the best choice because it
concentrates on modules with high fault density no matter
what their size, even though larger modules will contain
more faults than smaller ones. Moreover, the best strategy
may depend on the available test effort. To answer this
question, we need to be able to find the expected number
of discoverable faults that can be discovered with respect
to the given test resources, the effort allocation strategy
(with fault prediction result), and the set of modules to be
tested. Then, we could estimate the test effort needed to
discover a desired number of faults. In this approach a
fault discovery model that can represent the relationship
among the prediction results, test efforts, module sizes,
and the probability of fault discovery.

(Q2) How prediction accuracy is calculated for a
prediction model?
If the prediction accuracy is very low, we cannot rely on
any test effort allocation strategy that uses the prediction
result. Among various evaluation measures such as recall,
precision, F-value, Alberg diagram and ROC curve we
decided to use the normalized Popt because it can evaluate
the prediction performance in terms of testing effort while
ROC curve assumes equal test effort among all modules.

(Q3) How much is test effort reduced by the prediction?
This is the primary question everyone want answered. To
answer this question, an assumption is made that there are
still some faults remaining after testing because most
software systems contain faults after release. Therefore, a

parameter called the remaining fault rate is defined
required test effort is computed that potentially discovers
as many faults as actual testing.

2. Related Work

In 2005, Thomas J. Ostrand, Elaine J. Weyuker and
Robert M. Bell proposed a model to predict which files
are likely to have the largest concentrations of faults in the
next release of a system. They used negative binomial
regression theorem in their prediction model. Their
predictions allowed testers to target their efforts on those
files with high fault rates, enabling them to identify faults
more quickly. But their model required a lot of statistical
experience to conduct the prediction[2]. How testing effort
was allocated to fault prone modules was also not
addressed.
In 2008, Stefan Lessmann and Christophe Mues used
ROC(receiver operating characteristic area)curve to
evaluate the prediction[3]. The ROC graph is a 2D
illustration of TPR(true positive rate) on the Y-axis versus
FPR(false positive rate) on the X-axis. An ROC curve is
obtained by varying the classification threshold over all
possible values. Thereby, each ROC curve passes through
the points (0, 0), representing a classifier that always
predicts nfp(non fault-prone) and(1, 1),the opposite case.
In[4] the prediction performance was evaluated in terms of
F1 which was a combination of precision and Recall
values. In[5][6] also different prediction models were used
but how test effort can be reduced was not addressed.

3. Tera Approach

A. Approach Implementation: Initially prediction models
are implemented and the predicted number of faults are
used to calculate the test effort with different test effort
allocation strategies. With this test effort the total number
of discoverable faults are calculated and reported. Then
the 6 strategies are compared considering faults
discovered by each strategy.

i) Train/Test Dataset: The size of dataset (for building
a prediction model) has a great impact on the
quality of prediction, training and testing datasets
must be prepared with at most care.

ii) Objective Variable: There are three candidates for
the objective variable. They are the probability of
having a fault, the number of faults and the fault
density. In this approach the number of faults and
fault density are predicted.

iii) Predictor Variables: Metrics for each module can
be computed from the code and design documents.
LOC, Cyclomatic Complexity, Design Complexity
are some of the metrics used.

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.9, September 2015

101

iv) Prediction Models: Until now, various types of
fault-prone module predictors have been used. Since
we need to predict a “number” (the number of
faults) rather than predicting a probability or
conducting a classification, we decided to use
random forest, which can predict a number and is
one of the promising approaches in fault-prone
module prediction. Linear Regression and CART
also are implemented.
Random Forest: Random Forest is a machine
learning algorithm for classification and regression
that operates by constructing multitude of decision
trees at training time and outputting the class that is
the mode of the classes output by individual trees.
The term random forest came from random decision
forests that was first proposed by “Tin Kam Ho” of
Bell Labs in 1995. The method combines Breiman's
bagging idea and the random selection of features.
Linear Regression: Linear regression has the
longest history in statistics, well understood and is
the most popular machine learning model. It is
based on the assumption of a linear relationship
exist between the input x1, x2 ... and output variable
y (numeric). If only one predictor variable is used it
is called as simple linear regression. If more than
one predictor variable is used then it is called as
multiple linear regression. In TERA multiple linear
regression is used.
CART(Classification and Regression trees):
Classification tree analysis is used when the
predicted result is the class to which the data
belongs. Regression tree analysis is used when the
predicted result can be considered a numeric value.
In TERA regression tree analysis is implemented as
we have to predict a numeric outcome.

B. R-Statistical Computing and Graphics Tool Kit
R provides an Environment for both statistical computing
and graphics. It is Free and Open Source Software. It
provides Data Storage, Analysis and Graphing. To build
prediction models, the statistical computing and graphics
toolkit R and its MASS, rpart and randomForest libraries
are used. To implement Random Forest prediction model
in R following syntax is used:
randomForest(obj_var, data=train, mtry=sqrt(p),
ntree=200)
p: no of predictor variables
ntree: no of trees to grow
To implement linear regression in R following syntax is
used:
 lm(response_var ~ var1+var2+var3- - -+varp)
To implement CART following syntax is used:
rpart(obj_var ~ var1+var2+var3- - -+varp, ethod=“anova”,
data=train)

C. Effort Allocation Strategies: There are several possible
strategies to assign test effort to each module after
prediction. In TERA Following strategies are used to
allocate test effort:
i) Equal test effort to all modules: This is the most naïve
strategy, which we consider as a baseline strategy.
ii) Test effort α module size: Given a module
set(m1;...;mn,) the allocated test effort ti for the ith
module mi is defined as
 ti= ttotal.Si/Stotal (1)
iii) Test effort α # of predicted faults: Allocated test effort
ti is defined as:
 ti= ttotal.Fi/Ftotal (2)
where Fi is the number of predicted faults in the ith
module and Ftotal is the total number of predicted faults in
all modules.
iv) Test effort α predicted fault density:- Allocated test
effort ti is defined as

 ti=ttotal(Fi/Si) /
∑
=

n

i 1 (Fi/Si) (3)
v) Test effort α # of predicted faults × module size:
Allocated test effort is defined as

 ti =ttotal.Fi.Si /
∑
=

n

i 1 (Fi.Si) (4)
vi) Test effort α # of predicted faults × log(module size):
Allocated test effort is defined as

 ti =ttotal.Fi.log(Si) /
∑
=

n

i 1 (Fi.log(Si)) (5)

D. Fault Discovery Model: A fault discovery model is
used in order to compute the number of discoverable
faults with respect to the given test resources, the effort
allocation strategy, and the set of software modules to be
tested. The relationship between testing time (effort)and
the cumulative number of detected faults as shown in
below equation:
Hi(ti)=a[1-exp(biti)] , bi=b0/Si (6)
H(t): Expected value of the cumulative number of faults
detected by a given testing effort.
t: Testing time (effort).
b: Probability of detecting each fault per unit time.
a: The number of initial faults before testing

The value of a is estimated as per the equation below
 ai=Hi+(R. Si /1000) (7)
H: Actual faults
R: 0.3,0.5,1.0 (Remaining fault rate for new code)
b0=-Stotal/t total .log(1-Htotal/atotal)

E. Evaluation Criteria of Fault Prediction: Among
various evaluation measures such as recall, precision, F-
value[4], Alberg diagram and ROC curve the normalized
Popt is used because it can evaluate the prediction

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.9, September 2015 102

performance in terms of testing effort. Popt is defined as
10-Δopt, where Δopt is the area between the LOC-based
cumulative lift charts of the optimal model and the
prediction model. In the Fig.ii a sample graph is shown
where x-axis is considered as SLOC y-axis represents
defects.

Fig 2 Example of LOC based Popt chart

4. Results

Fault prediction is meaningless when plenty of resources
are available. Prediction is used only when resources are
less. R-3.0.2 is used to build prediction models. The
dataset used is one of the NASA Metrics Data Program
defect data sets. It is a Promise Software Engineering
Repository data set made publicly available in order to
encourage predictive models of Software Engineering.
The dataset had 145 modules information out of which
140 modules are used for training dataset and remaining
five are used for testing dataset. The dataset contained
only static code measures. For Random Forest all
variables were used as predictor variables where as for
linear regression and CART only few variables were
selected. Among the available static measures the
measures which had impact on prediction were selected in
case of CART and Linear Regression(LOC, Cyclomatic
Complexity). The selection of predictor variables also has
a great impact on prediction.

(Q1) What is the appropriate strategy to allocate test effort
to each module after prediction?
After conducting prediction and allocating test effort with
three different remaining fault rate values strategy A5
showed best results.

(Q2) How prediction accuracy is calculated for a
prediction model?
The following table below shows the Popt value of three
prediction models. The three machine learning models are
evaluated and rated on a scale of ten.

Table I
Prediction Model Popt Value

Random Forest 8.8

Linear Regression 8

CART 6.6

Random Forest has shown best performance in terms of
Popt value. The next step is to allocate test effort based
upon the predicted number of faults. Effort is allocated
based upon the faults predicted by Random Forest Model
as it has shown best performance among the three models.

(Q3) How much is test effort reduced by the prediction?
This is the most important requirement that has to be
answered. The test effort required for discovering faults is
calculated based upon the prediction results of best
prediction model. Table 2 shows the test required to
discover 100 percent of faults by each strategy based on
the prediction results of each model. CART and Linear
Regression have shown similar results with three
remaining fault rates whereas Random Forest has shown a
bit different.

Table II. Test Effort Required to Discover 100 Percent Faults

(a) Remaining Fault Rate=1

Prediction Model Popt Testing Effort(%)

A1 A2 A3 A4 A5 A6

Random Forest 8.8 100 87 95 104 83 95

CART 6.6 100 86 101 101 93 103

Linear Regression 8 100 85 98 95 98 101

(b) Remaining Fault Rate=0.5

Prediction Model Popt
Testing Effort(%)

A1 A2 A3 A4 A5 A6

Random Forest 8.8 100 85 91 98 81 96

CART 6.6 100 86 102 102 93 103

Linear Regression 8 100 85 98 95 98 101

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.9, September 2015

103

(c) Remaining Fault Rate=0.3

Prediction Model Popt
Testing Effort(%)

A1 A2 A3 A4 A5 A6

Random Forest 8.8 100 85 91 91 81 96

CART 6.6 100 86 102 102 93 106

Linear Regression 8 100 85 98 95 98 101

Fig. 3 Comparison with R=1

Fig. 4 Comparison with R=0.5

Fig. 5: Comparison with R=0.3

5. Conclusion

This approach compares test allocation strategies. The
results suggest that strategy A5detects more number of
defects with less test effort among all strategies. When
prediction is evaluated Random Forest showed the best
performance. The graphs in Fig iii,iv,v shows the
comparison of all strategies. The results also suggest that
reduction of the test effort is achieved only if the suitable
test strategy is employed with appropriate prediction
accuracy. However, where sufficient data are available to
fit a prediction model and develop good fault prediction
accuracy, the best test strategy can significantly reduce the
amount of test effort while still maintaining the same level
of fault detection rate or provide a better level of fault
detection with the same amount of test effort. The strategy
A5 is able to detect 100% of faults with only 80-85% of
effort. Thus by using fault prediction 15-20% of effort can
be reduced. Fault Prediction allows the testers to focus
more on fault prone modules. Considerable future work is
required to generalize these results. TERA is evaluated
only on one dataset(KC1). As part of future work TERA
can be evaluated on other datasets.

REFERENCES
[1] Akito Monden, Takuma Hayashi, Shoji Shinoda, Kumiko

Shirai, Junichi Yoshida, Mike Barker “Assessing the Cost
Effectiveness of Fault Prediction in Acceptance
Testing”IEEE Transactions on Software Engineering
vol.39, No.10, October 2013.

[2] T.J. Ostrand, E.J. Weyuker, and R.M. Bell, “Predicting the
Location and Number of faults in Large Software
Systems,”IEEE Trans. Software Eng.,vol. 31, no. 4, pp.
340-355, Apr. 2005 .

[3] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch,
“Benchmarking Classification Models for Software Defect
Prediction: A Proposed Framework and Novel Findings,”
IEEE Trans. Software Eng., vol. 34, no. 4, pp. 485-496,
July/Aug. 2008.

[4] Y. Kamei, A. Monden, and K. Matsumoto, “Empirical
Evaluation of SVM-Based Software Reliability
Model,”Proc. Fifth ACM/IEEE Int’l Symp. Empirical
Software Eng.,vol. 2, pp. 39-41, 2006.

[5] P. Knab, M. Pinzger, and A. Bernstein, “Predicitng Defect
Densities in Source Code F iles with Decision Tree
Learners,”Proc. Third Working Conf. Mining Software
Repositories,pp. 119-125, 2006.

[6] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch,
“Benchmarking Classification Models for Software Defect
Prediction: A Proposed Framework and Novel Findings,”
IEEE Trans. Software Eng., vol. 34, no. 4, pp. 485-496,
July/Aug. 2008.

[7] Y. Kamei, S. Matsumoto, A. Monden and A.E. Hassan,
“Revisiting Common Bug Prediction Findings Using Effort
Aware Models,”Proc. IEEE Int’l Conf. Software
Maintenance,pp. 1-10, 2010.

	i) Train/Test Dataset: The size of dataset (for building a prediction model) has a great impact on the quality of prediction, training and testing datasets must be prepared with at most care.
	B. R-Statistical Computing and Graphics Tool Kit
	D. Fault Discovery Model: A fault discovery model is used in order to compute the number of discoverable faults with respect to the given test resources, the effort allocation strategy, and the set of software modules to be tested. The relationship be...
	E. Evaluation Criteria of Fault Prediction: Among various evaluation measures such as recall, precision, F-value[4], Alberg diagram and ROC curve the normalized Popt is used because it can evaluate the prediction performance in terms of testing ef...

