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Summary 
Graph traversal is a sequence of vertices along edges on a graph, 
by which a lot of real world problems can be modeled. Mining 
patterns from such traversals has been found useful in several 
applications such as Web mining. However, previous works 
considered only frequency or summed weight of patterns. This 
paper extends them by considering average weight of patterns. 
Under such weight settings, traditional mining algorithms can not 
be adopted directly any more. To cope with the problem, this 
paper proposes new methodology by considering average weight 
along with frequency.  
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1. Introduction 

Graph traversal is widely used to model several classes of 
real world problems. For example, user navigations on the 
Web site can be modeled as graph traversals. Once such 
graph traversals are given, valuable information can be 
mined. Most common and simplest form of the information 
may be frequent patterns. Chen et al. [1] proposed the 
problem of traversal pattern mining, and then proposed 
algorithms with hashing and pruning techniques. However, 
they did not consider graph structure, on which the 
traversals occur. Nanopoulos et al. [2, 3] proposed the 
problem of mining patterns from graph traversals. They 
defined new criteria for the support and subpath 
containment, and then proposed algorithms with a trie 
structure. They considered the graph, on which traversals 
occur. For these mining problems, the well-known Apriori 
algorithm can be used [4]. Reasoning on these approaches 
is that frequent patterns are valuable.  
More valuable patterns can be mined by considering 
weights in the mining process. For such weighted mining, 
there have some works [5, 6, 7, 8]. However, they are 
related to the mining of association rules and itemsets, but 
not traversals. Lee and Park [9] had combined the mining 
problem of traversal pattern and weighted mining. This 
approach considers weights attached to the vertices of 
graph. Such vertex weight may reflect the importance of 
vertex. For example, each Web page may have different 
importance which reflects the value of its content. The 

weight of a pattern is calculated by the summation of 
weights of vertices in the pattern. With these weight 
settings, the mining algorithm cannot be relied on the well-
known Apriori paradigm any more. Instead, the notion of 
support bound can be adopted [5]. This paper extends 
previous works by considering average weight of patterns, 
but not summed weight. Although overall foundation is 
similar to the previous, but details may be different. To 
cope with this difference, we will propose new definitions 
and approaches. 
This paper is organized as follows. Section 2 formalizes 
traversal pattern mining problem by considering frequency 
and weight. In Section 3, we propose an algorithm for the 
discovery of average-weighted frequent patterns from 
traversals on weighted graph. Section 4 includes two 
methods for the estimation of weight and support bound 
used in this mining process. In Section 5, we experiment 
and analyze the algorithm on synthetic data. Finally, 
Section 6 contains the conclusion and future works. 

2. Average-weighted Frequent Patterns 

Definition 1. A weighted directed graph is a finite set of 
vertices and edges, in which each edge joins one ordered 
pair of vertices, and each vertex is associated with a weight 
value. A base graph is a weighted directed graph, on which 
traversals occur.  
For example, the following base graph has 6 vertices and 8 
edges, in which each vertex is associated with a weight.  
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Fig. 1 Example of base graph  

Definition 2. A traversal is a sequence of consecutive 
vertices along a sequence of edges on a base graph. We 

4.0 7.0 
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assume that every traversal is path, which has no repeated 
vertices and edges. The length of a traversal is the number 
of vertices in the traversal. The weight of a traversal is the 
sum of vertex weights in the traversal. A traversal database 
is a set of traversals.  
We restrict any traversal to be a path, because repeated 
vertices or edges in a traversal may not contain useful 
information in many cases, such as backward movements. 
If a traversal has repeated vertices or edges, it can be 
separated into several paths, such as maximal forward 
references [1]. The following traversal database has totally 
6 traversals, each of which has an identifier and a sequence 
of consecutive vertices. 
 

Tid Traversal 
1 
2 
3 
4 
5 
6 

<A> 
<A, B> 
<A, C> 
<B, C, E> 
<B, C, E, F> 
<A, C, E, D> 

Fig. 2 Example of traversal database 

Definition 3. A subtraversal is any subsequence of 
consecutive vertices in a traversal. If a pattern P is a 
subtraversal of a traversal T, then we say that P is 
contained in T, and vice versa T contains P.  
There is a well known property on such subtraversal [2, 3] 
as follows. 
 
Property 1. Given a traversal of length k, there are only 
two subtraversals of length k-1. 
For example, given a traversal of length 4, <B, C, E, F>, 
there are only two subtraversals of length 3, <B, C, E> and 
<C, E, F>. Note that non-consecutive sequences, such as 
<B, C, F>, are not subtraversals.  
 
Definition 4. The support count of a pattern Pk with length 
k, denoted by scount(Pk), is the number of traversals 
containing the pattern. The support of a pattern Pk, 
denoted by support(Pk), is the fraction of traversals 
containing the pattern. Given a traversal database D, let |D| 
be the number of traversals. 

D
)P(scount)P(support k

k =                       (1) 

There is a well-known property on such support count and 
support as follows. 
 
Property 2. The support count and the support of a pattern 
decrease monotonically as the length of the pattern 
increases. In other word, given a k-pattern Pk and any l-
pattern containing Pk, denoted by (Pk, l), where l > k, then 

scount(Pk) ≥  scount(Pk, l) and support(Pk) ≥  support(Pk, 
l). 
Given a base graph with a set of vertices V = {v1, v2, …, 
vn}, in which each vertex vj is assigned with a weight wj ≥ 
0, we will define the average-weighted support of a pattern. 
 
Definition 5. The average-weighted support of a pattern 
Pk, denoted by wsupport(Pk),  is 
 

)support(P
k

w
)wsupport(P k

Pkv
j

k
j

∑
∈=               (2) 

 
Definition 6. A pattern Pk is said to be average-weighted 
frequent, i.e. significant, when the average-weighted 
support is greater than or equal to a given minimum 
weighted support (minwsup) threshold, 
 

minwsup)wsupport(Pk ≥                  (3) 
 
For example, given a base graph and traversal database of 
Fig. 1 and 2 with |D| is 6, and minwsup of 1.5, then the 
pattern <B, C, E> is average-weighted frequent since (5.0 
+ 4.0 + 7.0)/3 × 2/6 = 1.8 ≥ 1.5, but the pattern <B, C> is 
not since (5.0 + 4.0)/3 × 2/6 = 1.0 < 1.5. 

 
From equation (1), (2) and (3), a pattern P is average-
weighted frequent when its support count satisfies: 

Dminwsup
w

k)P(scount

Pkv
j

k

j

×≥
∑
∈

           (4) 

We can consider the right hand side of (4) as the lower 
bound of the support count for a pattern P to be average-
weighted frequent. Such lower bound, called support 
bound, is given by 
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We take the ceiling of the value since the function 
sbound(Pk) is an integer. From Equation (4) and (5), we 
can say a pattern P is average-weighted frequent when the 
support count is greater than or equal to the support bound. 
 

scount(Pk)   ≥   sbound(Pk)                       (6) 
 
Note that sbound(Pk) can be calculated from base graph 
without referring traversal database. On the contrary, 
scount(Pk) can be obtained by referring traversal database.  
The problem concerned in this paper is stated as follows. 
Given a weighted directed graph (base graph) and a set of 
path traversals on the graph (traversal database), find all 
average-weighted frequent patterns. 
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3. Mining Average-weighted Frequent 
Patterns 

We propose a methodology for the mining of average-
weighted frequent patterns. An efficient algorithm for 
mining large itemsets has been Apriori algorithm. The 
reason why Apriori algorithm works is due to the 
downward closure property, which says all the subsets of a 
large itemset must be also large. For the weighted setting, 
however, it is not necessarily true for all the subpatterns of 
a average-weighted frequent pattern being average-
weighted frequent. For example, although a pattern <B, C> 
is a subpattern of the average-weighted frequent pattern <B, 
C, E>, it is not average-weighted frequent. Therefore, we 
can not directly adopt Apriori algorithm. Instead, we will 
extend the notion of support bound, which can be applied 
to the pruning and candidate generation. 

3.1 Pruning by Support Bound 

One of the cornerstones to improve the mining 
performance is to devise a pruning method which can 
reduce the number of candidates as many as possible. We 
must prune such candidates that have no possibility to 
become average-weighted frequent in the future. On the 
contrary, we must keep such candidates that have a 
possibility to become average-weighted frequent in the 
future. Main concern is how to decide such possibility. 
 
Definition 7. A pattern Pk is said to be feasible when it has 
a possibility to become average-weighted frequent in the 
future if extended to longer patterns. In other words, when 
some future patterns containing Pk will be possibly 
average-weighted frequent. 
 
Now, the pruning problem is converted to the feasibility 
problem. For the decision of such feasibility, we will first 
devise the weight bound of a pattern. Let the maximum 
possible length of average-weighted frequent patterns be u, 
which may be the length of longest traversal in the 
traversal database. Given a k-pattern Pk, suppose l-pattern 
containing Pk, denoted by (Pk, l), where k < l ≤ u. For the 
additional (l – k) vertices, if we can estimate upper bounds 
of the weights as klrrr www −,,, 21  , then the upper bound 
of the weight of the l-pattern is given by 

l
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 The first sum is the sum of the weights for the k-pattern Pk. 
The second one is the sum of the (l − k) estimated weights, 
which can be estimated in several ways. We will propose 
two estimation methods in the following section. 

From (5) and (7), we can derive the lower bound of the 
support count for l-pattern containing Pk to be average-
weighted frequent. Such lower bound, called l-support 
bound of Pk, is given by 
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Lemma 1. A pattern Pk is feasible if scount(Pk) ≥ 
sbound(Pk, l) for some k < l ≤ u, but not feasible if 
scount(Pk) < sbound(Pk, l) for all k < l ≤ u. 
 
Proof. Let li be anyone out of l. If scount(Pk) ≥ sbound(Pk, 
li), then because scount(Pk) ≥ scount(Pk, li) by Property 2, 
there is a possibility to be scount(Pk, li) ≥ sbound(Pk, li). It 
means that (Pk, li) will possibly be average-weighted 
frequent. On the contrary, if scount(Pk) < sbound(Pk, li), 
then because scount(Pk) ≥ scount(Pk, li) by Property 2, 
scount(Pk, li) < sbound(Pk, li). It means that (Pk, li) will 
definitely not be average-weighted frequent. 
 
If a pattern Pk is feasible then some l-patterns containing 
Pk will be possibly average-weighted frequent. In other 
word, Pk has a possibility to be subpatterns of some 
average-weighted frequent l-patterns. Therefore, Pk must 
be kept to be extended to longer patterns for possible 
average-weighted frequent patterns in the coming passes. 
On the contrary, if a pattern Pk is not feasible, then all l-
patterns containing Pk will not be average-weighted 
frequent. In other word, Pk certainly has no possibility to 
be subpattern of any average-weighted frequent l-patterns. 
Therefore, Pk must be pruned. 
For example, referring to Fig. 1 and Fig. 2, given a 2-
pattern <B, C>, suppose 3-pattern <B, C, −>. For the 
additional vertex ‘−’, we can estimate a possible upper 
bound of the weight as 12.0, which is the greatest weight 
among the remaining vertices besides B and C. Therefore, 
the 3-support bound of <B, C> is 

265.1
)0.12()0.40.5(

3)3,C,B(sbound =







×

++
=><  

 
It means if the support count of <B, C> is greater than or 
equal to 2, some 3-patterns will be possibly average-
weighted frequent. In other word, <B, C> has a possibility 
to be subpatterns of some average-weighted frequent 3-
patterns. Because the support count of the pattern <B, C> 
is actually 2, the pattern must be extended to 3-patterns for 
possible average-weighted frequent patterns. 
 
According to Lemma 1, we can devise a pruning algorithm, 
called ‘pruning by support bounds’, as follows. 
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Algorithm. Pruning by support bounds 
 
      for each pattern P in candidates set Ck { 

for each l from k+1 to u { 
                   estimate sbound(P, l); 
                   if (scount(P) ≥  sbound(P, l)) 
                          break;    // P is feasible. Keep it 
            } 
            if (l > u)  
                   Ck = Ck – {P};    // P is not feasible. Prune it 
      } 

Fig.3 Algorithm for pruning by support bounds 

3.2 Mining Algorithm 

By combing the pruning algorithm as a whole, we can 
devise an algorithm for mining average-weighted frequent 
patterns. Fig. 3 shows the algorithm proposed in this paper, 
which performs in a level-wise manner.  
 
Algorithm. Mining average-weighted frequent patterns 
 
Inputs: Base graph G, Traversal database D, Minimum weighted 

support minwsup 

Output: List of average-weighted frequent patterns Lk 
{ 
       // 1. maximum length of average-weighted frequent patterns 
    u = max(length(t)), t ∈ D; 
 

       // 2.  initialize candidate patterns of length 1 
    C1 = V(G); 

 

    for (k = 1; k ≤ u and Ck ≠ ∅; k++) { 
 

              // 3. obtain support counts of candidate patterns 
          for each pattern p ∈ Ck { 
               for each traversal t ∈ D 
                    if p is contained in t, then p.scount++; 
          } 
 

// 4. determine average-weighted frequent patterns  
         Lk = {p | p ∈ Ck,  p.averageWsupport ≥ minwsup}; 
                              (equivalently, p.scount ≥ p.sbound) 
 

// 5.  prune candidate patterns 
         C’k = pruneCandidates(Ck, G); 
 

             // 6. generate new candidate patterns for next pass 
for each P = <p1, p2, …, pk> in C’k { 

               for each edge <pk, v> in G 
                     P is extended to <p1, p2, …, pk, v>; 
         } 
    } 
} 

Fig.4 Algorithm for mining average-weighted frequent patterns 

In the algorithm, each step is outlined as follows. Step 1 is 
to find out the maximum possible length of weighted-

frequent patterns, which is limited by the maximum length 
of traversals. Step 2 initializes candidate patterns of length 
1 with the vertices of base graph. In Step 3, traversal 
database is scanned to obtain the support counts of 
candidate patterns. Step 4 is to determine weighted-
frequent patterns if the weighted support is greater than or 
equal to the specified minimum value. Equivalently, if the 
support count is greater or equal to the support bound.  In 
Step 5, the subroutine pruneCandidates(Ck, G) is to prune 
candidate patterns, which will be described in the next 
section. Step 6 generates new candidate patterns of length 
k+1 from the pruned candidate patterns of length k for next 
pass. 

4. Estimations of Support Bound 

We propose two methods for the estimation of weight and 
support bound.  

4.1 Estimation by All Vertices 

Given a k-pattern Pk, suppose l-pattern containing Pk, 
where k < l ≤ u. Let V be the set of all vertices in the base 
graph. Among the remaining vertices (V − Pk), let the 
vertices with the (l − k) greatest weights be 

.21 ,,, klrrr vvv −  Then, the l-weight bound, wbound(Pk, l), 
and the l-support bound, sbound(Pk, l), of P are defined 
same as Equation (7) and (8), respectively. 
For example, refer to Fig. 1 and Fig. 2, the 3-support 
bound for the pattern <A> is 
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Example.  
From the Fig. 1 and 2, we will show how the average-
weighted frequent patterns are generated from the traversal 
database, where |D| is 6. Suppose the minimum weighted 
support threshold (minwsup) is 1.5. 
 
1. In the upperLimit() subroutine, the algorithm will scan 
the length of traversals, and returns the maximum length, 
which is 4 in this example. The maximum length is the 
upper limit of the length of average-weighted frequent 
patterns. 
 
2. During the initialization step, the candidate patterns of 
length 1 are generated with all vertices of the base graph. 

C1 = {<A>, <B>, <C>, <D>, <E>, <F>} 
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3. The algorithm repeats as follows. 
pattern 

P1 
scount(P1) sbound(P1) 

(wbound(P1)) 
average-
weighted  
frequent 

sbound(P1,l) 
(wbound(P1,l)) feasible 

l = 2 l = 3 l = 4 
<A> 4 5(2.0)  2(7.0) - -  
<B> 3 2(5.0)  2(8.5) - -  
<C> 4 3(4.0)  2(8.0) - -  
<D> 1 2(6.0)  1(9.0) - -  
<E> 3 2(7.0)  1(9.5) - -  
<F> 1 1(12.0)  1(9.5) - -  

In the above table, ‘-’ denotes ‘no need’. 
 
pattern 

P2 
scount(P2) sbound(P2) 

(wbound(P2)) 
average-
weighted 
frequent 

sbound(P2,l) 
(wbound(P2,l)) feasible 
l = 3 l = 4 

<A, B> 1 3(3.5)  2(6.3) 2(6.5)  
<A, C> 2 3(3.0)  2(6.0) -  
<B, C> 2 2(4.5)  2(7.0) -  
<B, D> 0 -  - -  
<C, E> 3 2(5.5)  2(7.7) -  
<D, F> 0 -  - -  
<E, D> 1 2(6.5)  2(8.3) 2(7.5)  
<E, F> 1 1(9.5)  2(8.3) 2(7.5)  

 

pattern 
P3 

scount(P3) sbound(P3) 
(wbound(P3)) 

average-
weighted 
frequent 

sbound(P3,l) 
(wbound(P3,l)) feasible 

l = 4 
<A, C, E> 1 3(4.3)  2(6.3)  
<B, C, E> 2 2(5.3)  2(7.0)  
<C, E, D> 1 2(5.7)  2(7.3)  
<C, E, F> 1 2(7.7)  2(7.3)  

 
pattern 

P4 
scount(P4) sbound(P4) 

(wbound(P4)) 

average-
weighted 
frequent 

<B, C, E, D> 0 -  
<B, C, E, F> 1 2(7.0)  

 
The average-weighted-frequent patterns are {<B>, <C>, 

<E>, <F>, <B, C>, <C, E>, <E, F>, <B, C, E>}. 

4.2 Estimation by Reachable Vertices  

To prune unnecessary candidates as many as possible, the 
support bounds need to be estimated as high as possible. It 
means that we must estimate the weight bounds as low as 
possible. The previous method, however, has a tendency to 
over-estimate the weight bounds. This tendency is mainly 
due to the non-consideration of the topology of base graph. 
Specifically, the vertices with greatest weights are chosen 
one after one, even though they can not be reached from 
the corresponding pattern. To cope with this limitation, we 
will propose another method which takes into account the 
graph topology, specifically reachable vertices. 
  
Definition 8. Given a base graph G, r-reachable vertices 
from a vertex v is all the vertices reachable from v within 
the distance r. 
 

Such r-reachable vertices can be regarded as the vertices 
within the radius r from v. Therefore, r-reachable vertices 
include all the (r-1)-reachable vertices. 
Given a k-pattern Pk, let R(Pk, l), k < l ≤ u, be the (l-k)-
reachable vertices from the head vertex of Pk, but not in Pk 
and not through the vertices in Pk. They can be obtained 
by a level wise manner. For example, from Fig. 1, R(<A>, 
2) is {B, C}, and R(<A>, 3) is {B, C, D, E}. 
 
Algorithm. Reachable vertices: R(Pk, l) 
 

       S = {head vertex of Pk} for l = k+1, 
Nl-1 for l > k+1; 

       Nl = ∅; 
       for each vertex v in S 
             for each edge <v, w> in G 
                    if w is not in Pk and R(Pk, l-1) and Nl, then 

append w to Nl; 
       R(Pk, l) = R(Pk, l-1) ∪ Nl 

Fig.5 Algorithm for reachable vertices 

Among the vertices in R(Pk, l), let the vertices with the (l − 
k) greatest weights be klrrr vvv −,,, 21  . Then, the l-weight 
bound, wbound(Pk, l), and the l-support bound, sbound(Pk, 
l), of Pk are obtained by Equation (7) and (8), respectively. 

For example, refer to Fig. 1 and Fig. 2, the 3-support 
bound for the pattern <A> is 

265.1
)0.60.7()0.2(

3)3,A(sbound =







×

++
=><  

 
Example. 

pattern 
P1 

scount(P1) sbound(P1) 
(wbound(P1)) 

average-
weighted  
frequent 

sbound(P1,l) 
(wbound(P1,l)) feasible 

l = 2 l = 3 l = 4 
<A> 4 5(2.0)  3(3.5) - -  
<B> 3 2(5.0)  2(5.5) - -  
<C> 4 3(4.0)  2(5.5) - -  
<D> 1 2(6.0)  1(9.0) - -  
<E> 3 2(7.0)  1(9.5) - -  
<F> 1 1(12.0)  × × ×  

In the above table, ‘-’ denotes ‘no need’ and ‘×’ denotes ‘not applicable’. 
 

pattern 
P2 

scount(P2) sbound(P2) 
(wbound(P2)) 

average-
weighted 
frequent 

sbound(P2,l) 
(wbound(P2,l)) feasible 
l = 3 l = 4 

<A, B> 1 3(3.5)  3(4.3) 2(6.3)  
<A, C> 2 3(3.0)  3(4.3) 2(6.3)  
<B, C> 2 2(4.5)  2(5.3) -  
<B, D> 0 -  - -  
<C, E> 3 2(5.5)  2(7.7) -  
<D, F> 0 -  - -  
<E, D> 1 2(6.5)  2(8.3) ×  
<E, F> 1 1(9.5)  × ×  
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pattern 
P3 

scount(P3) sbound(P3) 
(wbound(P3)) 

average-
weighted 
frequent 

sbound(P3,l) 
(wbound(P3,l)) feasible 

l = 4 
<A, C, E> 1 3(4.3)  2(6.3)  
<B, C, E> 2 2(5.3)  2(7.0)  
<C, E, D> 1 2(5.7)  2(7.3)  
<C, E, F> 1 2(7.7)  ×  

 
pattern 

P4 
scount(P4) sbound(P4) 

(wbound(P4)) 
average-weighted 

frequent 
<B, C, E, D> 0 -  
<B, C, E, F> 1 2(7.0)  

 
The average-weighted-frequent patterns are {<B>, <C>, 
<E>, <F>, <B, C>, <C, E>, <E, F>, <B, C, E>}. 

5. Experimental Results 

This section presents experimental results of the mining 
algorithm, and compares two estimation algorithms, All 
vertices and Reachable vertices, using synthetic dataset.  
During the experiment, base graph is generated 
synthetically according to the parameters, i.e., number of 
vertices and average number of edges per vertex. And then, 
we assigned distinctive weight to each vertex of the base 
graph. All the experiments use a base graph with 100 
vertices and 300 edges, i.e., 3 average edges per vertex. 
The number of traversals is 10,000 and the minimum 
weighted support is 1.5. We generated six sets of traversals, 
in each of which the maximum length of traversals varies 
from 5 to 10. 
Fig. 6 shows the trend of the number of feasible patterns 
with respect to the max length of traversals. We measured 
the number of feasible patterns when the length of 
candidate patterns is (max length of traversals – 1). As 
shown in the figure, the number of feasible patterns for 
Reachable vertices is smaller than that of All vertices. The 
difference of the number of feasible patterns between two 
estimation algorithms becomes smaller as the max length 
of traversals increases.  

 

Fig.6 Number of feasible patterns w.r.t diferrent max length of traversals 

6. Conclusions 

This paper proposed new formalization and algorithms for 
the mining of traversal patterns by considering weight as 
well as frequency. In the formalization, vertices of graph 
are attached with weights which reflect their importance. 
With this weight setting, we presented new mining 
algorithm which takes into account average-weights in the 
measurement of support. This algorithm is based on the 
notion of support bound. We also proposed two methods 
for the estimation of support bound, and then experimented 
on them.  
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