
IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.10, October 2015

12

Manuscript received October 5, 2015
Manuscript revised October 20, 2015

An Efficient Model for Object-Oriented Programming in Software
Defined Networks

Eisa A. Aleisa
College of Computer and Information Sciences, Al Imam Mohammad Ibn Saud Islamic University (IMSIU),

Riyadh, Kingdom of Saudi Arabia

Summary
Software-Defined Networks (SDNs) is among the most recent
advances of networks. SDNs use a controller device to manage
the network switches. The management action includes adding or
removing packet-management rules on action tables of switches.
This paper introduces a high-level object-oriented network
programming language, called ObjNet, to enable coding efficient,
yet simple, procedures run by controller to control switches.
ObjNet is object-oriented, clearly-organized, and expressive. The
paper also presents a novel static semantics to ObjNet.
Key words:
Software-Defined Networks (SDNs), network programming
languages, controller-switch architecture, static semantics,
syntax, ObjNet

1. Introduction

A network is a set of devices linked to swap data. Switches,
routers, and firewalls are among these devices. Switches
do the job of forwarding packets according to MAC
addresses. Routers direct packets using IP addresses.
Firewalls filter forbidden packets. The network devices are
linked via a model that efficiently enables directing,
storing, dropping, tagging, and collecting statistics about
packets status in the network. Certain network devices,
such as routers [21, 16], do critical jobs as they control the
network. This allows routers to calculate and specify
directions of packets in the network. Surely distinct
networks have distinct properties and functions.
Software-Defined Networks (SDNs) [10] are networks
built via the controller-switch technique. A specific
execution of this style is OpenFlow [2] useful to do
different network-wide functions like balancing switch
load, monitoring data flow, network management,
managing devices usage, reporting service problems, host
movement, and moving data stores. Hence SDNs led to
existence of network programming languages [18, 19, 17,
11].
The Open Networking Foundation [33], presented in 2011
the idea of withdrawing the control managed by distinct
network devices and rather adding, a new general-purpose
device, controller, to manage distinct network devices and
questioning packets moving in the network. The effect of
this simple change is very wide; huge networks do not
include complex, special-purpose, and expensive switches

today. In these networks, simple programmable switches
are used and programmed to optimize and configure
networks. This is done by producing programs [20]
executed on controllers.
This paper introduces ObjNet, an object-oriented network
high-level programming language. ObjNet enables classes
for controllers to manage other network devices like
switches. ObjNet has an organized and simply-structured
structure built on classical concepts of object-oriented
coding that enables establishing rich and strong network
function in a modern way. ObjNet is considered as a
generalization of Frenetic [24], a network programming
language of the functional type. This is obvious by the idea
that the main body of codes in ObjNet and Frenetic is a
query output in the shape of a sequence of data such as
switches IDs, packets, etc. Statements for managing
packets in ObjNet can install and establish (inserting to
management laws of switches) switch laws. ObjNet
enables writing simple codes to achieve complex dynamic
jobs such as verification and load balancing. ObjNet codes
may also resolve data and historical patterns of traffic.

Motivation

The motivation of this paper is to provide a simple
structure for an object-oriented network programming
language. Also another motivation is to provide a precise
semantics for the proposed language model. Such
semantics is rarely presented for related existing languages.

Contributions

Contributions of the current paper are the following.
1. A novel simply-built syntax for an object-oriented
network programming language; ObjNet.
2. A precise semantics (in the form of states and
explanations) for ObjNet programs.

Organization

The rest of this paper is organized as following. Section 2
reviews related work. Section 3 introduces the structure of
ObjNet. A simple semantics to ObjNet constructs is given
in Section 4.

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.10, October 2015

13

2. Related Work

Work most related to that presented in the current paper is
reviewed in this section [3,5,8,15,20,28]. NOX [14] which
is based on [13] and 4D [12] is among early attempts to
design software-defined networking (SDN).
Frenetic [32, 33] is a common programming language for
networks which has two main parts. The first part is a
group of constructors that are kernel-level. The
constructors' objective is to develop and direct streams of
network packets. These constructors also are built on ideas
of declarative database query-languages and functional
programming (FP).
Moreover the constructors are basic for a race-free
semantics, a modular design, a cost control, a declarative
design, and a single tier programming. The other part of
Frenetic is a dynamic platform. This platform enables all
of the functionalities of removing and adding rules of the
low-level type to and from action logs of routers. the
language introduced in this paper, ObjNet, has an
advantage over Frenetic which is ObjNet is object oriented.
Therefore ObjNet can be realized as an introduction to the
use of new concepts of network programming languages
such as objects and classes and context-oriented network
programming languages.
On the router-level, the main idea of NOX is to benefit
from callbacks and explicit ideas for data-processing. Load
balancer [11] and the work in [9, 10] are examples of
applications that use NOX. There are many ways to
improve techniques of programming networks such as
Maestro [7] and Onix [8], using parallelization and
distribution to support high scalability and performance
Energy saving data-movement with power control actions
is built on path detection system for mobile ad-hoc
networks. The router component of networks is
programmable using various platforms such as Open-Flow
platform. Examples of other platforms are RouteBricks
[37], Shangri-La , Snortran [35] and Bro [36], and FPL-3E
[38], Click modular router [34]. The concept in Shangri-La
[33] and FPL-3E [38] is to build specific hardware for
data-processing using high-level software that does data-
processing. In RouteBricks [37], low-level computers are
used to boost performance of program actions. As a
functional technique, the technique of Click functional
router [34], enables programming network systems.
Other parts of program network systems though high-level
components are NDLog and NetCore [6]. NetCore is built
on an elusive view of the complete network. NDLog is
built in a completely distributed fashion. NDLog [30, 31],
which extended Datalog, was introduced to fix and
program code techniques of routing [29], huge networks,
and approaches like index tables of parallel systems.
ObjNet (presented in this paper), NDLog , and Frenetic are
seen as high-level network programming languages.
Although NDLog main concern is completely networks

and routing protocols, Frenetic in a functional style and
ObjNet in an object-oriented style treat and implement
data processing such as changing header parts. Hence
ObjNet equips a network administrator with a complete
view of the network system unlike what is possible in
NDLog and Frenetic. This is so because a program in
NDLog is a unique query that is executed on every switch
of the network. One advantage of network programming
languages (ObjNet) is saving switch energy .
Static semantics of ObjNet have many potential network
applications. The K-random algorithm in ad hoc networks
using static semantic packet duplication [1] is verifiable
using static semantics. The verification of static
information retrieval in P2P networks is done via static
semantics platform [2]. Static configurations of networked
systems can be done via static semantic having the style of
interoperability framework [3] such as those presented in
this paper. Spreading activation with latching statics can
be done in attractor networks via automatic static semantic
similar to that presented this paper.
The system in [30] treats software routers in the style of
Linux kernel code. In order to detect intrusions and
preserve network security, Bro [36] and Snortran [35]
provides tools for coding modifying strategies and robust
data-filtering. ObjNet, the language presented in this paper,
has the advantage over all the related languages that
ObjNet does not focus on controlling a single device. This
overcomes a common disadvantage of most similar
network languages.

3. ObjNet: Object-Oriented Programming
Language for Networks

For SDN networks, this section introduces the structure
and a static-precise semantics of ObjNet, a high-level
object-oriented programming language. The language uses
the switch-controller technique. Figure 1 presents the
constructs of ObjNet.
A program in ObjNet is a sequence of class definitions and
classes of queries followed by set of commands. The
output of every query is an object of an event class
containing a set of values. The event class is not utilized in
any previous programming language of networks
including Frenetic. This is so as an event in Frenetic is
composed of an infinite set of packets. An event output
(values of of class objects) could be a packet, an integer, a
triple of a Boolean value, a switch ID, and a switch ID, or
a pair of two values. Each event is supposed to belong to a
class object. In this paper, the emphasize is on the details
of implementing statements using the object-oriented
programming concepts.

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.10, October 2015

14

Fig. 1. The programming language model, ObjNet

4. ObjNet Semantics

The presented semantics is operational. The query
component of a network language is useful for providing
an up-to-date status of the network. ObjNet queries are
composed classes of statements for treating packets by

1. collecting using header fields values,
2. diving data using arrival time or header fields

values,
3. filtering data content of the network using a

specific pattern,
4. abbreviating outputs of other queries, and
5. concluding outputs in terms of number or size of

packets.
There are many operations that may be applied by a
specific device on a specific packet such as ObjSendall,
ObjSendcontroller, ObjSendout, or ObjChange(Obj o).
The operation ObjSendcontroller sends a message to the
controller to manage it. The operation ObjSendall
forwards the data to all other devices. The operation
ObjSendout forwards the data the switch via a specific port.
The operation ObjChange(Obj o,n) changes the header
field of packets that were under the actions of the object o
to a new value n. A rule according to our proposed
semantics is a ObjShape associated with an ObjOperation
where the ObjShape is a specification that precisely
illustrates a group of packets and an ObjOperation is the
operation to be applied on elements of packets group.
Actions are hosted by tables (called action tables) of
switches. ObjIntial-rule stands for an initial setting for
rules of flow tables controlling switches.

A configuration in the semantics of ObjNet has many
components. The first component is a list of the class
objects defined and used at this execution state of the
program. The second component expresses the current
contents of program variables and therefore could be a
function from the set of program variables to the collection
of class objects, events, and rule lists. It is worth noting
that ObjNet variables may host class objects of events or
rule lists. A third component of a configuration is the
current values of switches flow tables. This last component
can be expressed as a function from device IDs to rule
tables. A fourth component of the configuration is an
initial setting for flow tables of switches which have not
been certified yet.

ObjNet has several types of statements. The statement
class C O defines an object O of a class of C. The statement
O. Addrules adds the switch rules hosted in the object O
to the store of rules initially specified. The added rules are
associated with switches but not adapted for application
yet. The statement O. ObjRegister (Obj x) treats the action
of register rules of the object O into the object x. This will
result in truing the rules x permanent upon adding them to
the tables of switches. The command O. ObjSend (Obj x)
sends certain messages for certain actions provided by the
events if the object . Similar explanations illustrate other
constructs of ObjNet.

Acknowledgements

The author acknowledges support by the Al Imam
Mohammad Ibn Saud Islamic University (IMSIU) (Grant
number 350918).

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.10, October 2015

15

References
[1] X. Cao, M. Klusch. Dynamic Semantic Data Replication for

K-Random Search in Peer-to-Peer Networks. NCA, 2012, p.
20–27.

[2] A. Kamoun, S. Tazi, K.l Drira. FADYRCOS, a semantic
interoperability framework for collaborative model-based
dynamic reconfiguration of networked services. Computers
in Industry (CII), 63(8),2012, pp. 756–765.

[3] Xianneng Li, Kotaro Hirasawa: Continuous probabilistic
model building genetic network programming using
reinforcement learning. Appl. Soft Comput. (ASC) 27:457-
467 (2015).

[4] A. Eftychiou, B. Vrusias, N. Antonopoulos. A dynamically
semantic platform for efficient information retrieval in P2P
networks. IJGUC 3(4), 2012, pp. 271–283.

[5] Farzad Tashtarian, Mohammad Hossein Yaghmaee
Moghaddam, Khosrow Sohraby, Sohrab Effati: ODT:
Optimal deadline-based trajectory for mobile sinks in WSN:
A decision tree and dynamic programming
approach. Computer Networks (CN) 77:128-143 (2015).

[6] I. Lerner, S. Bentin, O. Shriki. Spreading Activation in an
Attractor Network With Latching Dynamics: Automatic
Semantic Priming Revisited. Cognitive Science (COGSCI),
36(8), 2012, pp. 1339–1382.

[7] B. Loo, J. Hellerstein, I. Stoica, and R. Ramakrishnan.
Declarative routing: Extensible routing with declarative
queries. SIGCOMM, 2005, pp.289-300.

[8] Monirehalsadat Mahmoudi, Xuesong Zhou: Finding
Optimal Solutions for Vehicle Routing Problem with Pickup
and Delivery Services with Time Windows: A Dynamic
Programming Approach Based on State-space-time Network
Representations. CoRR abs/1507.02731 (2015).

[9] T. Serbanuta, G. Rosu, and J. Meseguer. A rewriting logic
approach to operational semantics. Inf. Comput., 2009,
pp.305–340.

[10] Z. Cai, A. Cox, and T. Ng. Maestro. A system for scalable
OpenFlow control. Technical Report TR10-08, Rice
University, Dec 2010.

[11] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and
S. Shenker. Onix: A distributed control platform for large-
scale production networks. OSDI, Oct 2010.

[12] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P.
Sharma, S. Banerjee, and N. McKeown. ElasticTree: Saving
energy in data center networks. NSDI, Apr 2010.

[13] N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown,
and R. Johari. Plug-n-Serve. Loadbalancing web traffic
using OpenFlow. Demo at ACM SIGCOMM, Aug 2009.

[14] R. Wang, D. Butnariu, and J. Rexford. OpenFlow-based
server load balancing gone wild. Hot-ICE, Mar 2011.

[15] E. Creaco, G. Pezzinga: Embedding linear programming in
multi objective genetic algorithms for reducing the size of
the search space with application to leakage minimization in
water distribution networks. Environmental Modelling and
Software (ENVSOFT) 69:308-318 (2015).

[16] A. Greenberg, G. Hjalmtysson, D. Maltz, A. Myers, J.
Rexford, G. Xie, H. Yan, J. Zhan, and H. Zhang. A clean
slate 4D approach to network control and management.
SIGCOMM CCR 35, October 2005, pp.41-54.

[17] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N.
McKeown, and S. Shenker. NOX: Towards an operating
system for networks. SIGCOMM CCR 38(3), 2008.

[18] M. Casado, M. Freedman, J. Pettit, J. Luo, N. Gude, N.
McKeown, and S. Shenker. Rethinking enterprise network
control. Trans. on Networking. 17(4), Aug 2009.

[19] N. Foster, A. Guha, M. Reitblatt, A. Story, M. Freedman, N.
Katta, C. Monsanto, J. Reich, J. Rexford, C. Schlesinger, D.
Walker, R. Harrison. Languages for software-defined
networks. IEEE Communications Magazine 51(2), 2013, pp.
128–134.

[20] Alaeddin Malek, Leila Jafarian-Khaled Abad, Samaneh
Khodayari-Samghabadi: Semi-Infinite Programming to
Solve Armed robot trajectory Problem using Recurrent
Neural Network. I. J. Robotics and Automation (IJRA)
30(2) (2015).

[21] T. Bain, P. Campbell, J. Karlsson. Modeling growth and
dynamics of neural networks via message passing in Erlang:
neural models have a natural home in message passing
functional programming languages. Erlang Workshop, 2011,
pp. 94-97.

[22] A. Elsts, L. Selavo. A user-centric approach to wireless
sensor network programming languages. SESENA 2012, pp.
29–30.

[23] T. Suzuki, K. Pinte, T. Cutsem,W. De Meuter, A. Yonezawa.
Programming language support for routing in pervasive
networks. PerCom Workshops,

[24] S. Hong, Y. Joung. Meso: an object-oriented programming
language for building stronglytyped internet-based network
applications. SAC 2013, pp.1579–1586.

[25] C. Monsanto, N. Foster, R. Harrison, D. Walker. A compiler
and run-time system for network programming languages.
POPL 2012, pp. 217–230.

[26] J. Rexford. Programming languages for programmable
networks. POPL 2012, pp. 215–216.

[27] H. Arneson, C. Langbort. A linear programming approach to
routing control in networks of constrained linear positive
systems. Automatica 48(5), 2012, pp. 800-807.

[28] Seyed Morteza Hatefi, Fariborz Jolai, S. Ali Torabi, Reza
Tavakkoli-Moghaddam: A credibility-constrained
programming for reliable forward-reverse logistics network
design under uncertainty and facility disruptions. Int. J.
Computer Integrated Manufacturing (IJCIM) 28(6):664-678
(2015).

[29] B. Loo, J. Hellerstein, I. Stoica, and R. Ramakrishnan.
Declarative routing: Extensible routing with declarative
queries. SIGCOMM, 2005, pp. 289-300.

[30] B. Loo, T. Condie, J. Hellerstein, P. Maniatis, T. Roscoe,
and I. Stoica. Implementing declarative overlays. SIGOPS
39(5), 2005, pp 75-90.

[31] N. Foster, R. Harrison, M. Meola, M. Freedman, J. Rexford,
and D. Walker. Frenetic: A high-level langauge for
OpenFlow networks. PRESTO, Nov 2010.

[32] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. Kaashoek.
The Click modular router. ACM Transactions on Computer
Systems 18(3), Aug 2000, pp 263-297.

[33] N. Foster,R. Harrison, M. Freedman, C. Monsanto, J.
Rexford, A. Story, and D. Walker. Frenetic: A Network
Programming Language.the 16th ACM SIGPLAN
international conference on Functional programming,2011
pp. 279–291.

http://www.dblp.org/pers/hc/l/Li:Xianneng.html
http://www.dblp.org/pers/hc/h/Hirasawa:Kotaro.html
http://www.dblp.org/db/journals/asc/asc27.html#LiH15
http://www.dblp.org/db/journals/asc/asc27.html#LiH15
http://www.dblp.org/pers/hc/t/Tashtarian:Farzad.html
http://www.dblp.org/pers/hc/m/Moghaddam:Mohammad_Hossein_Yaghmaee.html
http://www.dblp.org/pers/hc/m/Moghaddam:Mohammad_Hossein_Yaghmaee.html
http://www.dblp.org/pers/hc/s/Sohraby:Khosrow.html
http://www.dblp.org/pers/hc/e/Effati:Sohrab.html
http://www.dblp.org/db/journals/cn/cn77.html#TashtarianMSE15
http://www.dblp.org/pers/hc/m/Mahmoudi:Monirehalsadat.html
http://www.dblp.org/pers/hc/z/Zhou:Xuesong.html
http://www.dblp.org/db/journals/corr/corr1507.html#MahmoudiZ15
http://www.dblp.org/pers/hc/c/Creaco:E=.html
http://www.dblp.org/pers/hc/p/Pezzinga:G=.html
http://www.dblp.org/db/journals/envsoft/envsoft69.html#CreacoP15
http://www.dblp.org/db/journals/envsoft/envsoft69.html#CreacoP15
http://www.dblp.org/pers/hc/m/Malek:Alaeddin.html
http://www.dblp.org/pers/hc/a/Abad:Leila_Jafarian=Khaled.html
http://www.dblp.org/pers/hc/k/Khodayari=Samghabadi:Samaneh.html
http://www.dblp.org/pers/hc/k/Khodayari=Samghabadi:Samaneh.html
http://www.dblp.org/db/journals/ijra/ijra30.html#MalekAK15
http://www.dblp.org/db/journals/ijra/ijra30.html#MalekAK15
http://www.dblp.org/pers/hc/h/Hatefi:Seyed_Morteza.html
http://www.dblp.org/pers/hc/j/Jolai:Fariborz.html
http://www.dblp.org/pers/hc/t/Torabi:S=_Ali.html
http://www.dblp.org/pers/hc/t/Tavakkoli=Moghaddam:Reza.html
http://www.dblp.org/pers/hc/t/Tavakkoli=Moghaddam:Reza.html
http://www.dblp.org/db/journals/ijcim/ijcim28.html#HatefiJTT15
http://www.dblp.org/db/journals/ijcim/ijcim28.html#HatefiJTT15
http://www.dblp.org/db/journals/ijcim/ijcim28.html#HatefiJTT15

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.10, October 2015

16

[34] S. Egorov and G. Savchuk. SNORTRAN: An Optimizing
Compiler for Snort Rules. Fidelis Security Systems, 2002.

[35] M. Dobrescu, N. Egi, K. Argyraki, B. Chun, K. Fall, G.
Iannaccone, A. Knies, M. Manesh, and S. Ratnasamy.
RouteBricks: Exploiting parallelism to scale software
routers. SOSP, Oct 2009.

[36] V. Paxson. Bro: A system for detecting network intruders in
realtime. Computer Networks 31(2324), Dec 1999, pp.
2435-2463.

[37] P. Gao, W. Shi, H. Li, W. Zhou. Indoor Mobile Target
Localization Based on Path-planning and Prediction in
Wireless Sensor Networks. WSEAS Transactions on
Computers 12(3), 2013, pp. 116–127.

[38] M. Chen, X. Li, R. Lian, J. Lin, L. Liu, T. Liu, and R. Ju.
Shangri-la: Achieving high performance from compiled
network applications while enabling ease of programming.
PLDI, Jun 2005, pp 224-236.

[39] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L.
Peterson, J. Rexford, S. Shenker, and J. Turner. Openflow:
Enabling innovation in campus networks. SIGCOMM CCR
38(2), 2008, pp. 69-74.

[40] V. Bhanumathi, R. Dhanasekaran. Energy Efficient Routing
with Transmission Power Control based Biobjective Path
Selection Model for Mobile Ad-hoc Network. WSEAS
Transactions on Computers 11(11), 2012, pp. 407–417.

[41] The Open Networking Foundation, Mar 2011. See http://
www.opennetworkingfoundation.org/

[42] M. Cristea, C. Zissulescu, E. Deprettere, and H. Bos. FPL-
3E: Towards language support for reconfigurable packet
processing. SAMOS, Jul 2005, pp 201-212.

[43] J. Harding. Decidability of the Equational Theory of the
Continuous Geometry CG(F). J. Philosophical Logic 42(3),
2013, pp. 461–465.

[44] E. Golemanova. Declarative Implementations of Search
Strategies for Solving CSPs in Control Network
Programmings. WSEAS Transactions on Computers 12(4),
2013, pp. 174–183.

http://www.opennetworkingfoundation.org/

