
IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.11, November 2015

91

Manuscript received November 5, 2015
Manuscript revised November 20, 2015

Performance Analysis of a 64-bit signed Multiplier with a Carry
Select Adder Using VHDL

Deepthi, Rani, Manasa

Hyderabad Institute of Technology and Management Gowdavelli village, Medchal, Andhra Pradesh

ABSTRACT:
This paper presents a performance analysis of carry-look-
ahead-adder and carry select adder signed data multiplier we
are using, one uses a carry-look- ahead adder and the second
one uses a carry select adder. The main focus of this paper’s on
the speed of the multiplication operation on these 64-bit
multipliers which are modeled using verilog code, A hardware
description language. The multiplier with a carry select adder
has shown a better performance over the multiplier with a carry
select adder in terms of gate delays. In this paper we are going
to prove that the area and delay product of carry select adder
gives better performance compare with carry-look-ahead adder
signed 64 bit multiplier.
Key Words:
Signed Multiplier, Carry-Look-Ahead Adder, Carry Select
Adder, Wallace tree, VHDL Simulation & Synthesis.

I. Introduction

Multipliers are most commonly used in various
electronic applications e.g. Digital signal processing in
which multipliers are used to perform various algorithms
like FIR, IIR etc. Earlier, the major challenge for VLSI
designer was to reduce area of chip by using efficient
optimization techniques to satisfy MOORE’S law. Then
the next phase is to increase the speed of operation to
achieve fast calculations like, in today’s microprocessors
millions of instructions are performed per second. Speed
of operation is one of the major constraints in designing
DSP processors and today’s general-purpose processors.
However area and speed are two conflicting constraints.
So improving speed results always in larger areas. Now,
as most of today’s commercial electronic products are
portable like Mobile, Laptops etc. that require more
battery back-up. Therefore, lot of research is going on to
reduce power consumption. So, in this paper it is tried to
find out the best solution to achieve low power
consumption, less area required and high speed for
multiplier operation.

II. CARRY LOOK AHEAD ADDER

Carry Look-ahead Adders (CLAAs) are the fastest
adders, but they are the worst from the area point of view.
Carry Select Adders have been considered as a

compromise solution between RCAs and CSLAs because
they offer a good tradeoff between the compact area of
RCAs and the short delay of CSLAs.

Figure 1: 4-bit carry look ahead adder

Carry look ahead depends on two things:

1. Calculating, for each digit position, whether that
position is going to propagate a carry if one comes in
from the right.

2. Combining these calculated values to be able to
deduce quickly whether, for each group of digits, that
group is going to propagate a carry that comes in from
the right.

Supposing that groups of 4 digits are chosen. Then the
sequence of events goes something like this:

3. All 1-bit adders calculate their results. Simultaneously,
the look ahead units perform their calculations.

4. Suppose that a carry arises in a particular group.
Within at most 5 gate delays, that carry will emerge at
the left-hand end of the group and start propagating
through the group to its left.

5. If that carry is going to propagate all the way through
the next group, the look ahead unit will already have
deduced this. Accordingly, before the carry emerges
from the next group the look ahead unit is
immediately (within 1 gate delay) able to tell the next

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.11, November 2015 92

group to the left that it is going to receive a carry - and,
at the same time, to tell the next look ahead unit to the
left that a carry is on its way.

The net effect is that the carries start by propagating
slowly through each 4-bit group, just as in a ripple-carry
system, but then move 4 times as fast, leaping from one
look ahead carry unit to the next. Finally, within each
group that receives a carry, the carry propagates slowly
within the digits in that group.

III. Carry Select Adder

The carry-select adder generally consists of two ripple
carry adders and a multiplexer. Adding two n-bit
numbers with a carry-select adder is done with two
adders (therefore two ripple carry adders) in order to
perform the calculation twice, one time with the
assumption of the carry being zero and the other
assuming one. After the two results are calculated, the
correct sum, as well as the correct carry, is then selected
with the multiplexer once the correct carry is known.

Figure 2: Carry Select Adder

The figure 2 shown basic building block of a carry-select
adder, where the block size is 4. Two 4-bit ripple carry
adders are multiplexed together, where the resulting
carry and sum bits are selected by the carry-in. Since one
ripple carry adder assumes a carry-in of 0, and the other
assumes a carry-in of 1, selecting which adder had the
correct assumption via the actual carry-in yields the
desired result.

IV. WALLACE TREE ADDER:

Wallace tree has been used in this project in order to
accelerate multiplication by compressing the number of
partial products. This design is done using half adders;
Carry save adders and the Carry Look Ahead adders to
speed up the multiplication. As shown in the figure

below, since there are four sign extension values
generated namely sign 1E, 2E, 3E and 4E for the partial
product PP1, PP2, PP3 and PP4 respectively. The
arrangement of total four partial product s is shown in
the figure below. The second partial product had to be
shifted left by two bits before adding to the first partial
product.
Hence the third will be shifted left by four where as for
fourth it will be shifted left by six. Hence after proper
arrangement all the four partial products will be added
along with the sign extension. The multiplier takes in
two 8-bit operands: the multiplier (MR) and the
multiplicand (MD), and produces the 16-bit
multiplication result of the two at its output.

Figure: 3. Partial Product Initial Arrangement

V. BOOTH MULTIPLIER (RADIX-2):

The Booth algorithm was invented by A. D. Booth,
forms the base of Signed number multiplication
algorithms that are simple to implement at the hardware
level, and that have the potential to speed up signed
multiplication Considerably. Booth's algorithm is based
upon recoding the multiplier, y, to a recoded, value, z,
leaving the multiplicand, x, unchanged. In Booth
recoding, each digit of the multiplier can assume
negative as well as positive and zero values. There is a
special notation, called signed digit (SD)en coding, to
express these signed digits. In SD encoding +1 and 0 are
expressed as 1and 0, but -1 is expressed as 1(Vincent P.
Heuring, 2003).The value of a 2s complement integer
was defined a by equation 1.

http://en.wikipedia.org/wiki/Adder_%28electronics%29#Multiple-bit_adders
http://en.wikipedia.org/wiki/Adder_%28electronics%29#Multiple-bit_adders
http://en.wikipedia.org/wiki/Multiplexer

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.11, November 2015 93

This equation says that in order to get the value of a
signed 2's complement number, multiply the m – I th
digit by -2`-1, and multiply each remaining digit i by
+2g.For example, -7, which is 1001 in 2's complement
notation, would be, in SD notation, 1001 = -8 + 0 + 0 + 1
= -7.For implementing booth algorithm most important
step is booth recoding.
By booth recoding we can replace string of 1s by 0s. For
example the value of strings of five 1s,11111 = 2� - 1 =
100001� = 32 – 1 = 31. Hence if this number were to be
used as the multiplier in a multiplication, we could
replace five additions by one addition and one
subtraction.
The Booth recoding procedure, then, is as follows:
1. Working from lsb to msb, replace each 0 digit of the
original number with a 0 in the recoded number until a 1
is encountered.
2. When a 1 is encountered, insert a 1 at that position in
the recoded number, andskip over any succeeding I's
until a 0 is encountered.
3. Replace that 0 with a 1 and continue .This algorithm is
expressed in tabular form in Table 1, considering pairs of
numbers.

Table: 1. Booth recoding table for radix-2.

Vi. Array Multiplier Using Cla and Csa

Though Wallace Tree multipliers were faster than the
traditional Carry Save Method, it also was very irregular
and hence was complicated while drawing the Layouts.
Slowly when multiplier bits gets beyond 32-bits large
numbers of logic gates are required and hence also more
interconnecting wires which makes chip design large and
slows down operating speed Booth multiplier can be
used in different modes such as radix-2, radix-4, radix-8
etc. But we decided to use Radix-4 Booth’s Algorithm
because of number of Partial products is reduced to n/2.
Multipliers are key components of many high
performance systems such as FIR filters, Microprocessor,
digital signal processors, etc.(Hsin-Lei Lin , 2004).
Signed multiplication is a careful process. With
compared to unsigned multiplication

Figure: 4. Architecture of signed multiplier

 VII. Simulation Results

The VHDL simulation of the two multiplier is presented
in this section. By using Xilinx’s 14.2E software we
done 64 bit CLA and CSA simulation results with time
delay as shown in figure 5 and Figure 6.

Figure 5: Carry Look Ahead Adder Simulation results

Figure 6: Carry Select Adder Results

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.11, November 2015 94

VIII. Results and Discussion

In this section, the results obtained from Synthesis and
Simulation reports are presented. The aim of this
experiment is to evaluate the performance of two Array
multipliers (one by using CLA and second by using
CSA) on the basis of Area required, Speed of operation
and power consumption. As shown in table I, figure 5
and 6, multiplier with CSA has shown better results than
with CLA. Area results are presented in terms of number
of CLBs and gate count required for implementing
design on FPGA. Multiplier with CSA requires less
CLBs because it requires less number of full adders than
multiplier with CLA.

Table 2: 64 bit signed multiplier

Further, simulation result shows that multiplier with
CSA takes less time to generate final product than with
CLA because addition is performed in parallel without
waiting for the previous result in case of CSA. Similarly,
result shows slight improvement in power consumption
in case of multiplier using CSA. Power consumption
depends on the switching activities. Therefore power
consumption is directly proportional to area covered by
the design on chip. Here we take dynamic power
consumption for performance analysis.

Conclusion and Future Work

Use booth’s multiplier with CSLA if area is critical. Use
booth’s multiplier without CSA if area is critical and a
bit of compromise on timing can be made. The
Design of high speed bit signed multiplier using adders is
proposed. Simulation and synthesis of high speed Bit
signed multiplier using CLAA and CSLA has been done
in Xilinx 10.2 E using Verilog Hardware Description
Language. The CSLA increases the performance of the
multiplier.
This radix-4 algorithm can be extended to radix-16
algorithms to get an high speed and efficient
multiplication This 64 bit multiplier can be further
extended to 128 bit multiplier and 256 bit multiplier
using the proposed method for multiplication operation
can be done as future work.

REFERENCES
[1] B. Parhami, Computer Arithmetic, Algorithm and

Hardware Design, Oxford University Press, New York, pp.
91-119, 2000.

[2] Stephen Brown and Zvonko Vranesic, Fundamentals of
Digital Logic with VHDL De sign.2nd Edn. McGraw-Hill
Higher Education, USA.ISBN: 0072499389, 2005.

[3] Wakerly, J.F., 2006. Digital Design-Principles and
Practices. 4th Edn. Pearson Prentice Hall, USA.ISBN:
0131733494.

[4] Pong P. Chu “RTL Hardware Design Using VHDL:
coding for Efficiency, Portability and Scalability” Wiley-
IEEE Press, New Jercy, 2006

[5] Hasan Krad and Aws Yousif Al-Taie, “Performance
Analysis of a 32-Bit Multiplier with a Carry-Look-Ahead
Adder and a 32-bit Multiplier with a Ripple Adder using
VHDL”, Journal of Computer Science 4 (4): 305-308,
2008

[6] Asadi, P. and K. Navi “A novel high-speed 54-54-bit
multiplier”, Am. J. Applied Sci., 4 (9): 666-672, 2007.

[7] Z. Abid, H. El-Razouk and D.A. El-Dib, “Low power
multipliers based on new hybrid full adders”,
Microelectronics Journal, Volume 39, Issue 12, Pages
1509-1515, 2008.

[8] Nagendra, C.; Irwin, M.J.; Owens, R.M .,“Area-time-
power tradeoffs in parallel adders”, Circuits and Systems
II: Analog and Digital Signal Processing, IEEE
Transactions on Volume 43, Issue 10, Page(s): 689 – 702,
1996.

[9] Sertbas, A. and R.S. Özbey, 2004. A performance analysis
of classified binary adde r architectures and the VHDL
simulations. J. Elect. Electro n. Eng., Istanbul, Turkey, 4:
1025-1030.

[10] Fonseca, M.; da Costa, E. et al, “Design of a Radix-2m
Hybrid Array Multiplier Using Carry Save Adder”Sept.
2005 Page(s): 172-177.

E.Deepthi is working as asst.profesor
in Hyderabad institute of technology
and mangement and her areas of
interest are VLSI design,DSP,
Antenna’s

V.Moshe Rani is working as
asst.profesor in Hyderabad institute of
technology and mangement and her
areas of interest are VLSI design,DSP,
Antenna’s

K.Manasa is working as asst.profesor
in Hyderabad institute of technology
and mangement and her areas of
interest are VLSI design,DSP,
Antenna’s

