
IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.11, November 2015

15

Manuscript received November 5, 2015
Manuscript revised November 20, 2015

Mining Significant Patterns from Graph Traversals by
Considering Frequency and Average Weight

Hyu Chan Park

Department of Computer Engineering, Korea Maritime and Ocean University, Korea

Summary
Graph traversal is a sequence of vertices along edges on a graph,
by which a lot of real world problems can be modeled. Mining
patterns from such traversals has been found useful in several
applications such as Web mining. However, previous works
considered only frequency or summed weight of patterns. This
paper extends them by considering average weight of patterns.
Under such weight settings, traditional mining algorithms can not
be adopted directly any more. To cope with the problem, this
paper proposes new methodology by considering average weight
along with frequency.
Key words:
Data mining, Graph traversal, Average weight

1. Introduction

Graph traversal is widely used to model several classes of
real world problems. For example, user navigations on the
Web site can be modeled as graph traversals. Once such
graph traversals are given, valuable information can be
mined. Most common and simplest form of the information
may be frequent patterns. Chen et al. [1] proposed the
problem of traversal pattern mining, and then proposed
algorithms with hashing and pruning techniques. However,
they did not consider graph structure, on which the
traversals occur. Nanopoulos et al. [2, 3] proposed the
problem of mining patterns from graph traversals. They
defined new criteria for the support and subpath
containment, and then proposed algorithms with a trie
structure. They considered the graph, on which traversals
occur. For these mining problems, the well-known Apriori
algorithm can be used [4]. Reasoning on these approaches
is that frequent patterns are valuable.
More valuable patterns can be mined by considering
weights in the mining process. For such weighted mining,
there have some works [5, 6, 7, 8]. However, they are
related to the mining of association rules and itemsets, but
not traversals. Lee and Park [9] had combined the mining
problem of traversal pattern and weighted mining. This
approach considers weights attached to the vertices of
graph. Such vertex weight may reflect the importance of
vertex. For example, each Web page may have different
importance which reflects the value of its content. The

weight of a pattern is calculated by the summation of
weights of vertices in the pattern. With these weight
settings, the mining algorithm cannot be relied on the well-
known Apriori paradigm any more. Instead, the notion of
support bound can be adopted [5]. This paper extends
previous works by considering average weight of patterns,
but not summed weight. Although overall foundation is
similar to the previous, but details may be different. To
cope with this difference, we will propose new definitions
and approaches.
This paper is organized as follows. Section 2 formalizes
traversal pattern mining problem by considering frequency
and weight. In Section 3, we propose an algorithm for the
discovery of average-weighted frequent patterns from
traversals on weighted graph. Section 4 includes two
methods for the estimation of weight and support bound
used in this mining process. In Section 5, we experiment
and analyze the algorithm on synthetic data. Finally,
Section 6 contains the conclusion and future works.

2. Average-weighted Frequent Patterns

Definition 1. A weighted directed graph is a finite set of
vertices and edges, in which each edge joins one ordered
pair of vertices, and each vertex is associated with a weight
value. A base graph is a weighted directed graph, on which
traversals occur.
For example, the following base graph has 6 vertices and 8
edges, in which each vertex is associated with a weight.

A

B D

F

C E

2.0

5.0

7.0 4.0

12.0

6.0

Fig. 1 Example of base graph

Definition 2. A traversal is a sequence of consecutive
vertices along a sequence of edges on a base graph. We

4.0 7.0

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.11, November 2015 16

assume that every traversal is path, which has no repeated
vertices and edges. The length of a traversal is the number
of vertices in the traversal. The weight of a traversal is the
sum of vertex weights in the traversal. A traversal database
is a set of traversals.
We restrict any traversal to be a path, because repeated
vertices or edges in a traversal may not contain useful
information in many cases, such as backward movements.
If a traversal has repeated vertices or edges, it can be
separated into several paths, such as maximal forward
references [1]. The following traversal database has totally
6 traversals, each of which has an identifier and a sequence
of consecutive vertices.

Tid Traversal
1
2
3
4
5
6

<A>
<A, B>
<A, C>
<B, C, E>
<B, C, E, F>
<A, C, E, D>

Fig. 2 Example of traversal database

Definition 3. A subtraversal is any subsequence of
consecutive vertices in a traversal. If a pattern P is a
subtraversal of a traversal T, then we say that P is
contained in T, and vice versa T contains P.
There is a well known property on such subtraversal [2, 3]
as follows.

Property 1. Given a traversal of length k, there are only
two subtraversals of length k-1.
For example, given a traversal of length 4, <B, C, E, F>,
there are only two subtraversals of length 3, <B, C, E> and
<C, E, F>. Note that non-consecutive sequences, such as
<B, C, F>, are not subtraversals.

Definition 4. The support count of a pattern Pk with length
k, denoted by scount(Pk), is the number of traversals
containing the pattern. The support of a pattern Pk,
denoted by support(Pk), is the fraction of traversals
containing the pattern. Given a traversal database D, let |D|
be the number of traversals.

D
)P(scount)P(support k

k = (1)

There is a well-known property on such support count and
support as follows.

Property 2. The support count and the support of a pattern
decrease monotonically as the length of the pattern
increases. In other word, given a k-pattern Pk and any l-
pattern containing Pk, denoted by (Pk, l), where l > k, then

scount(Pk) ≥ scount(Pk, l) and support(Pk) ≥ support(Pk,
l).
Given a base graph with a set of vertices V = {v1, v2, …,
vn}, in which each vertex vj is assigned with a weight wj ≥
0, we will define the average-weighted support of a pattern.

Definition 5. The average-weighted support of a pattern
Pk, denoted by wsupport(Pk), is

)support(P
k

w
)wsupport(P k

Pkv
j

k
j

∑
∈= (2)

Definition 6. A pattern Pk is said to be average-weighted
frequent, i.e. significant, when the average-weighted
support is greater than or equal to a given minimum
weighted support (minwsup) threshold,

minwsup)wsupport(Pk ≥ (3)

For example, given a base graph and traversal database of
Fig. 1 and 2 with |D| is 6, and minwsup of 1.5, then the
pattern <B, C, E> is average-weighted frequent since (5.0
+ 4.0 + 7.0)/3 × 2/6 = 1.8 ≥ 1.5, but the pattern <B, C> is
not since (5.0 + 4.0)/3 × 2/6 = 1.0 < 1.5.

From equation (1), (2) and (3), a pattern P is average-
weighted frequent when its support count satisfies:

Dminwsup
w

k)P(scount

Pkv
j

k

j

×≥
∑
∈

 (4)

We can consider the right hand side of (4) as the lower
bound of the support count for a pattern P to be average-
weighted frequent. Such lower bound, called support
bound, is given by
















×=

∑
∈

Dminwsup

v
w

k)P(sbound

Pkj
j

k (5)

We take the ceiling of the value since the function
sbound(Pk) is an integer. From Equation (4) and (5), we
can say a pattern P is average-weighted frequent when the
support count is greater than or equal to the support bound.

scount(Pk) ≥ sbound(Pk) (6)

Note that sbound(Pk) can be calculated from base graph
without referring traversal database. On the contrary,
scount(Pk) can be obtained by referring traversal database.
The problem concerned in this paper is stated as follows.
Given a weighted directed graph (base graph) and a set of
path traversals on the graph (traversal database), find all
average-weighted frequent patterns.

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.11, November 2015

17

3. Mining Average-weighted Frequent
Patterns

We propose a methodology for the mining of average-
weighted frequent patterns. An efficient algorithm for
mining large itemsets has been Apriori algorithm. The
reason why Apriori algorithm works is due to the
downward closure property, which says all the subsets of a
large itemset must be also large. For the weighted setting,
however, it is not necessarily true for all the subpatterns of
a average-weighted frequent pattern being average-
weighted frequent. For example, although a pattern <B, C>
is a subpattern of the average-weighted frequent pattern <B,
C, E>, it is not average-weighted frequent. Therefore, we
can not directly adopt Apriori algorithm. Instead, we will
extend the notion of support bound, which can be applied
to the pruning and candidate generation.

3.1 Pruning by Support Bound

One of the cornerstones to improve the mining
performance is to devise a pruning method which can
reduce the number of candidates as many as possible. We
must prune such candidates that have no possibility to
become average-weighted frequent in the future. On the
contrary, we must keep such candidates that have a
possibility to become average-weighted frequent in the
future. Main concern is how to decide such possibility.

Definition 7. A pattern Pk is said to be feasible when it has
a possibility to become average-weighted frequent in the
future if extended to longer patterns. In other words, when
some future patterns containing Pk will be possibly
average-weighted frequent.

Now, the pruning problem is converted to the feasibility
problem. For the decision of such feasibility, we will first
devise the weight bound of a pattern. Let the maximum
possible length of average-weighted frequent patterns be u,
which may be the length of longest traversal in the
traversal database. Given a k-pattern Pk, suppose l-pattern
containing Pk, denoted by (Pk, l), where k < l ≤ u. For the
additional (l – k) vertices, if we can estimate upper bounds
of the weights as klrrr www −,,, 21  , then the upper bound
of the weight of the l-pattern is given by

l

ww
)l,P(wbound

kl

1j
r

Pkv
j

k

j

j

∑∑
−

=∈

+
= (7)

 The first sum is the sum of the weights for the k-pattern Pk.
The second one is the sum of the (l − k) estimated weights,
which can be estimated in several ways. We will propose
two estimation methods in the following section.

From (5) and (7), we can derive the lower bound of the
support count for l-pattern containing Pk to be average-
weighted frequent. Such lower bound, called l-support
bound of Pk, is given by



















×
+

=

∑∑
−

=∈

Dminwsup
ww

l)l,P(sbound kl

1j
r

Pkv
j

k

j

j

 (8)

Lemma 1. A pattern Pk is feasible if scount(Pk) ≥
sbound(Pk, l) for some k < l ≤ u, but not feasible if
scount(Pk) < sbound(Pk, l) for all k < l ≤ u.

Proof. Let li be anyone out of l. If scount(Pk) ≥ sbound(Pk,
li), then because scount(Pk) ≥ scount(Pk, li) by Property 2,
there is a possibility to be scount(Pk, li) ≥ sbound(Pk, li). It
means that (Pk, li) will possibly be average-weighted
frequent. On the contrary, if scount(Pk) < sbound(Pk, li),
then because scount(Pk) ≥ scount(Pk, li) by Property 2,
scount(Pk, li) < sbound(Pk, li). It means that (Pk, li) will
definitely not be average-weighted frequent.

If a pattern Pk is feasible then some l-patterns containing
Pk will be possibly average-weighted frequent. In other
word, Pk has a possibility to be subpatterns of some
average-weighted frequent l-patterns. Therefore, Pk must
be kept to be extended to longer patterns for possible
average-weighted frequent patterns in the coming passes.
On the contrary, if a pattern Pk is not feasible, then all l-
patterns containing Pk will not be average-weighted
frequent. In other word, Pk certainly has no possibility to
be subpattern of any average-weighted frequent l-patterns.
Therefore, Pk must be pruned.
For example, referring to Fig. 1 and Fig. 2, given a 2-
pattern <B, C>, suppose 3-pattern <B, C, −>. For the
additional vertex ‘−’, we can estimate a possible upper
bound of the weight as 12.0, which is the greatest weight
among the remaining vertices besides B and C. Therefore,
the 3-support bound of <B, C> is

265.1
)0.12()0.40.5(

3)3,C,B(sbound =







×

++
=><

It means if the support count of <B, C> is greater than or
equal to 2, some 3-patterns will be possibly average-
weighted frequent. In other word, <B, C> has a possibility
to be subpatterns of some average-weighted frequent 3-
patterns. Because the support count of the pattern <B, C>
is actually 2, the pattern must be extended to 3-patterns for
possible average-weighted frequent patterns.

According to Lemma 1, we can devise a pruning algorithm,
called ‘pruning by support bounds’, as follows.

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.11, November 2015 18

Algorithm. Pruning by support bounds

 for each pattern P in candidates set Ck {

for each l from k+1 to u {
 estimate sbound(P, l);
 if (scount(P) ≥ sbound(P, l))
 break; // P is feasible. Keep it
 }
 if (l > u)
 Ck = Ck – {P}; // P is not feasible. Prune it
 }

Fig.3 Algorithm for pruning by support bounds

3.2 Mining Algorithm

By combing the pruning algorithm as a whole, we can
devise an algorithm for mining average-weighted frequent
patterns. Fig. 3 shows the algorithm proposed in this paper,
which performs in a level-wise manner.

Algorithm. Mining average-weighted frequent patterns

Inputs: Base graph G, Traversal database D, Minimum weighted

support minwsup

Output: List of average-weighted frequent patterns Lk
{
 // 1. maximum length of average-weighted frequent patterns
 u = max(length(t)), t ∈ D;

 // 2. initialize candidate patterns of length 1
 C1 = V(G);

 for (k = 1; k ≤ u and Ck ≠ ∅; k++) {

 // 3. obtain support counts of candidate patterns
 for each pattern p ∈ Ck {
 for each traversal t ∈ D
 if p is contained in t, then p.scount++;
 }

// 4. determine average-weighted frequent patterns
 Lk = {p | p ∈ Ck, p.averageWsupport ≥ minwsup};
 (equivalently, p.scount ≥ p.sbound)

// 5. prune candidate patterns
 C’k = pruneCandidates(Ck, G);

 // 6. generate new candidate patterns for next pass
for each P = <p1, p2, …, pk> in C’k {

 for each edge <pk, v> in G
 P is extended to <p1, p2, …, pk, v>;
 }
 }
}

Fig.4 Algorithm for mining average-weighted frequent patterns

In the algorithm, each step is outlined as follows. Step 1 is
to find out the maximum possible length of weighted-

frequent patterns, which is limited by the maximum length
of traversals. Step 2 initializes candidate patterns of length
1 with the vertices of base graph. In Step 3, traversal
database is scanned to obtain the support counts of
candidate patterns. Step 4 is to determine weighted-
frequent patterns if the weighted support is greater than or
equal to the specified minimum value. Equivalently, if the
support count is greater or equal to the support bound. In
Step 5, the subroutine pruneCandidates(Ck, G) is to prune
candidate patterns, which will be described in the next
section. Step 6 generates new candidate patterns of length
k+1 from the pruned candidate patterns of length k for next
pass.

4. Estimations of Support Bound

We propose two methods for the estimation of weight and
support bound.

4.1 Estimation by All Vertices

Given a k-pattern Pk, suppose l-pattern containing Pk,
where k < l ≤ u. Let V be the set of all vertices in the base
graph. Among the remaining vertices (V − Pk), let the
vertices with the (l − k) greatest weights be

.21 ,,, klrrr vvv − Then, the l-weight bound, wbound(Pk, l),
and the l-support bound, sbound(Pk, l), of P are defined
same as Equation (7) and (8), respectively.
For example, refer to Fig. 1 and Fig. 2, the 3-support
bound for the pattern <A> is

265.1
)0.70.12()0.2(

3)3,A(sbound =







×

++
=><

Example.
From the Fig. 1 and 2, we will show how the average-
weighted frequent patterns are generated from the traversal
database, where |D| is 6. Suppose the minimum weighted
support threshold (minwsup) is 1.5.

1. In the upperLimit() subroutine, the algorithm will scan
the length of traversals, and returns the maximum length,
which is 4 in this example. The maximum length is the
upper limit of the length of average-weighted frequent
patterns.

2. During the initialization step, the candidate patterns of
length 1 are generated with all vertices of the base graph.

C1 = {<A>, , <C>, <D>, <E>, <F>}

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.11, November 2015

19

3. The algorithm repeats as follows.
pattern

P1
scount(P1) sbound(P1)

(wbound(P1))
average-
weighted
frequent

sbound(P1,l)
(wbound(P1,l)) feasible

l = 2 l = 3 l = 4
<A> 4 5(2.0) 2(7.0) - - 
 3 2(5.0)  2(8.5) - - 
<C> 4 3(4.0)  2(8.0) - - 
<D> 1 2(6.0) 1(9.0) - - 
<E> 3 2(7.0)  1(9.5) - - 
<F> 1 1(12.0)  1(9.5) - - 

In the above table, ‘-’ denotes ‘no need’.

pattern

P2
scount(P2) sbound(P2)

(wbound(P2))
average-
weighted
frequent

sbound(P2,l)
(wbound(P2,l)) feasible
l = 3 l = 4

<A, B> 1 3(3.5) 2(6.3) 2(6.5)
<A, C> 2 3(3.0) 2(6.0) - 
<B, C> 2 2(4.5)  2(7.0) - 
<B, D> 0 - - -
<C, E> 3 2(5.5)  2(7.7) - 
<D, F> 0 - - -
<E, D> 1 2(6.5) 2(8.3) 2(7.5)
<E, F> 1 1(9.5)  2(8.3) 2(7.5)

pattern
P3

scount(P3) sbound(P3)
(wbound(P3))

average-
weighted
frequent

sbound(P3,l)
(wbound(P3,l)) feasible

l = 4
<A, C, E> 1 3(4.3) 2(6.3)
<B, C, E> 2 2(5.3)  2(7.0) 
<C, E, D> 1 2(5.7) 2(7.3)
<C, E, F> 1 2(7.7) 2(7.3)

pattern

P4
scount(P4) sbound(P4)

(wbound(P4))

average-
weighted
frequent

<B, C, E, D> 0 -
<B, C, E, F> 1 2(7.0)

The average-weighted-frequent patterns are {, <C>,

<E>, <F>, <B, C>, <C, E>, <E, F>, <B, C, E>}.

4.2 Estimation by Reachable Vertices

To prune unnecessary candidates as many as possible, the
support bounds need to be estimated as high as possible. It
means that we must estimate the weight bounds as low as
possible. The previous method, however, has a tendency to
over-estimate the weight bounds. This tendency is mainly
due to the non-consideration of the topology of base graph.
Specifically, the vertices with greatest weights are chosen
one after one, even though they can not be reached from
the corresponding pattern. To cope with this limitation, we
will propose another method which takes into account the
graph topology, specifically reachable vertices.

Definition 8. Given a base graph G, r-reachable vertices
from a vertex v is all the vertices reachable from v within
the distance r.

Such r-reachable vertices can be regarded as the vertices
within the radius r from v. Therefore, r-reachable vertices
include all the (r-1)-reachable vertices.
Given a k-pattern Pk, let R(Pk, l), k < l ≤ u, be the (l-k)-
reachable vertices from the head vertex of Pk, but not in Pk
and not through the vertices in Pk. They can be obtained
by a level wise manner. For example, from Fig. 1, R(<A>,
2) is {B, C}, and R(<A>, 3) is {B, C, D, E}.

Algorithm. Reachable vertices: R(Pk, l)

 S = {head vertex of Pk} for l = k+1,
Nl-1 for l > k+1;

 Nl = ∅;
 for each vertex v in S
 for each edge <v, w> in G
 if w is not in Pk and R(Pk, l-1) and Nl, then

append w to Nl;
 R(Pk, l) = R(Pk, l-1) ∪ Nl

Fig.5 Algorithm for reachable vertices

Among the vertices in R(Pk, l), let the vertices with the (l −
k) greatest weights be klrrr vvv −,,, 21  . Then, the l-weight
bound, wbound(Pk, l), and the l-support bound, sbound(Pk,
l), of Pk are obtained by Equation (7) and (8), respectively.

For example, refer to Fig. 1 and Fig. 2, the 3-support
bound for the pattern <A> is

265.1
)0.60.7()0.2(

3)3,A(sbound =







×

++
=><

Example.

pattern
P1

scount(P1) sbound(P1)
(wbound(P1))

average-
weighted
frequent

sbound(P1,l)
(wbound(P1,l)) feasible

l = 2 l = 3 l = 4
<A> 4 5(2.0) 3(3.5) - - 
 3 2(5.0)  2(5.5) - - 
<C> 4 3(4.0)  2(5.5) - - 
<D> 1 2(6.0) 1(9.0) - - 
<E> 3 2(7.0)  1(9.5) - - 
<F> 1 1(12.0)  × × ×

In the above table, ‘-’ denotes ‘no need’ and ‘×’ denotes ‘not applicable’.

pattern
P2

scount(P2) sbound(P2)
(wbound(P2))

average-
weighted
frequent

sbound(P2,l)
(wbound(P2,l)) feasible
l = 3 l = 4

<A, B> 1 3(3.5) 3(4.3) 2(6.3)
<A, C> 2 3(3.0) 3(4.3) 2(6.3) 
<B, C> 2 2(4.5)  2(5.3) - 
<B, D> 0 - - -
<C, E> 3 2(5.5)  2(7.7) - 
<D, F> 0 - - -
<E, D> 1 2(6.5) 2(8.3) ×
<E, F> 1 1(9.5)  × ×

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.11, November 2015 20

pattern
P3

scount(P3) sbound(P3)
(wbound(P3))

average-
weighted
frequent

sbound(P3,l)
(wbound(P3,l)) feasible

l = 4
<A, C, E> 1 3(4.3) 2(6.3)
<B, C, E> 2 2(5.3)  2(7.0) 
<C, E, D> 1 2(5.7) 2(7.3)
<C, E, F> 1 2(7.7) ×

pattern

P4
scount(P4) sbound(P4)

(wbound(P4))
average-weighted

frequent
<B, C, E, D> 0 -
<B, C, E, F> 1 2(7.0)

The average-weighted-frequent patterns are {, <C>,
<E>, <F>, <B, C>, <C, E>, <E, F>, <B, C, E>}.

5. Experimental Results

This section presents experimental results of the mining
algorithm, and compares two estimation algorithms, All
vertices and Reachable vertices, using synthetic dataset.
During the experiment, base graph is generated
synthetically according to the parameters, i.e., number of
vertices and average number of edges per vertex. And then,
we assigned distinctive weight to each vertex of the base
graph. All the experiments use a base graph with 100
vertices and 300 edges, i.e., 3 average edges per vertex.
The number of traversals is 10,000 and the minimum
weighted support is 1.5. We generated six sets of traversals,
in each of which the maximum length of traversals varies
from 5 to 10.
Fig. 6 shows the trend of the number of feasible patterns
with respect to the max length of traversals. We measured
the number of feasible patterns when the length of
candidate patterns is (max length of traversals – 1). As
shown in the figure, the number of feasible patterns for
Reachable vertices is smaller than that of All vertices. The
difference of the number of feasible patterns between two
estimation algorithms becomes smaller as the max length
of traversals increases.

Fig.6 Number of feasible patterns w.r.t diferrent max length of traversals

6. Conclusions

This paper proposed new formalization and algorithms for
the mining of traversal patterns by considering weight as
well as frequency. In the formalization, vertices of graph
are attached with weights which reflect their importance.
With this weight setting, we presented new mining
algorithm which takes into account average-weights in the
measurement of support. This algorithm is based on the
notion of support bound. We also proposed two methods
for the estimation of support bound, and then experimented
on them.

References
[1] M.S. Chen, J.S. Park and P.S. Yu, “Efficient Data Mining

for Path Traversal Patterns”, IEEE Trans. on Knowledge
and Data Engineering, vol. 10, no. 2, pp. 209-221, Mar.
1998.

[2] A. Nanopoulos and Y. Manolopoulos, “Finding Generalized
Path Patterns for Web Log Data Mining”, Proc. of East-
European Conf. on Advanced Databases and Information
Systems (ADBIS), Sep. 2000.

[3] A. Nanopoulos and Y. Manolopoulos, “Mining Patterns
from Graph Traversals”, Data and Knowledge Engineering,
vol. 37, no. 3, pp. 243-266, Jun. 2001.

[4] R. Agrawal and R. Srikant, “Fast Algorithms for Mining
Association Rules”, Proc. of the 20th VLDB Conference,
1994.

[5] C.H. Cai, W.C. Ada, W.C. Fu, C.H. Cheng and W.W.
Kwong, “Mining Association Rules with Weighted Items”,
Proc. of International Database Engineering and
Applications Symposium (IDEAS), UK, Jul. 1998.

[6] W. Wang, J. Yang and P.S. Yu, “Efficient Mining of
Weighted Association Rules (WAR)”, Proc. of ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining (SIGKDD), USA, Aug. 2000.

[7] F. Tao, F. Murtagh and M. Farid, “Weighted Association
Rule Mining using Weighted Support and Significance
Framework”, Proc. of ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(SIGKDD), USA, Aug. 2003.

[8] U. Yun and J.J. Leggett, “WLPMiner: Weighted Frequent
Pattern Mining with Length-Decreasing Support
Constraints”, Proc. of Pacific-Asia International Conference
on Knowledge Discovery and Data Mining (PAKDD),
Vietnam, May 2005.

[9] S.D. Lee and H.C. Park, “Mining Weighted Frequent
Patterns from Path Traversals on Weighted Graph”,
International Journal of Computer Science and Network
Security, vol. 7, no. 7, pp. 140-148, Apr. 2007.

