
IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.10, October 2015

124

Manuscript received October 5, 2015
Manuscript revised October 20, 2015

An efficient scalable batch-rekeying scheme for secure multicast
communication using multiple logical key trees

Omar Zakaria, Aisha-Hassan A.Hashim, Wan H. Hassan
Faculty of Engineering, International Islamic University Malaysia
 Malaysia - Japan International Institute of Technology (MJIIT),

 University Technology Malaysia, Kuala Lumpur

Summary
Security is vital for many multicast-based application and services.
Secure group key management is on of the challenging problems
for multicast communication with large number of members.
Where for each membership variation the group key must be
updated and redistributed to all currently active members only.
This causes a higher communication overhead in large size
multicast group with high number of users joining or leaving the
group. Logical Key Hierarchy which uses the key tree structure is
proposed to reduce the communication cost of rekeying procedure
and reduces the required number of rekeying messages.
Furthermore, batch rekeying is proposed to reduce the rekeying
cost by preform rekeying in predefined intervals instead of
updating the keys after each join or leave. In this paper, a new
scheme based on multiple key trees is proposed. Instead of using
only a single key tree multiple key trees are used and at the end of
each batch time the algorithm decides which tree will be used to
update the keys. This paper shows that utilizing multiple key trees
can efficiently decrease the rekeying communication overhead
using batch rekeying scheme in tree-based architecture.
Keywords
Secure multicast, group key management, tree-based system,
batch re-keying.

1. Introduction

Group key management play an important role in secure
group communication applications where the the data is
encrypted using a security key before it is sent to the group
members. The session key or group key is distributed to
eligible users only, so those only how have the group key
can decrypt the received data. The dynamic joining or
leaving of users requires frequently updating the group key.
This is to achieve a backward and forward secrecy. The
backward secrecy guarantees that the joining users can only
receive and decrypt the data sent after their joining time and
have no accessibility to the data has been sent before that
point of time. On the other hand, forward secrecy
guarantees that leaving users have no accessibility on the
data which is sent after the those users leave the group.
Simple rekeying scheme requires that the key server (group
controller) sends the new group key to each user one-by-
one using the secret key of each individual uses. This simple
rekeying scheme is very costly for the groups with large
number of users, and the number of rekeying message

(communication cost) is equal to the group size. Many
schemes has been proposed in literature (such as LKH[1],
batch rekeying [2]) to deal with key management in group
communication environment. In multicast environment,
there are three component a group controller (key server),
sending node and multicast group members. Where the
group controller is responsible to generate and distribute the
security keys to the sender and the active group members.
The sending node uses the group key (session key) to
encrypt the messages before sending it to the multicast
group. The group controller collects the updated
information on the multicast group status (the joined and
leaved members). Figure 1. shows the secure multicast
environment structure.

Fig 1 Secure Multicast Environment Components

 In this paper, we propose a new key management scheme
based on LKH and batch rekeying schemes to reduce the
communication overhead. Different from the previous
schemes the proposed scheme utilize multiple trees, and
select the tree with less rekeying cost at each batch time.
From the simulation results, we show that the proposed
scheme can optain lower rekeying cost than for balanced a-
ary tree with batch rekeying. The rest of the paper is
organized as follows. In section two related works and
proposals to reduce the rekeying cost are presented. Section
three describe the proposed Multi-logical Tree Key
Management scheme (MLT-KM). In section four the

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.10, October 2015 125

proposed scheme is evaluated. Finally, the paper is
concluded in section five.

2. Related works

Logical Key Hierarchy (LKH) is most used approach in
group key management schemes. It was independently
proposed by Wallner et al. [1] and Wong et al. [3]. In LKH
the multicast group members are mapped with the leaves of
a logical key tree. Each member stores all the keys along the
path from its leaf to the tree root. The group key (GK) is
located in the root node of the key tree. Intermediate nodes
contains the Key Encryption Keys (KEKs), which is is used
to encrypt the new keys, while the leafs contain the user
security keys (KUs). KUs are shared between the member
and the key server before the member join the group. When
a member joins/leaves the group, all the keys in his path set
need to be changed to a new keys. LKH reduces the
rekeying overhead from 𝑂𝑂(𝑁𝑁) to 𝑂𝑂(log(𝑁𝑁)), where N is
the size of the group. Figure 2. Shows the LKH key tree
(binary key tree) with eight members.

Fig 2 Logical Key Hierarchy Structure

 Many proposals aim to optimise the performance of the
key-tree structure proposal by achieving a balanced key tree
such as [4][5]. Work in [6], proposes a rotation based
algorithm to achieve a balanced key tree after each leaving
or joining operation, where it can support the cases when
the number of leaving members is higher than the joining
members.

High number of members leave or join the group by time
will invoke a high a mount of rekeying, this degrades the
performance of tree-based key management proposal.
Therefore batch rekeying was proposed by [2] to deal with
this problem. In batch rekeying schemes the group
controller does not update the keys immediately after each
join/leave operation instead, it waits till the end of fixed
time intervals called batch time to perform rekeying process.
while using batch rekeying can reduce the rekeying cost by

combining the update for many join and leave operations, it
has some security limitation where the backward is not well
preserved, thus leaving users can still decrypt the data and
joined users can not access the data till the end of the batch
interval. While it is tolerable if the batching time is
relatively small. Batch rekeying scheme assume that the
batching time is static, many works [9][10] propose a batch
rekeying schemes with dynamic batch rekeying intervals to
achieve a trade off between the rekeying cost and the data
confidentiality.
Work of [7], reduces the overhead of joining operation
using one-way hash function with node coding. Using a
binary logical tree structure, when new members join the
multicast group, the key server sends the new group key
with a unique code to the new members, using the new
group key and the node code new members calculate all
required middle keys. The remaining members compute the
new group key locally by applying one-way hash function
to the previous group key.
In [8], n-ary tree structure is used. Their key management
scheme reduces the rekeying messages in leaving operation.
The number of rekeying messages is paced on the leaving
node positions. Members in each subgroup are numbered
from 1 to n (the degree of the tree) , members belong to
different subgroups is assigned the same key if they are
assigned the same number. After each batch time
intermediate keys are updated by exoring the old key with
the new group key.
Secure Group Key Management Scheme is proposed in [11],
their proposal reduces the number of rekeying messages
using chinese remainder theorem which combined with
LKH. The multicast gruop is divided into multiple clusters
where for each cluster there is a new entity called subgroup
controller. The inter-cluster key management is done using
LKH, for inter cluster key management Chinese Remainder
Theorem scheme is used. the idea is that the subgroup
controller uses the public keys of the members with the
session key which is received from the group member to
generate a secure lock which can be only decrypted by the
cluster members to get the session key.
Many LKH-based proposal such as in [12][13][14] reduce
the average rekeying overhead by organizing the key tree
with respect to the rekeying or leaving probability
probabilities of members. In [14], a key management
scheme to reduce the member leaving rekeying overhead by
utilizing the leaving probability of each member, where the
group controller calculate the leaving probability based on
the average staying time of each member. This information
can be collected from the member past activity profile.
Using leaving probability may not be applicable for users in
dynamic environment where users have deferent staying
time every time they join the group.

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.10, October 2015 126

3. The proposed Multi-logical Tree key
management (MLT-KM) scheme

 The leaving and joining operations of members are
producing different overhead. Leaving operation needs
more rekeying messages and is considered more costly in
term of communication overhead this because the key
server must use the secret key of each user to encrypt the
new keys to guarantee backward security. While joining
operation needs less overhead, this because the affected
keys is sent to the existing users first then new keys sent to
the newly joined member. In our proposal we consider a tree
with fixed height (h), with each node at each level has M
children except nodes in level h-2 (leafs nodes parents) have
a maximum of N number of children, where:
𝑁𝑁 ∗ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑛𝑛𝑜𝑜𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖𝑛𝑛 𝑙𝑙𝑛𝑛𝑙𝑙𝑛𝑛𝑙𝑙 (ℎ − 2) ≥
𝑛𝑛𝑚𝑚𝑚𝑚𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛𝑚𝑚𝑒𝑒𝑛𝑛𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
Figure .2 shows the proposed tree structure with (h= 4, M=3,
N), the proposed tree is fall under level-homogeneous key
tree structure as the classification proposed by [15].

Fig 3 The proposed key tree structure

 Table .1 shows a comparision of the rekeing cost of
join/leave operation based on the distribution of
leaving/joining members over the tree. Where Ux, Uy, Uz
are the member positions in the tree (figure .3). The number
of rekeying messages is calculated for one or two
leaving/joining operations. In different cases when the
leaving/joining members are in the same subgroup (Ux, Uy)
or different subgroup (Ux, Uz).

Table 1: comparation of different rekeying cost

operation Users Number of rekeying messages
Join Ux 2 + (ℎ − 2) ∗ 𝑀𝑀
Leave Ux (𝑁𝑁 − 1) + (ℎ − 2) ∗ 𝑀𝑀
Join Ux, Uy 3 + (ℎ − 2) ∗ 𝑀𝑀
Leave Ux, Uy (𝑁𝑁 − 2) + (ℎ − 2) ∗ 𝑀𝑀
Join Ux, Uz 4 + (2ℎ − 5) ∗ 𝑀𝑀
Leave Ux, Uz 2 ∗ (𝑁𝑁 − 1) + (2ℎ − 5) ∗ 𝑀𝑀

From Table .1 it can be seen that leaving operation has more
rekeying messages than join operation while the worst
overhead is when the leaving members are widely
distributed from each other (such when Ux and Uy leave the
group in the same batch time). The proposed scheme aim to
reduce the total cost of leaving operations with a minor
increase in the joining operations cost, as a result this leads
to reduction in the total communication cost. To control the
leaving nodes positions in the tree, multiple key trees are
used. At each batch time one tree (primary tree) is selected
to distribute the new session key (SK). Since the position of
the leaving members determines the number of rekeying
messages, the algorithm select the tree which lead to the
least number of rekeying messages as primary tree. The
KEK of the remaining trees (secondary trees) are then
updated by exoring their old keys with the new session key
locally on each user node without the need of distribution
of the new keys. Let’s considesr multiple trees each tree
follows the proposed structure and all trees have equal fixed
height (h). The root of each tree is the session key (K0) and
the leaves contain the private keys of users. Where users
distributed randomly on different trees (this to get different
distribution of members on different trees subgroups). The
intermediate nodes on each key contain the KEK keys
(K201, K101, K102,… for first tree; K201, K202,… for the
second tree; …. etc). The proposed key management steps
after each batch time are described as following:

(1) Add the newly joint member to each tree using joining
members algorithm.

(2) Select a primary tree using tree selection algorithm.
(3) In the primary tree all path key’s from the root to leafs

where the the nodes experiance joining or leaving
members are recalculated and the new keys are
distributed to the existing member using the same
LKH approach.

(4) All key encryption keys of the secondary trees are
updated by performing xor operation on the old KEK
keys with the new session key to obtain the new keys
as following: Knew = k0 ⨁Kold.

(5) For each secondry tree, distribute the updated keys to
the newly joined users only using the same way of
LKH.

The new joined members are distributed in different
position in different trees to diverse the leaving users
distributions within trees. The joining member algorithm is
detailed in Figure 4. Let subtree(a, t) donates the subtree
which rooted at node ‘a’ in tree ‘t’ and let N determines the
maximum number of children (leafs) of each node in level
h-2, and let modified(a,t) is a function return 1 if at least one
joined or leaved member placed on subtree(a) leaf’s and 0
otherwise. random() is a random function returns values
from 0 to 1, 𝑤𝑤 (0 ≤ 𝑤𝑤 ≤ 1) is a weighting parameter where
w effects the distribution of new members in the trees by

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.10, October 2015 127

giving more chances to locat newly joining members in
subgroups which has experienced join or leave operations,
this to reduce the number of rekeying messages due to
joining users. Random function is used to distribute the
users in random way through different trees.

for each j∈set of new joning members do

 for each t∈Trees do
 best=0
 for a ∈level(h-2) in t do
 if number of occupied leafs in subtree(a) < N then
 B = modified(a,t)∗ 𝑤𝑤 + random()
 if B>best
 bestn=n
 best=B
 Add j to subtree(bestn)

Fig 4 Tree joining member Algorithm

After each batch time the rekeying cost for each tree is
calculated and the tree with the least rekeying cost is
selected to be a primary tree which will be used to distribute
the session key distribution. Tree selection algorithm is
presented in Figure 5.

maxCost = ∞
 for each t∈Trees
 Assign t as a main tree
 Calculate the total rekeying messaging
 (Rekeying Cost)
 if Rekeying Cost<maxCost then
 selectedT = t
 maxCost= Rekeying Cost
 select selectedT as primary tree

Fig 5 Tree selection algorithm

To have an example on how the algorithm works, let’s
consider a key tree with h = 4, m = 3, n=3 and with
maximum number of user 48,where each node on level 2
can have up to 4 children, assume that we use two trees, the
first tree is shown in Figure 6 and the second tree in Figure
7. let assume that at the end of a batch time there are three
users leaves the group (U1, U4 and U23) and there are three
users join the group (U7, U10, U18). The scheme first Add
the new members to each tree using joining members
algorithm then it selects the primary tree which has less
rekeying cost. The required rekeying messages due to
joining and leaving members in the tree 1 are as following:
{𝐾𝐾104−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾𝐾𝐾2 , {𝐾𝐾104−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾𝐾𝐾3
{𝐾𝐾105−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾𝐾𝐾5 , {𝐾𝐾105−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾𝐾𝐾6
{𝐾𝐾106−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾106, {𝐾𝐾106−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾𝐾𝐾7
{𝐾𝐾101−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾104−𝑛𝑛𝑛𝑛𝑛𝑛 , {𝐾𝐾101−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾105−𝑛𝑛𝑛𝑛𝑛𝑛 ,
{𝐾𝐾101−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾106−𝑛𝑛𝑛𝑛𝑛𝑛

{𝐾𝐾107−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾107 , {𝐾𝐾107−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾𝐾𝐾10
{𝐾𝐾109−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾109 , {𝐾𝐾109−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾𝐾𝐾18
{𝐾𝐾102−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾107−𝑛𝑛𝑛𝑛𝑛𝑛, {𝐾𝐾102−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾108, {𝐾𝐾102−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾109−𝑛𝑛𝑛𝑛𝑛𝑛
{𝐾𝐾111−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾𝐾𝐾22 , {𝐾𝐾111−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾𝐾𝐾24
{𝐾𝐾103−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾110, {𝐾𝐾103−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾111−𝑛𝑛𝑛𝑛𝑛𝑛, {𝐾𝐾103−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾112
{𝐾𝐾0−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾101−𝑛𝑛𝑛𝑛𝑛𝑛
{𝐾𝐾0−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾102−𝑛𝑛𝑛𝑛𝑛𝑛
{𝐾𝐾0−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾103
Where {𝐾𝐾𝑥𝑥}𝐾𝐾𝑦𝑦 denotes that Kx is encrypted using Ky key

Fig 6 tree-1

While the required rekeying messages in the tree 2 are as
following:
{𝐾𝐾204−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾204, {𝐾𝐾204−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾𝐾𝐾10 , {𝐾𝐾204−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾𝐾𝐾7
{𝐾𝐾201−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾204, {𝐾𝐾201−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾205, {𝐾𝐾201−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾206−𝑛𝑛𝑛𝑛𝑛𝑛
{𝐾𝐾206−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾𝐾𝐾25 , {𝐾𝐾206−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾𝐾𝐾18
{𝐾𝐾201−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾204−𝑛𝑛𝑛𝑛𝑛𝑛, {𝐾𝐾201−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾205, {𝐾𝐾201−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾206−𝑛𝑛𝑛𝑛𝑛𝑛
{𝐾𝐾208−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾𝐾𝐾9
{𝐾𝐾202−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾207 , {𝐾𝐾202−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾208−𝑛𝑛𝑛𝑛𝑛𝑛 , {𝐾𝐾202−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾209 ,
{𝐾𝐾0−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾201−𝑛𝑛𝑛𝑛𝑛𝑛
{𝐾𝐾0−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾202−𝑛𝑛𝑛𝑛𝑛𝑛
{𝐾𝐾0−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾203

Fig 7 tree-2

It can be seen that using tree-1 to distribute the new session
key requires (24) messages while the second tree requires
(18) messages, therefore the algorithm selects the second
tree to distribute the session key. The key server multicast
the encrypted keys related to primary tree (tree 2) only:

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.10, October 2015 128

{𝐾𝐾204−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾204, {𝐾𝐾204−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾𝐾𝐾10 , {𝐾𝐾204−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾𝐾𝐾7
{𝐾𝐾201−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾204, {𝐾𝐾201−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾205, {𝐾𝐾201−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾206−𝑛𝑛𝑛𝑛𝑛𝑛
.

{𝐾𝐾0−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾201−𝑛𝑛𝑛𝑛𝑛𝑛
{𝐾𝐾0−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾202−𝑛𝑛𝑛𝑛𝑛𝑛
{𝐾𝐾0−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾203
Using the new group key each user calculates the related
new KEK keys of each secondary tree (which is only one
tree in this example) by themselves this by xoring the old
keys with the new group key as following:
 𝐾𝐾101−𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐾𝐾101−𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝐾𝐾0−𝑛𝑛𝑛𝑛𝑛𝑛

 𝐾𝐾102−𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐾𝐾102−𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝐾𝐾0−𝑛𝑛𝑛𝑛𝑛𝑛
 𝐾𝐾103−𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐾𝐾103−𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝐾𝐾0−𝑛𝑛𝑛𝑛𝑛𝑛

 𝐾𝐾104−𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐾𝐾104−𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝐾𝐾0−𝑛𝑛𝑛𝑛𝑛𝑛
 𝐾𝐾105−𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐾𝐾105−𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝐾𝐾0−𝑛𝑛𝑛𝑛𝑛𝑛

 𝐾𝐾106−𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐾𝐾106−𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝐾𝐾0−𝑛𝑛𝑛𝑛𝑛𝑛
 𝐾𝐾107−𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐾𝐾107−𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝐾𝐾0−𝑛𝑛𝑛𝑛𝑛𝑛

 𝐾𝐾108−𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐾𝐾108−𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝐾𝐾0−𝑛𝑛𝑛𝑛𝑛𝑛
 𝐾𝐾109−𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐾𝐾109−𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝐾𝐾0−𝑛𝑛𝑛𝑛𝑛𝑛

 𝐾𝐾110−𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐾𝐾110−𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝐾𝐾0−𝑛𝑛𝑛𝑛𝑛𝑛
 𝐾𝐾111−𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐾𝐾111−𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝐾𝐾0−𝑛𝑛𝑛𝑛𝑛𝑛

 𝐾𝐾112−𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐾𝐾112−𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝐾𝐾0−𝑛𝑛𝑛𝑛𝑛𝑛

The new KEK keys of the secondary trees then distributed
(multicasted) to the new joint users as following:

 {𝐾𝐾106−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾𝐾𝐾7 , {𝐾𝐾101−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾106−𝑛𝑛𝑛𝑛𝑛𝑛
 {𝐾𝐾107−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾𝐾𝐾10 , {𝐾𝐾102−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾107−𝑛𝑛𝑛𝑛𝑛𝑛
 {𝐾𝐾109−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾𝐾𝐾18, {𝐾𝐾102−𝑛𝑛𝑛𝑛𝑛𝑛}𝐾𝐾109−𝑛𝑛𝑛𝑛𝑛𝑛

4. performance evaluation

4.1. Security analysis

The proposed scheme achieves forward and backward
secrecy. When a new member joins the group the path keys
from the session key (root node) to the new member node
in the primary tree is updated. While in the secondary trees
the path keys are also updated and the new KEK keys are
known for each existing user. The key server then
multicasts the updated keys to the newly joint users. The
newly joined member will have no information on the old
keys or old session key and thus they can not decrypt old
messages. Therefore backward secrecy is achieved. In the
case of leaving operation all path keys are changed in the
primary tree as in LKH procedure, while path keys are
changed by xoring the old key with the new session key
which is only known by the active members in this way the
leaving member will have no information of the new keys.
Therefore, forward secrecy is achieved.

4.2. Simulation Results

 A simulation is conducted to evaluate the performance of
proposed multi-logical tree key management scheme and
compare it with a single tree A-ary balanced tree with batch
rekeying. At any batch time the number of joining and
leaving users are equal, therefore, the total number of
members in the group at any time is fixed to 600 member.
The prorpsed scheme is compared with 4-aray tree, where
for the proposed multi-logical tree key management two
trees are used, with height h=5 and M= 4, N=10. In the
simulation, the total number of users at each time is 600
users, then at each batch time (x) number of users randomly
leave (join) the group. The number of users leave (join) the
group (x) after each batch time is varied from 20 to 100.
Figure .7 shows the average rekeying messages for our
proposal and the 4-ary tree. It shows that the proposed
scheme have less rekeying cost in average compared with
4-ary tree when the number of leaving members is increased.

Fig 7 Comparision between MLT-KM and a-ary tree

5. conclusions

In this paper, a multi-tree key management scheme has been
proposed to reduce the rekeying cost for batch rekeying in
multicast communication. The proposed scheme reduce the
communication cost by controlling the leaving members
position this by select the tree in which the leaving members
are not widely distribution over the tree. The proposed
scheme add some overhead to join operation which is
proportional to the number of trees, while in the same time,
it effectively reduces the communication cost associated
with leaving operation. Many factors affects the
performance of the proposed scheme such as the tree
structure, the hight and shape of the tree, the tree numbers
and the multicast group size. In addition that the joining
members distribution algorithm affect the performance of
the proposal. Further investigation need to be done to

0
100
200
300
400
500
600
700
800
900

1000

20 40 60 80 100

Av
er

ag
e

N
um

be
r o

f R
ek

ey
in

g
M

es
aa

ge
s

of Leaving Members

4-ary Tree
MLT-KM

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.10, October 2015 129

evaluate the impact of each factor on the performance of the
scheme.

ACKNOWLEDGMENT

This work is supported by MOSTI under the e-science
project (01-01-08-SF0148).

References
[1] D. Wallner, E. Harder and R. Agee, “Key Management for

Multi- cast: Issues and Architectures,” RFC Key
Management for Multicast: Issues and Architectures, 1999.

[2] X. Li, Y. Yang, M.G. Gouda, and S.S. Lam, “Batch Rekeying
for Secure Group Communications”, Proc. 10th Int’l Conf.
World Wide Web , p. 525-534, 2001.

[3] C. K. Wong, M. Gouda, and S.S. Lam, “Secure Group
Communications Using Key Graphs,” IEEE/ACM Trans.
Networking, vol. 8, no. 1, p. 16-30, 2000.

[4] J. Pegueroles and F. Rico-Novella, “Balanced Batch LKH:
New Proposal, Implementation and Performance Evaluation”
Proc. Eighth IEEE Int’l Symp. Computers and Comm.
(ISCC ’03), p. 815-820, 2003.

[5] W. Ng, M. Howarth, Z. Sun, and H. Cruickshank, “Dynamic
Balanced Key Tree Management for Secure Multicast
Communications,” IEEE Trans. Computers, vol. 56, no. 5, p.
590- 605, 2007.

[6] P. Vijayakumar, S. Bose, A. Kannan, “Rotation based secure
multicast key management for batch rekeying operations”,
Network Science, vol. 1, no. 1-4, p. 39-47, 2012.

[7] M. Hajyvahabzadeh, E. Eidkhani, S. Mortazavi and A. Pour,
“An efficient group key management protocol using code for
key calculation: CKC”, Telecommunication Systems, vol. 51,
no. 2-3, p. 115-123, 2012.

[8] R. Varalakshmi and V. R. Uthariaraj. “A new secure
multicast group key management using gray code”. IEEE-
international conference on recent trends in information
technology, ICRTIT 2011, June 3–5, 2011.

[9] J. H. Cho, I. R. Chen and M. Eltoweissy, “On optimal batch
rekeying for secure group communications in wireless
networks,” Wireless Networks, vol. 14, no. 6, pp. 915–927,
2008.

[10] D. Je, H. Kim, Y. Choi and S. Seo, “Dynamic Configuration
of Batch Rekeying Interval for Secure Multicast Service”,
International Conference on Computing, Networking and
Communications (ICNC), 2014, p.26-30,2014.

[11] E. Munivel, J. Lokesh, ”Design of Secure Group Key Man-
agement Scheme for Multicast Networks using Number
Theory”. International Conference on Computational
Intelligence for Modelling Control & Automation 2008, p.
124-129. 2008.

[12] A. A. Selçuk and D. P. Sidhu, “Probabilistic methods in
multicast key management”. Proceedings of the Third
International Workshop on Information Security, 2000.

[13] A. R. Pais and S. Joshi,“A new probabilistic rekeying method
for secure multicast groups”, International Journal of
Information Security, vol. 9, no. 4, p. 275-286, 2010.

[14] Y. Park, D. Je, M. Park, and S. Seo. "Efficient Rekeying
Framework for Secure Multicast with Diverse-Subscription-

Period Mobile Users," IEEE Trans. Mobile Computing, Vol.
13, No. 4, p. 783 - 796, 2014.

[15] D. Je, J. S. Lee, Y. Park, and S. Seo, “Computation-and-Stor-
age-Efficient Key Tree Management Protocol for Secure
Multicast Communications” Computer Comm., vol. 33, no. 2,
p. 136-148. 2010.

