
IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.11, November 2015

27

Manuscript received November 5, 2015
Manuscript revised November 20, 2015

DDDS: A Distributed Disaster Detection System

Omar Hussain Alhazmi

Department of Computer Science, Taibah University, Medina, Saudi Arabia

Summary
Disaster Recovery Plans is a crucial part of the life of an IT
center in an organization; it contains policies and procedures to
be applied before, during, and after a disaster of an IT system.
However, an important part of the disaster recovery process
comes when the disaster occurs up until the disaster recovery
plan is activated. This is precious time to detect and declare a
disaster especially in critical systems. This is important to control
the MTD (Mean Tolerable Downtime). Here, we present a
distributed disaster detection system that is based on agents.
Agents are to be located on different servers in a data center and
the will communicate with a central management unit. The
DDDS is aimed to complement the work of an existing disaster
recovery system, or to run stand-alone if no disaster recovery
system exists and act as a warning tool aiding the system
administrator.
Key words:
RTO, RPO, MTD, disaster recovery, business continuity.

1. Introduction

Disaster Recovery can be defined as “(DR) Planning and
implementation of procedures and facilities for use when
essential systems are not available for a period long
enough to have a significant impact on the business” [1].
The common perception about disasters is that it can be
caused by nature (volcanoes, floods, earthquakes,
tsunamis…etc.) or by human action (wars, malicious
activities…. etc.). However, the four top causes of disaster
in information technology are shown in Table 1 below,
[2]:

Table.1 the four causes of IT disasters [2]
Rank Disaster Cause Percentage
1 Hardware/Infrastructure failure 55%
2 Human error 22%
3 Software failure 18%
4 Natural disaster 5%

Of course big disasters are rare; hence, smaller disasters
occur more frequently; thus, they have significant impact
on the systems and would cause serious downtime and
outages. Therefore, one can argue that a software detection
system that can prove helpful in the 95% (by summing the
top 3 causes shown it Table 1) of the total disasters is wise
investment and can provide a valuable addition to any data
center alongside the traditional disaster recovery systems

with all the backups, replications and synchronization.
This is especially true given that some disaster recovery
systems have no detection and warning mechanism and are
applied manually. We don’t suggest that Distributed
Disaster Detection System (DDDS) is to replace existing
DR solution but to complement it.
DDDS system can also run without ad DR solution and
thus it is a low cost system to monitor and warn against
possible failure of hardware, software or human errors.
In the next section we shall overview some of the related
work. Then, in section 3 we will discuss disaster detection.
Next, in section 4 we will present Distributed Disaster
Detection System (DDDS). Finally, in section 5, we will
give some concluding remarks and some future research
directions.

2. Related Work

One of the current trends in disaster detection is to have a
natural detection system [3][4]; basically, these systems
consist of a network of GPS located sensors to monitor
weather and other environmental parameters; these
systems have access to some satellite/radar capabilities
aiming to discover an early signs of natural disasters; an
example the system built by NASA [5]. Moreover, these
systems are built and managed by governments and civil
defense entities.
In the information technology area, there is a considerable
effort done on network and mobile network recovery [5].
Ceballous et al. have studied the business continuity,
security and interconnection in large enterprises they
proposed a complementing technology to overcome some
of the challenges facing data centers [6]. The difference is
that these networks spans thousands of kilometers. While
in our work we discuss having a system on a local data
center or multiple datacenters of the same organization.
Substantial advances have been achieved on intrusion
detection systems that existed for years [7][8][9]. However,
not much work has been done on information disaster
recovery detection. Alghamdi and Alaama have proposed
an agent based protocol to overcome latency issues
existing in current protocols [10].
The scope of this paper is to detected disasters within a
data center; this has similarity in concept with here, we
experiment with this system to complement intrusion
detection systems in order to for cover an important gap of

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.11, November 2015

28

detecting signs of failure within data centers that might be
linked to security issues too.

3. Disaster Detection Overview

Fig.1 Disaster Timeline, showing MTD, RTO and Pre-recovery times

One critical point as seen in Figure 1 below is the outage
of some of the services which will result in a time where
some data and services are disrupted; at this point the
disaster is declared. The disaster can be declared by:

1. Manually: the system administrator declares it
and the recovery process is initiated

2. Automatically: system detects some abnormality
and the absence of some services and declares a
disaster and automatically starts the recovery
process.

3. System-assisted: declaration, here the system has
no privilege of declaring the disaster; however,
the detection system will alert the system
administrator to take action.

Table 2: Disaster and declaration approaches
System Advantages Disadvantages
Manually -Minimizes false

negative
-cheaper

Need human
attention 24/7;
therefore, can
cause major
delay

Automated Fast response High rate of
false-positive

System-
assisted

Combine both
advantages

Cost of
resource
allocation and
needs constant
monitoring

Both the advantages and disadvantages of each of the
systems are previewed in Table 2 above. Besides, as with
any detection system; a level of certainty is always factor

in wither to declare a disaster or not; the typical four cases
are shown in Table 3 below:

Table 3: Cases to decide to declare a disaster or not
Case Description Result
False-
negative

The system continue working No
alert

True-
negative

The system declare a disaster by
mistake

Alert

False-
positive

The system fails to detect or uncertain
to declare a disaster

No
alert

True-
positive

The system successfully detects a
disaster and declare it

Alert

One important factor in detecting a disaster is the detection
rate.

4. The Disaster Detection System

As we have seen in the previous section, the
automated detection and warning system of disasters
plays an important role in the disaster recovery.
Indeed, it can improve maximum tolerable downtime
(MTD) by minimizing the pre-recovery time by
giving earlier signs of disaster. Thus, DDDS will
trigger the DR system if the detection returned a
positive result.

Fig.2-Diaster detection system

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.11, November 2015

29

The disaster detection system consists of:
 Agents:
 An agent is basically a thread running on a
system (an actual server) this thread monitors some
files carefully placed in different location on the
system. This thread will monitor those files for any
change of contents, then, whenever a change occur
will send a message to the local management
system and alert of an “integrity” issue. Moreover,
if the thread could not reach a certain file then it
will send a different message as an alert of
“availability” issue.
 These threads will run in the background and
should consume negligible amount of resources.
The administrator should configure and set the
threshold values
 The agent will send a 3- tuple message
containing:
 I – Agent ID
 L – Location of the issue
 S – issue “Availability” or “Integrity” or both

Fig 3 below, shows the basic algorithm of the agent and
how messages are exchanged within the system with the
management center
Set
S={Availabilty_issue,Integrity_Issue,No_Issues}
//three statuses of the location

Agent(I,L,S)
{
Int i;
For (i=0;i<num_locations;i++)
{
If!Read(location[i])
return(id,loc_id,Availability_Issue);
// if read operation has failed
If (location[i]!= data[i])
// if the data has been modified
return (id,loc_id,Integrity_Issue);
Data[i]=new_data;
Write(location[i];new_data);
// update the data
}
Return(id,void,NO_ISSUES)
// the agent reporting that the system is fine
}

Fig 3. DDDS Agent Module

• Management Centers:
The management center is a thread which will be
located at each system (server), they
communicate with the virtual Agents and each
management center will receive 2-tuple messages
from the Agents and will compile a report

message to be forwarded as 2-tuple message to
the master management center as follows:

 S – System I.D.
 I – Type of issue detected

Fig 4 below, shows the basic algorithm for management
and how the messages are exchanged with agents and with
the master management center

Management(I,S)
{Int i;
 For (i=0;i<num_agents;i++)
 {
 Agent(I,L,S);// calling the agent
 If (S!=No_Issues)
 return (I,S) // if there is a problem
send //the details to the central
management
// else call the next agent
 }
Return (void,NO_ISSUES;
}

Fig 4. DDDS Management Module

• Master Management Center:
This is the head of the system, the system
receives messages from all management center
and then determine wither to alert admin or
administration system about a possible disaster
based on a preset threshold. Hence, the
administrator can have a sensitive system or a
less sensitive system based on criticality of server.
For example, the master management system can
give more weight to critical systems and less
weight to the non-essential systems.

Master_Management_Center(void)
{
Int I;
 For (i=0;i<num_managments;i++)
 {
 Management(I,S);
// call a local management
Print_line(“Server:”,I,”has”,S)
//report the status to the admin
 }
}

Fig 5. DDDS Central Management Module

Fig 5above shows the basic algorithm for the master
management center and how the messages are exchanged
with management centers; and how the DDDS system pass
messages to the system administrator.

By using DDDS, a system administrator can have a
dashboard to check on system issues and trigger a disaster

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.11, November 2015

30

recovery. On the other hand the master management center
module given in (Fig. 4) can be linked directly to existing
DR system to have fully automated disaster detection and
recovery system.

5. Conclusions

In this work we suggested a simple software system to
give an early alert of disasters caused mostly by hardware
failures, human errors and malicious attacks. However, the
system is not meant to detect natural disasters.
The system is basically based on passing messages about
the status of each system and will help give an assessment
about the system’s health.
The system is completely a software system; the cost to
deploy is negligible. However, the running cost is linked to
the required configurations; in other words, if the system
sends more status messages it will consume some
bandwidth and processing resources, if the configuration is
with less messages, these side-effects will also be
negligible.
Future work is needed to estimate the amount of resources
needed to run the system and will it be feasible to allocate
those resources for this purpose. Furthermore, if there is
unacceptable resource consumption then may be by
optimization we can reduce this overhead costs.
The proposed system could also consider communication
health with other remote systems; therefore, the system
can be deployed and extended as a monitor to critical
systems on multiple sites.
Given the advantage of not having to install special
hardware for disaster recovery; on the other hand, it is
obvious that the main limitation of the system is that if all
servers got down. Thus, the system will also fail; the
system is effective against security threats, limited
hardware or software failures.
One last limitation that the DDDS currently, is not
compatible with virtualization and cloud computing,
DDDS could be developed to address these issues.

References
[1] Jennifer Curry, “Top four disaster causes”,

http://www.latisys.com/blog-post/top-4-causes-of-it-
disasters, April, 4th 2014.

[2] http://dictionary.reference.com/browse/disaster-recovery,
October 2015.

[3] Colburn, Robert “Sound the Alarm: A History of Disaster
Detection and Warning Technologies”, The IEEE institute
newsletter, September 9 2013.

[4] Flowers, April, " NASA Builds GPS-Based System For
Detecting Natural Disasters
http://www.redorbit.com/news/science/1113025581/nasa-
gps-system-detects-natural-disasters-121113/

[5] Y. Ren, M. Chuah, J. Yang, Y. Chen, "MUTON: detecting
malicious nodes in disruption-tolerant networks", IEEE
WCNC 2010, April, 2010

[6] Ceballos, Juan DiPasquale, Richard ; Feldman, Robert,
"Business continuity and security in datacenter
interconnection", Bell Labs Technical Journal., Volume: 17
Issue: 3, 2012.

[7] Denning, Dorothy E., "An Intrusion Detection Model,"
Proceedings of the Seventh IEEE Symposium on Security
and Privacy, May 1986, pages 119–131Fff

[8] Lunt, Teresa F., "Detecting Intruders in Computer Systems,"
1993 Conference on Auditing and Computer Technology,
SRI International.

[9] Snapp, Steven R, Brentano, James, Dias, Gihan V., Goan,
Terrance L., Heberlein, L. Todd, Ho, Che-Lin, Levitt, Karl
N., Mukherjee, Biswanath, Smaha, Stephen E., Grance, Tim,
Teal, Daniel M. and Mansur, Doug, "DIDS (Distributed
Intrusion Detection System) -- Motivation, Architecture, and
An Early Prototype," The 14th National Computer Security
Conference, October, 1991, pages 167–176

[10] Alghamdi, Hanaan and Alaama, Arwa, DRP-DRP: Data
Replication Protocol for Disaster Recovery Planning,
International Conference on Innovations in Information
Technology, 2008. Pp 228-232.

Omar H Alhazmi received the B.S.
degree in Computer Science from King
Saud University in 1997, an M.S. degree
from Villanova University in 2001, and a
Ph.D. degree from Colorado State
University in 2007. During 2007-2011,
he worked in the National Information
Center at Ministry of Interior; later, in
2011 he joined the faculty of computer

science at Taibah University in Medina, Saudi Arabia.

http://www.latisys.com/blog-post/top-4-causes-of-it-disasters
http://www.latisys.com/blog-post/top-4-causes-of-it-disasters
http://dictionary.reference.com/browse/disaster-recovery
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Ceballos,%20Juan.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.DiPasquale,%20Richard.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Feldman,%20Robert.QT.&newsearch=true

