
IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.1, January 2016

16

Manuscript received January 5, 2016
Manuscript revised January 20, 2016

Framework for the Development of Automated Inspection Tools

Muhammad Shahid Iqbal†, Muhammad Sadiq††, Abdul Rehman††† and Tamoor Khan††††

†School of Computer Science, Anhui University, Hefei, China

 ††Faculty of Computing (RIU) Islamabad, Pakistan
 †††College of Economics & Management, Anhui Agricultural University Hefei, China

 ††††Master Student, Leads University Lahore, Pakistan

Summary
In early stage of software development inspection is one of the
best method for identifies defects and removing defects.
Automated inspections are done with some automated inspection
tools. A number of automated inspection tools have been
developed to support software inspection. Meanwhile existing
automated inspection tools have implemented few set of
parameters and software development environment require many
parameters for inspection process. In this paper, we describe some
common refer tool on the basis of literature also identified
parameter and sub parameter of these tools. Then we conduct an
industry survey meanwhile we combined both surveys. Then we
proposed a framework for the development of automated
inspection tools which set of parameters are implemented by
automated inspection tools.
Key words:
Automated Tools, Parameters, Inspection Tools, Framework,
Anomaly classification & Interoperability.

1. Introduction

Inspection is simple method for defect identified form
artefacts which can be done in any phase of software
developments [94]. F. Macdonald, J. Milleret et al authors
compared automated tools which support inspection
process and conclude that no single tool available fills all
the identified needs of inspection. Furthermore author
suggested features like Document support, annotation
support, checklists, enforcement, and distributed meeting
support, polls and metrics collection as part of inspection
tool [14]. M. Halling, P. Grünbacher et al, authors compare
existing inspection tools with groupware support system
technology and then provides a flexible and powerful set of
tools to support the entire inspection process [72]. Filippo
Lanubile, Teresa Mallardo et al authors discuss importance
of communication. There are two type of communication
synchronous and asynchronous discussion whereas he
shows that asynchronous meeting is more effective then
synchronous [6]. F. Bomarius and H. Iida et al, among all
the parameter of static testing author emphasize on
flexibility and integration. Two additional features are
being proposed for inspection tools [21]. A. De Lucia F.
Fasano et al, Authors’ made a comparison of static testing

tool after the comparison author purpose discipline and
flexibility as additional parameters of static testing tool[1].

2. Existing Automated Tools

Most of automated inspection tools implemented
variety of features, documentation, meeting,
communication, anomaly identification and
inspection checklist in the field of automated testing.
Some tools focus on one or two parameters and some
of them focus on many parameters which we
mention in detail as following [1], [20].

2.1 ASSIST

ASSIST used custom designed language which is
known as “Inspection Process Definition Language”
ASSIST allows to any inspection process [13].

Document
ASSIST allowing all types of document text, code
and graphic. It added associated browsers when it
required and also support several browsers.
Meanwhile allows using such type of features like
annotation etc. [1], [2], [13], [20], [56], [72].

Individual Preparation
ASSIST have private list, every inspector studying the
product and adding errors/defects on their private list
[68], [38].

Meeting support
It supports meeting synchronous and asynchronous
[1], [2], [20].

Data Collection
ASSIST supports data collection automatically [68],
[38].

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.1, January 2016

17

Checklists
ASSIST provides a checklist bowser which
implementing active check list to record answer of
inspection [1],
[2], [13], [20], [72].

Cross Referencing System
ASSIST provides cross referencing system to show
the same word appearing in different documents. It
link to related part of documents together. It could
provide a means of navigating within documents.
Automatic cross-referencing allows inspectors to
easily move within and between documents to find
specific features. [1][2][13][16][55].

Defect Classification
It provides the feature to automatically classify the
defects [1] [20].

Defect Detection
ASSIST allows automatic defect detection [1]
[20][38][68][72].

Voting Facility
It allows its user to vote for certain class of defect
[20].

E-mail Notification
It allows sending e-mail notification to review team
member [1].

Decision Support
ASSIST allows decision support facility [1].

2.2 ICICLE

In this automated inspection tools authors attempts to
replace manual inspection. It is an automated
intelligent inspection assistant developed to support
the inspection of C and C++ code [1][20].

Defect Classification
ICICLE classified defect automatically [1] [20].

Cross Referencing
It provides cross reference such as variable and
function. When click on a variable it give an option
to move on declaration point. This facility CSRS
provide for many source files [1] [20].

Data Collection
Under inspection product ICICLE generates a list of
all accepted defects. Also generated summery of
defects and summery have information defect type
class and severity. A summary of the defects by type,
class and severity is also generated which contain
such type of information total time spent in
perpetration and meeting [1][20].

Discussion Support
It supports discussion. The discussion in signal room
it is very simple way and tool allow each inspector to
propose comments, also record the outcome [1][20]

Document support
ICICLE support only source code and text document
[1][20]

2.3. CSRS

CSRS support formal technical asynchronous review
method (FTArm). FTArm is a technique for
inspection [19].

Document Handling
Records are put in to database and arrange like hubs.
Hubs compares the source code function, variables
also changes in records. CSRS only supports text type
documents [1], [20].

Decision Support
It supports decision through available polls. It
supports asynchronies discussion [1].

Automatic E-mail Notifications.
It provides E-mail facility to all reviewer
automatically send message to all reviewers when
new node are created [1].

Check list Support
It supports on line checklist and chick list focus on
main issue also their types meanwhile assist to the
reviewer [2].

Voting Facility
It allow to the inspectors vote about bug meanwhile
discuss level of bug like major, minor or critical [20].

2.4 Scrutiny

Scrutiny is use for distributed and collaborative
inspection meanwhile artifacts review. Scrutiny

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.1, January 2016

18

process is similar to the Fagan’s process. It supports
face to face inspection. It maximizes team
inspections and individual [1], [2].

Data Collection
Scrutiny has capability to gather comprehensive
matric. It has ability to gather defect metrics, as well
as fine-grained metrics on the amount of time spent
by each inspector reviewing each node, the time
spent in inspection and the coverage of the document
achieved by each inspector[1][20] .

Voting Facility
Scrutiny has facility of voting and allows to
inspection team to vote about errors [20].

Document
Scrutiny supports only source code documents [1]
[20].

Automatic message facility
Scrutiny sends simple messages to meeting
participants meanwhile compose own message.
Message can be send to single participant or whole
inspection team [20].

2.5 Collaborative Software Inspection (CSI)

It supports online inspection meanwhile it support
face to face meeting and distributed meeting [20]. CSI
supports all types of documents e.g., text, code and
graphics [20].

Metric Collection
Meanwhile it gives additional history in history log it
contains information like discover fault and claiming
faults found [1].

Defect Classification
Also classifications faults. [1], [20]

Data collection
It runs down judgment to record the meeting data. [1],
[20].

Meeting Support
CSI support distributed meeting. It allows an
inspection meeting to be carried out with team
members from different locations [20].

2.6 Asynchronous Inspector of Software Artifacts
(AISA)

ASIA structured allows inspection of graphical object
meanwhile it supports distributed environment. ASIA
supports three stages of inspection process defect
collection, defect correlation and inspection meeting
[1], [20].

Defect Classification
AISA classified the defect and contain information
about defects for this purpose used HTML template
[1], [20].

Voting Facility
It give right to Participants can vote to accept or reject
defects [20].

Document Support
ASIA supports three types of document text, source
code and graphics just like entity relationship
diagrams and data flow diagram [68].

Distributed meeting supports
It support distributed meeting [1], [20].

Flexibility
Flexibility of the inspection process and inspection
tools means independence of time and place.
Flexibility has two most significant features for
implementing the next generation of inspection tools.
WWW technology was chosen due to its popularity,
familiarity and flexibility [71], [10], [68], [69].

Interoperability
Interoperability of the processes and tools, to enable
convenient everyday use of the method and improves
the effectiveness of inspections. The most important
enhancement that inspection tools need is
interoperability [10].

Defect Correlation
The producer integrates individual defect lists into a
single master list [38].

2.7 Collaborative Asynchronous Inspection of
Software (CAIS)

It support distributed environment for software
inspection also support asynchronous discussions.
CAIS create defects list and organize meeting for

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.1, January 2016

19

contributions (votes and comments) to discussion
[1].

Individual Preparation
CAIS and CSI both are identical individual
preparation. It supports asynchronous meeting
meanwhile it gives voting mechanism [20].

Data Collection
It use history log for gather information about
software review. Also maintain the record of reviewer
remarks and defect classification [1].

Defect Collection
It provides the facility to automatically collect the
defect [20].

 Voting Facility
It allow to the inspector give vote about bugs [20].

E-mail Notification
Through E-mail; it notifies the each participant when
new discussion has taken place [1], [20].

Decision support
CAIS have features to take decision about bug it is
critical, major and minor [1]

Document Support
CAIS support three types of documents like source
code, text and graphic [1], [20].

2.8 Inspecting Software in Phases to Ensure Quality
(InspeQ)

Knight and Myers developed InspeQ tool set which
support inspection technique. They also propose
technique for artifacts which examine artifacts in
series according to the inspection phases. This
technique is implemented in InspeQ [1], [20].

Document Handling
InspeQ supports three types of documents source
code, text and graphic [1].

Checklist Support
It display checklist of current inspected software
meanwhile in checklist each inspector can mentation
completion of each check [1], [20].

Source Code
It supports inspection of source code which is in C
languages [1].

2.9 Inspect A

It supports asynchronous inspection and start from
individual inspection, where inspectors generate their
initial list of comments. Meanwhile this list is share
with each inspector also allowing discussing validity
of each comment, at end phase prepare a master list
and send each inspector [1], [20].

Checklist Support
Inspect A used inspection checklist for the review
purpose [1].

E-mail Notification
E-mail generation facility is available to notify the
inspector about inspection completion [1], [2].

Document Handling
Inspect A supports just plain content documents. It
also permits a rundown from claiming Defects on be
entered. Every deformity might incorporate the result
quick which will be incorrect, a depiction. Of the
defect, a population (Missing, off alternately Extra)
Furthermore a seriousness (Major alternately Minor).
The Defects would not connect of the position in the
archive the place they happen [1].

2.10 Hyper Code

It is a web base tool however preparation and
collection are performed at the same time. Inspection
team member are inform through email when
inspection will be started [1], [20].

Document Handling
It supports three types of documents text, code and
graphical [1], [20].

Email- notification
E-mail notification facility to notify the team
members when inspection will be started [1].

2.11 Automated Static Analysis Tools

Automatic static analyses tools analyze source code
searching for violations for bug designs that might
result in faulty conduct technique. ASA uses control
flow analysis, information stream analysis, interface
analysis, majority of the data flow analysis and
furthermore way examination from reach product
code. There will be a range of programmer errors
which can be automatically detected by ASA [73].

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.1, January 2016

20

Identifying Defects
Static analysis tools have been used for identifying
defects in software systems. There is a range of
programm errors which can be automatically
detected by ASA [73], [74], [75], [76].

Efficiency
The developers utilization ASA on check code
compliance should standards or alternately should
assess the inside personal satisfaction and kill
conceivable wellsprings of slip Also wastefulness of
the formed framework [74], [76].

Error Free
ASA can find the error from software and eliminated
the error of any type [76].

Performance
It has potential to reduce code volume which have
identified bugs via unused code [75], [76].

Correctness
It identifies syntax error as well as interface error
[75], [76].

Quality
It focuses on coding standards and also enforce on
architectural [76].

2.12 Finding Bugs Tool

Finding Bugs is an open source static analysis tool
that analyzes Java class files looking for
programming error. FB has a plugin architecture, in
which detectors can be defined, each of which may
report many different bug patterns. Rather than use a
pattern language for describing bugs. An FB detector
is simply written in Java, which use many methods.

Defect Detection
Bugs are detected by FB and it finds all possible
bugs it also provides relation between bugs [79].

Performance
Find Bugs looks good to improve code quality
because it detected not only bugs, but also bad
programming practices [79].

Defect Collection
By review FB detect error it type. It is use FB tool to
find subset of defects [80].

Data Collection
In order to collect the data for the evaluation of
degree of static [81], [82].

3. Set of Parameters Identified from
literature

These are the twelve common refer tools which are
identified from literature and minimum set of
parameters for the inspection tools. ASSIST support
all type of document and also implemented so many
features just like data collection, defect collection,
voting facility, e _mail etc. ICICLE has only two
types of documents. It also classified the errors
furthermore it support data collection and discussion
support, face to face meeting finally it support
flexibility. CSRS only support text type document in
additionally it supports voting facility, data
collection and e-mail notification. Scrutiny
implements two types of document text and source
code. It also classified the defects as well as data
collection, voting facility and discussion support.
CSI support all type of document finally it
implement so May parameters like checklist, defect
classification and email. AISA implemented all type
of document and it support inspection checklist data
collection etc. All tool are implemented few features.
Document is only parameters which are implemented
by ten tools. Defect classification implemented by
eight tools. Email and data collection is implemented
by six tools. The rest of parameters are less the five
tools are implemented. Hence conclude that all of
tools implemented few parameters and above table
give road map for the development of inspection
tools which have minimum set of parameters are
shown in Table 1.

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.1, January 2016

21

Table 4.1 √ = Tool implement the features

4. Industry Survey

We conducted an industry survey internationally
through questioner. First we will classify the
parameters according to the inspection process and
then classify these parameter in such way i.e.
inspection input, inspection objective, inspection
planning, communication with inspection team, data
collection and inspection performance measurement.
Inspection Input
From literature survey the following parameters are
includes “Specification document e.g. requirement /
design and Inspection check list” these two
parameters are identified from literature and we are
includes in the first phase of inspection. We post a
question from industry which types of input are used
in your industry. Most of software houses are sport
the document are must be included in automated
inspection tool. Most of software industry response

that the documents are used in their organization and
few are support checklist. Most of software industry
support documentation this parameter must be
included in automated inspection tool and only
twelve percentages software industry support
inspection check list features are shown in Figure 1.

Figure 1

87.096774

12.903226
0

20
40
60
80

100

Specification
document e.g.
requirement /

design

Inspection
check list

Input

Percentages

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.1, January 2016

22

Inspection Objective
Inspection has following four parameters which are
identified form literature accuracy, flexibility,
completeness and interoperability. Most of the
industries suggest that accuracy and completeness are
included in inspection automated tools.

Figure 2

Planning
The next phase is planning and planning includes
two parameters resource planning and task
allocation. In industry response seventy percent
support resource planning is included in automated
inspection tool and seventy seven percent industry
support task allocation. It means both parameters are
must be included for next generation of automated
inspection tools.

Figure 3

Communication
Inspection team communication is one of the
important phase of inspection process in this process
following parameters are includes F2F meeting,
asynchronies meeting, email notification, voting

facility and discussion. In this industry survey 64%
F2F, 32% distributed, 71% percent email, 32%
percent voting facility and 9 ½% software industries
support these parameters.

Figure 4

Data collection
Data collection phase include following parameters
which are evaluated from industry’s anomaly record,
errors classification, anomaly ranking and anomaly
correlation. Industry’s response fifty eight percent
anomaly record, seventy seven percent error
classification, twenty five percent both anomaly
ranking and anomaly correlation.

Figure 5

Inspection measurement
In this process following parameters are included
completeness, accuracy, flexibility and
interoperability through industry survey following
response from industry’s 71% support completeness,
74% accuracy, 25% flexibility and 35%
interoperability are included in inspection tools.

61.2903
77.4193

38.7096
22.5806

0
20
40
60
80

100

Objectives

Percentages

70.9677

77.4193

66

68

70

72

74

76

78

Resource
Planning

Task Allocation

Planning

Percentages

64.5161

32.258

70.9677

32.258

9.6774
0

10
20
30
40
50
60
70
80

Communication

Percentages

58.0645
77.4119

25.8064 25.8064

0
10
20
30
40
50
60
70
80
90

Data Collection

Percentages

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.1, January 2016

23

Figure 6

5. Framework for Future Development

On the bases of industry survey we proposed the
following parameters are must be included in
automated inspection tools for future generation.
Following parameters are the requirement of
software industry’s “Specification document e.g.
requirement / design, Completeness, Accuracy,
Resource Planning, Task Allocation, E-mail
notification/ Massage facilities, Synchronous/ Face
to face, Anomaly record, Anomaly
classification/error classification, completeness,
Accuracy”. These parameters should be included in
future generation of automated inspection tools.
These parameters are selected one the base of
percentage each parameter response is above 50
percent.

6. Conclusions

In this research, we have proposed framework for the
development of automated inspection tools. This
framework achieve what set of parameters are
required to develop automated inspection tools. All
tools have implemented few parameters not
completed set of parameters Also parameters are
classified on the bases of inspection process. Set of
parameters are done through literature survey,
identified common refer automated inspection tools
and their parameters. Meanwhile we conducted
industry survey then done analysis on the bases of
both survey. We proposed a minimum set of
parameters which must be in in any automated
inspection tool. In future work in same way can be
describes the gaps of other testing tools like

performance testing, functional testing and test case
management etc.

References
[1] De Lucia F. Fasano G. and Scanniello G. Tortora. Evaluating

distributed inspection through controlled experiments. IET
Software, Vol. 3, Issue. 5, pp. 381–394, 2009

[2] De Lucia F. Fasano G. and Scanniello G. Tortora Assessing
the Effectiveness of a Distributed Method for Code
Inspection: A Controlled Experiment, International
Conference on Global Software Engineering (ICGSE) , IEEE
computer socitety, 2007

[3] Porter, L.G. Votta and V.R. Basili, Comparing detection
methods for software requirements inspections: A replicated
experiment, IEEE Transactions on Software Engineering
21(6) , 563–575, 1995

[4] Porter and P. Johnson, Assessing software review meetings:
Results of a comparative analysis of two experimental
studies, IEEE Transactions on Software Engineering 23(3)
(1997) 129–145.

[5] Bell Communications Research. ICICLE User's Guide,
January 1993.

[6] Bull HNInformation Systems, Inc., U.S. Applied Research
Laboratory. Scrutiny User's Guide, May 1994.

[7] D. Tjahjono. Comparing the cost effectiveness of group
synchronous review method and individual asynchronous
review method using CSRS: Results of pilot study. Technical
Report ICS-TR-95-07, University of Hawaii, January 1995

[8] D.L. Parnas and D.M. Weiss, Active design reviews:
Principles and practices, in: Proceedings of the 8th
International Conference on Software Engineering (August
1985) pp. 132–136, 1985

[9] D. Tjahjono, Exploring the Effectiveness of Formal
Technical Review Factors with CSRS, a Collaborative
Software Review System, PhD thesis, Department of
Information and Computer Sciences, University of Hawaii,
June 1996.

[10] D. Mishra and A. Mishra. A Software Inspection Process for
Globally Distributed Teams Department of Computer
Engineering, Atilim University, Springer-Verlag Berlin
Heidelberg, pp. 289–296, 2010

[11] D. Hovemeyer and W. Pugh, Finding Bugs is Easy, In
SIGPLAN Notices, vol. 39, pp. 192-206, 2004

[12] E. A. Meyers and J. C. Knight. An improved software
inspection technique and an empirical evaluation of its
effectiveness. Technical Report TR-92-15, Department of
Computer Science, University of Virginia, May 1992.

[13] F. Macdonald, J. Miller “ASSIST—a tool to support software
inspection” Empirical Foundations of Computer Science
(EFoCS), Department of ComputerScience, University of
Strathclyde, Glasgow, G1 1XH, UK, Information and
Software Technology volume 41 pages 1045–1057, 1999

[14] F. Macdonald, J. Miller, A. Brooks, M. Roper, M. Wood, A
review of tool support for software inspection, Proceedings
of the Seventh International Workshop on Computer Aided
Software Engineering, pp. 340–349, 1995

[15] F. Macdonald, J. Miller, A. Brooks, M. Roper, M. Wood,
Automating the software inspection process, Automated
Software Engineering: An International Journal Volume 3,
No.3/4 pp.193–218. 1996

70.9677 74.1935

25.8064
35.4838

0
20
40
60
80

Inspection Measurement

Percentages

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.1, January 2016

24

[16] J. Miller *, F. Macdonald, An Empirical Incremental
Approach To Tool Evaluation And Improvement, The
Journal of Systems and Software 51 pages 19-35, 2000

[17] F. Macdonald and J. Miller. A software inspection process
definition language and prototype support tool. Software
Testing, Verification and Reliability, volume 7, No.2: pp. 99-
128, June 1997.

[18] F. Macdonald, J. Miller, A comparison of tool-based and
paper-based software inspection, Empirical Software
Engineering: An International Journal 3 (3) (1998) 233–253

[19] F. Macdonald, J. Miller, A. Brooks, M. Roper and M.Wood,
A review of tool support for software inspection, in:
Proceedings of the 7th International Workshop on Computer
Aided Software Engineering (July 1995) pp. 340–349, 1995

[20] F. Lanubile, T. Mallardo and F. Calefato, Tool Support for
Geographically Dispersed Inspection Teams, Softw. Process
Improve. Pract. volume 8: pages 217–231 , 2003

[21] F. Bomarius and H. Iida. Introducing the Next Generation of
Software Inspection Tools Henrik Hedberg, Springer-Verlag
Berlin Heidelberg, pp. 234–247, 2004.

[22] Gintell J.W., Arnold J., Houde M., Kruszelnicki J.,
Mckenney R., Memmi G. Scrutiny: a collaborative
inspection and review system. Proc. Fourth European Conf.
on Software Engineering, pp. 344–360, 1993

[23] Harjumaa, L. and Tervonen, I. (1998). A WWW-based tool
for software inspection. Proceeding of the Thirty-first Hawaii
International Conference on System Sciences (HICSS’98),
Vol. 3. Los Alamitos, CA: IEEE Press, 379-88, 1998

[24] Humphrey W.S.: Managing the software process SEI series
in software engineering, Addison-Wesley Longman
Publishing, Boston, MA, USA, 1989

[25] J.W. Gintell, J. Arnold,M. Houde, J. Kruszelnicki,
R.McKenney and G.Memmi, Scrutiny: A Collaborative
Inspection and Review System, in Proc. 4th European
SoftwareEngineering Conference, Garwisch-
Partenkirchen,Germany, September 1993.

[26] J. Reidl, V. Mashayekhi, J. Schnepf, M. Claypool, D.
Frankowski, SuiteSound- A System for Distributed
Collaborative Multimedia, IEEE Transactions on
Knowledge and Data Engineering, pp. 600-610, Vol. 5, No.
4, 1993.

[27] Johnson, P. An instrumented approach to improving software
quality through formal technical review. Proceeding of 16th
International Conference Software Engineering (ICSE’94).
Los Alamitos, CA: IEEE CS Press, 113-22, 1994

[28] 15. Johnson, P., & Tjahjono, D. Assessing software review
meetings: A controlled experiment study using CSRS.
Proceeding of the 19th International Conference on Software
Engineering (ICSE’97). Los Angles, CA: ACM Press, 118-
27, 1997

[29] J.W. Gintell, J. Arnold, M. Houde, J. Kruszelnicki, R.
McKenney, G. Memmi, Scrutiny: a collaborative inspection
and review system, Proceedings of the Fourth European
Software Engineering Conference, September 1993.

[30] [k] J. Miller, F. Macdonald, An empirical incremental
approach to tool evaluation and improvement. Journal of
Systems and Software (in press).

[31] Knight J.C., Meyers E.A.: An improved inspection technique,
ACM, 36, (11), pp. 51–61,1993

[32] Knight J.C., Meyers E.A. Phased inspections and their
implementation, Software. Engg. Notes, 16, (3), pp. 29–
35,1991

[33] L. R. Brothers, V. Sembugamoorthy, and A. E. Irgon.
Knowledge-based code inspection with ICICLE. In
Innovative Applications of Artificial Intelligence 4:
Proceedings of IAAI-92, 1992.

[34] L. Brothers, V. Sembugamoorthy and M. Muller, “ICICLE:
Groupware for Code Inspections,” in Proc.
1990ACMConference on Computer SupportedCooperative
Work, pp. 169-181, October 1990.

[35] L.R. Brothers, V. Sembugamoorthy, M. Muller, ICICLE:
groupware for code inspections, Proceedings of the ACM
Conference on Computer Supported Cooperative Work, pp.
169–181, 1990

[36] Macdonald and J. Miller : A Comparison of Tool-Based and
Paper-Based Software Inspection F _ISERN-98-17 April
1997

[37] Mashayekhi V., Drake J.M., Tsai W.T., Reidl J.: Distributed,
collaborative software inspection, IEEE Software, 10,(5), pp.
66–75, 1993

[38] MacDonald, F. Computer Supported Software Inspection.
PhD Thesis. Department of Computer Science, University of
Strathclyde, UK., 1998

[39] MacDonald, F., & Miller, J. Automated generic support for
software inspection. Proceedings of the 10th International
Quality Week., 1997

[40] Macdonald, F., & Miller, J. A comparison of tool-based and
paper-based software inspection. Empirical Software
Engineering 3(3), 233-53.,1998

[41] MacDonald, F., & Miller, J. Automated generic support for
software inspection. Proceedings of the 10th International
Quality Week, 1997

[42] P. Johnson, Supporting Technology Transfer of Formal
Technical Review Through a Computer Supported
Collaborative Review System, in Proc. 16th International
Conference on Software Quality, Reston, VA, October 1994.

[43] Stein, M., Riedl, J., Harner, S.J., & Mashayekhi, V. (1997).
A case study of distributed, asynchronous software
inspection. Proceeding of the 19th International Conference
on Software Engineering (ICSE’97). Los Angeles, CA: ACM
Press, 107-17, 1997

[44] T. Gilb and D. Graham, Software Inspection, Addison-
Wesley, 1993.

[45] Tervonen, I. (1996). Support for quality-based design and
inspection. IEEE Software 13(1), 44-54., 1996

[46] V. Mashayekhi, J. M. Drake, W. T. Tsai and J. Reidl,
Distributed, Collaborative Software Inspection, IEEE
Software, Vol. 10, No. 5, pp. 66-75, September 1993.

[47] V. Mashayekhi, C. Feulner and J. Reidl, CAIS: Collaborative
Asynchronous Inspection of Software, in Proc. 2nd ACM
SIGSOFT Symposium on the Foundations of Software
Engineering, pp. 21-34, 1994.

[48] V. Sembugamoorthy and L. R. Brothers. ICICLE: Intelligent
Code Inspection in a C

[49] Language Environment. In Proceedings of the 14th Annual
Computer Software and Applications Conference, pages
146–154, October 1990.

[50] Scrutiny User’s Guide: A Distributed System for
Collaborative Inspection and Review of Work Products,

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.1, January 2016

25

USARL/94-1, Bull HN Information Systems Inc., Applied
Research Laboratory, June 1994

[51] Murphy P., Miller J.: ‘A process for asynchronous software
inspection’. Proc. Eighth Int. Workshop on Software
Technology and Engineering Practice, London, UK, pp. 96–
104, 1997

[52] Johnson P.M.: ‘An instrumented approach to improving
software quality through formal technical review’. Proc. 16th
Int. Conf. on Software Engineering, Sorrento, Italy, pp. 113–
122, 1994

[53] Yamashita T. Evaluation of Jupiter: a lightweight
codereview framework. M.S. thesis, University of Hawaii,
Honolulu, Hawaii, Number CSDL-06-09, December, 2006,
available at http://csdl.ics.hawaii.edu/techreports/06-09/

[54] Perpich J.M., Perry D.E., Porter A.A., Votta L.G., Wade
M.W.: Anywhere, anytime code inspections: using the web
to remove inspection bottlenecks in large-scale software
development’. Proc. 19th Int. Conf. on Software Engineering,
Boston, Massachusetts, USA, pp. 14–21

[55] J. Miller , F. Macdonald An empirical incremental approach
to tool evaluation and improvement The Journal of Systems
and Software 51, 19±35 Elsevier, 2000

[56] MacDonald, F., Miller, J., Ferguson, J., “ASSISTing
Management Decisions in the Software Inspection Process”,
Journal of Information Technology and Management, Vol. 3,
pp. 67-83, 2002.

[57] J.W. Gintell, J. Arnold, M. Houde, J. Kruszelnicki, R.
McKenney and G. Memmi, Scrutiny: A collaborative
inspection and review system, in: Proceedings of the 4th
European Software Engineering Conference, 1993.

[58] J. Miller, M. Roper and M. Wood, Further experiences with
scenarios and checklists, Empirical Software Engineering (3)
37–64, 1998

[59] L.G. Votta, Does every inspection need a meeting? in:
Proceedings of the First ACM SIGSOFT Symposium on the
Foundations of Software Engineering, pp. 107–114, 1993

[60] MacDonald F., Miller J., A Comparison of Computer
Support Systems for Software Inspection, Automated
Software Engineering 6, 291-313, 1999.

[61] Harjumaa L. and Tervonen I., A WWW-based tool for
software inspection, Proc. of HICSS-98, vol. 3, 1998.

[62] M. Halling, S. Biffl P. Grünbacher. An Experiment Family
to Investigate the Defect Detection Effect of Tool-Support
for Requirements Inspection Proceedings of the Ninth
International Software Metrics Symposium (METRICS’03)
1530-1435/03, IEEE computer society, 2003

[63] L. Harjumaa, oululfi, H. Hedberg I. Tewonen. A Path to
Virtual Software Inspection Department of Information
Processing Science, University of Oulu, P.O.Box 3000, FIN-
90014 OULUN YLIOPISTO 3, IEE

[64] Stein, M., Riedl, J., Harner, S.J., & Mashayekhi, V. A case
study of distributed, asynchronous software inspection.
Proceeding of the 19th International Conference on Software
Engineering (ICSE’97). Los Angeles, CA: ACM Press, 107-
17, 199

[65] V. Mashayekhi, C. Feulner, and J. Reidl. CAIS:
Collaborative Asynchronous Inspection of Software. In
Proceedings of the Second ACM SIGSOFT Symposium on
the Foundations of Software Engineering, December 1994.

[66] J. C. Knight and E. A. Meyers. Phased inspections and their
implementation. Software Engineering Notes, 16(3):29–35,
July 1991.

[67] J. C. Knight and E. A.Meyers. An improved inspection
technique. Communications of the ACM, 36(11):51–61,
November 199

[68] Demirhan and Taylan," A study on developing a software
inspection methodology". In the journal Software
Engineering Journal ,June 2006, 92 pages

[69] Bordin Sapsomboon," Software Inspection and Computer
Support ". In the Journal Automated Software Engineering
Volume 6 Issue 3, july 1999, Pages 291-313

[70] Sami Kollanus and Jussi Koskinen," Survey of Software
Inspection Research". In the journal Open Software
Engineering Journal, Volume: 3, Issue: 1, 2009 Science
Pages: 15-34

[71] Micheal Spring and Bordin Sapsomboon, " Shared defect
detection: the effects of annotations in asynchronous
software inspection". In the Proceeding doctoral dissertation
shared defect detection: the effects of annotations in
asynchronous software inspection, Pages 206, 2000.

[72] James Miller, John D. Ferguson and Murphy, "Groupware
Support for Software Requirements Inspection". In the
Proceeding 17th annual international conference on
Computer Documentation, SIGDOC 1999, 1999 Pages:185-
192

[73] Jiang,Nachiappan Nagappan ,Laurie William ,A.vouk and
J.Hudepol," On the Value of Static Analysis for Fault
Detection in Software". In the journal IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING,
VOL. 32, NO. 4, APRIL 2006.

[74] M. Vetro', A.; Torchiano, M; Morisio (2011): "Quantitative
Assessment of the Impact of Automatic Static Analysis
Issues on Time Efficiency". In Quantitative Information
2011.

[75] Nathaniel, David, J.David, John and William Pugh,"
Experiences Using Static Analysis to Find Bugs". In the
Journal IEEE Volume 25 Issue 5,September 2008 Pages 22-
29

[76] Nachiappan,Laurie,J.Hudepohl,Will Snipes and Malden
Vouk," Preliminary Results On Using Static Analysis Tools
For Software Inspection". In the Proceeding ISSRE'04
Proceedings of the 15th International Symposium on
Software Reliability Engineering Pages 429-439.

[77] Dr Paul Anderson "The Use and Limitations of Static-
Analysis Tools to Improve Software Quality". In the Journal
of Defense Software Engineering ,June 2008

[78] Nathaniel Ayewah, William Pugh, J. David Morgenthaler,
John Penix, YuQian Zhou: Evaluating Static Analysis Defect
Warnings On Production Software. In Proceeding of PASTE
'07 Proceedings of the 7th ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and
engineering. New York, NY, USA ©2007.

[79] HunJae Lee, SeongYong Lim, SeJoon Oh and Duri Kim,"
Mini-Project: Tool or Analysis Practicum", April 7,2009.

[80] Stefan Wagner, Jan Jurjens,Claudia Koller and Peter
Trischberger "Comparing bug finding tools with reviews and
tests". In the Proceeding TestCom'05 Proceedings of the 17th
IFIP TC6/Wg6.1 International conference of testing of
communication system Pages 40-55, 2005.

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.1, January 2016

26

[81] Cesar Couto and Christopher Silva "Static correspondence
and correlation between field defects and warnings reported
by a bug finding tool" .In the journal Software quality journal
LLC,2011.

[82] Antonio ,Maurizio and Marco "An Empirical Validation of
FindBugs Issues Related to Defects". In the proceeding
Evaluation & Assessment in Software Engineering (EASE
2011), 15th Annual Conference on Pages 11-12, April 2011

[83] Par Emanuel son and Ulf Nilsson "A Comparative Study on
Software Vulnerability Static Analysis Techniques and
Tools". In the Journal Electronic Notes in Theoretical
Computer Science Volume 217 Pages 5-21 ,July 2008.

[84] http://istqbexamcertification.com/what-is-verification-in-
software-testing-or-what-is-software-verification/

[85] http://swtestingbasics.blogspot.com/2009/03/static-testing-
or-reviews.html

[86] R. L. Glass, R. Collard, A. Bertolino, J. Bach, and C. Kaner,
“Software testing and industry needs,” IEEE Software, vol.
23, no. 4, pp. 55–57, 2006.

[87] Rafi, D.M.; Moses, K.R.K.; Petersen, K.; Mantyla, M.V.,
"Benefits and limitations of automated software testing:
Systematic literature review and practitioner survey,"
Automation of Software Test (AST), 2012 7th International
Workshop on , vol., no., pp.36,42, 2-3 June 2012

[88] http://www.qualitysystems.com/support/pages/10-
management-review

[89] Misha Zitser, Richard Lippmann, Tim Leek, Testing Static
Analysis Tools using Exploitable Buffer Overflows from
Open Source Code, SIGSOFT’04/FSE12, Oct. 31–Nov. 6,
2004, Newport Beach, CA, USA.Copyright 2004 ACM
1581138555/ 04/0010 ...$5.00.

[90] Fadi Wedyan, Dalal Alrmuny, and James M. Bieman, The
Effectiveness of Automated Static Analysis Tools for Fault
Detection and Refactoring Prediction

[91] Sarah Heckman and Laurie Williams, A Model Building
Process for Identifying Actionable Static Analysis Alerts

[92] http://searchsoftwarequality.techtarget.com/definition/auto
mated-software-testing

[93] FREEDMAN D.P., WEINBERG G.M.: ‘Handbook of
walkthroughs,inspections, and technical reviews: evaluating
programs,projects, and products’ (Little Brown & Co., 1982,
3rd edn.)

[94] Fagan, M.: Design and code inspection to reduce errors in
program development. IBM System Journal, Vol. 5., no. 3.
(1976) 182-211

http://istqbexamcertification.com/what-is-verification-in-software-testing-or-what-is-software-verification/
http://istqbexamcertification.com/what-is-verification-in-software-testing-or-what-is-software-verification/
http://istqbexamcertification.com/what-is-verification-in-software-testing-or-what-is-software-verification/
http://swtestingbasics.blogspot.com/2009/03/static-testing-or-reviews.html
http://swtestingbasics.blogspot.com/2009/03/static-testing-or-reviews.html
http://swtestingbasics.blogspot.com/2009/03/static-testing-or-reviews.html
http://www.qualitysystems.com/support/pages/10-management-review
http://www.qualitysystems.com/support/pages/10-management-review
http://www.qualitysystems.com/support/pages/10-management-review
http://searchsoftwarequality.techtarget.com/definition/automated-software-testing
http://searchsoftwarequality.techtarget.com/definition/automated-software-testing

