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Summary 
Initialization problem is a significant issue in FCM-type 
clustering models, in which alternative optimization is often 
started with random initial partitions and can be trapped into 
local optima caused by bad initialization. The deterministic 
clustering approach is a practical procedure for utilizing a robust 
feature of very fuzzy partitions and tries to converge the iterative 
FCM process to a plausible solution by gradually decreasing the 
fuzziness degree. In this paper, the initialization sensitivity issue 
is considered in multinomial mixture models-induced fuzzy co-
clustering context and a new approach for implementing the 
deterministic annealing mechanism to fuzzy co-clustering is 
proposed. The advantages of the proposed approach against the 
conventional statistical co-clustering model are demonstrated 
through some numerical experiments. 
Key words: 
Fuzzy co-clustering, Multinomial mixture, Deterministic 
annealing, Initialization problem.  

1. Introduction 

Fuzzy c-Means (FCM) and its variants [1,2] (in the 
following, they are called as FCM-type clustering models) 
are shown to be the basic technique in effectively 
achieving unsupervised classification in simple iterative 
processes, in which alternative optimization process 
generally starts with random initialization. Besides its 
simple scheme, however, they often suffer from the 
initialization problem, in which the algorithms may 
converge to inappropriate local solutions caused by bad 
initialization.  
Deterministic annealing (DA) [3] is a possible way for 
avoiding local solutions in fuzzy clustering. An advantage 
of fuzzy partition is its robust feature to noise or outliers 
and very fuzzy partition may conceal undesirable distortion 
of prototype assignment. Then, utilizing the robustness of 
very fuzzy partition, DA starts the FCM process with very 
fuzzy situation and gradually degrades fuzziness degrees of 
partitions until it reaches to intended fuzziness degrees. In 
[3], the entropy-based fuzzification term [4] first plays a 
role for regularizing the k-Means objective function with a 
very large fuzzification weight so that it brings a unique 
solution regardless random initialization, and then, the 

fuzzification weight is gradually degraded in order to find 
a plausible solution with the intended fuzzy degree. 
This paper considers the implementation of the DA scheme 
to fuzzy co-clustering, which is a fundamental technique 
for analyzing cooccurrence relational data such as 
document-keyword frequencies. Fuzzy Clustering for 
Categorical Multivariate data (FCCM) [5] is an FCM 
variant, in which co-clusters of object-item pairs are 
extracted by estimating two different kinds of fuzzy 
memberships: object memberships and item memberships. 
With the goal of extracting familiar object-item pairs, the 
FCM-type objective function is defined by the aggregation 
degree of objects and items instead of the within-cluster-
error measure of FCM. The fuzzy partition nature of the 
prototype-less aggregation criterion was achieved by the 
entropy-based regularization approach [4]. Although the 
iterative algorithm has similar form to the conventional 
FCM, the dual fuzzification model has no comparative 
statistical models, which can be utilized as a guideline, and 
often needs very careful tuning of two penalty weights in 
trial and error manner. 
Considering the similarity between the FCCM objective 
function and the pseudo-log-likelihood function of 
Multinomial Mixture Models (MMMs) [6], Honda et al. 
proposed Fuzzy Co-Clustering induced by MMMs 
(FCCMM) [7, 8], where the fuzziness degree can be tuned 
under comparison with MMMs. The object and item 
memberships are identified with the probability of each 
generative class for an object and the probability of 
appearance of an item in a class, respectively, and they are 
fuzzified based on different fuzzification principles. 
This paper proposes a DA framework for FCCMM, where 
the fuzziness degree of object memberships are tuned by 
the K-L information-based regularization approach [9] 
while the fuzziness degree of item memberships are tuned 
by a weighting exponent approach [10]. 
The remaining parts of this paper are organized as follows: 
Section 2 presents a brief review on the DA scheme in 
FCM clustering. In Section 3, the DA scheme is 
implemented to FCCMM. The characteristic features are 
demonstrated through numerical experiments in Section 4 
and a summary conclusion is given in Section 5. 
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2. FCM and Deterministic Annealing 

2.1 FCM clustering 

Assume that we have n objects with their m-dimensional 
vector observations xi , i = 1,...,n. In FCM [1,2], the 
objects are partitioned into C fuzzy clusters with their 
prototypical centroids bc , c = 1,...,C, in such a way that 
the within-cluster-errors are minimized: 
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where uci is the fuzzy membership of object i to cluster c 
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. θ  is an 

exponential weight for fuzzification.  The linear objective 
function of crisp k-Means ( 1=θ ) was fuzzified by 
introducing non-linear nature with respect to uci in the 
FCM objective function. 
Miyamoto and Mukaidono [4] introduced the entropy-
based regularization concept to fuzzification of k-Means 
objective function as follows: 
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where uλ tunes the degree of fuzziness of object 

memberships. The larger the uλ , the fuzzier the partition. 
Besides the k-Means clustering concept, Eq. (2) is also 
identified with a negative log-likelihood function of 
Gaussian Mixture Models (GMMs), which is composed of 
C spherical Gaussian components and fixed variances. 
Then, the fuzziness degree of Eq. (2) can be tuned through 
comparison with the soft nature of GMMs as a guideline.  

2.2 Deterministic Annealing 

A significant problem of FCM-type clustering is its 
sensitivity to initial partitions and can be often trapped into 
local minima from bad initializations. Deterministic 
approach is a possible way for avoiding local solutions in 
fuzzy clustering. Rose et al. introduced a deterministic 
annealing (DA) [3] concept to a probabilistic data 
clustering, whose updating formula is equivalent to that of 

the entropy-based FCM. The fuzzification penalty uλ is 
regarded as the temperature parameter and the FCM cost 
function is deterministically optimized at each temperature 
sequentially, starting at high temperature. Very fuzzy 

model with a huge uλ often brings a unique solution with a 
smoothened cost function such as uci =1/C for all objects 
and clusters, and the fuzziness degree is gradually 
decreased until intended fuzziness. 

3. Fuzzy Co-clustering Models and DA-based 
Fuzzy Co-clustering  

3.1 FCCM and Statistical Consideration 

Co-clustering is a technique for capturing the intrinsic 
cluster structures from cooccurrence information among 
objects and items. Assume that we have a cooccurrence 

matrix 
{ }ijrR =

 on objects ni ,...,1=  and items mj ,...,1= , 

and each element ijr
shows the similarity degree among 

user i and item j , such as frequency of keyword j  in 
document i . Oh et al. [5] proposed FCCM by replacing 
the within-cluster-deviation of FCM with the within-cluster 
aggregation degree of each cluster: 
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{ }ciuU =  and { }cjwW =  are the fuzzy memberships of 
object i  and item j  to cluster c , respectively. The 
entropy terms are the fuzzification penalty in the entropy-

based fuzzification approach. ciu  and cjw
 become large in 

a same co-cluster if object i  and item j  are highly 
relevant.  

While the sum of ciu  is constrained to be 1 in a similar 

manner to FCM, cjw
 is constrained as  

1
1

=∑ =

m

j cjw
. So, 

cjw
 represents the relative responsibility of item j  in 

cluster c . Although this partition concept has close 
relation with statistical co-clustering such as MMMs, 
Eq.(3) has no comparative statistical model. Then, 

fuzzification penalties uλ  and wλ have no guideline for 
parameter tuning and must be tuned by trials and errors.  

3.2 Fuzzy Co-clustering Induced by MMMs and 
Deterministic Annealing 

Considering the structural similarity between the FCCM 
objective function and the pseudo-log-likelihood of 
MMMs, Honda et al. proposed a fuzzy counterpart of 
MMMs with the K-L information regularization concept 
[9]. Fuzzy Co-Clustering induced by MMMs (FCCMM) 
[8] introduced the objective function as: 
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where uλ  and wλ  are the fuzzification penalty weight for 
object and item memberships, respectively. The additional 

parameter cα represents the cluster volume such that 
1

1
=∑ =

C

c cα .  

When 1=uλ  and 0→wλ  , Eq. (4) is reduced to the 
pseudo-log-likelihood function of MMMs with:  

( )( )11log −≈ w
cj

w
cj ww λ

λ .                 (5) 
From the object partition viewpoint, the K-L information-
based penalty term is a direct extension of the MMMs-

based soft object partition. The larger the uλ , the fuzzier 
the object partition.  

From the item partition viewpoint, because 1=wλ  reduces 
( )( )11 −w

w cjw λ
λ  to a linear function of 

( )1−cjw
, the log 

function of MMMs likelihood is interpreted as achieving 
the fuzzification of FCCM aggregation criterion with the 
non-linear nature of log function. Then, in the same 
manner with the standard FCM, the fuzziness degree of 
item partition can be tuned by changing the non-linear 

degree of 
( )( )11 −w

w cjw λ
λ  and wλ  plays a role for 

fuzzification penalty. As wλ  is smaller, 
( )( )11 −w

w cjw λ
λ  

becomes much more non-linear and we have fuzzier item 

memberships. When 10 << wλ , the fuzziness degree is 

smaller than MMMs. Furthermore, when 0<wλ , we have 
much fuzzier item partitions than MMMs. 
In the following parts of this paper, two implementation 
frameworks of the DA scheme in FCCMM are proposed 
considering the above fuzziness tuning mechanisms. Here, 
initialization sensitivity on object partition is mainly 
discussed because item memberships are not essentially 
responsible for representing cluster partition but just for 
characterizing each co-cluster.  

3.3 DA Implementation by Tuning Object Partition 
Fuzziness 

First, DA implementation is considered by tuning object 

partition fuzziness uλ . In [8], it was demonstrated that the 
frequency of the best object partition becomes larger as the 
fuzziness degrees of object memberships are larger while 
too much larger or smaller penalty weights cause 

computational instabilities. Then, a possible DA process 
starts from slightly fuzzier situation than the intended 
fuzziness degrees and is degraded until the model is 
reduced to the intended one. In general simulated 
annealing approaches [11], a practical way for decreasing 

the temperature parameter kT with iteration index k is:  
)18.0(1 <≤=+ γγ kk TT   ,                                          (6) 

where γ  is the depletion rate. Based on the same concept, 
the fuzzification parameters are adjusted. Because the 

object membership fuzzifier uλ  is directly identifiable with 
the temperature parameter of the conventional DA 
clustering model, it can be degraded as: 

},max{ min
,1, ukuuku λλγλ =+ ,                                    (7) 

where 10 << uγ , and 1=uλ  corresponds to MMMs. 

3.4 DA Implementation by Tuning Item Partition 
Fuzziness 

Although the item fuzziness degree wλ  is designed for 
tuning the partition fuzziness of item memberships 

{ }cjwW = , Ref. [8] reported a side effect of wλ  on object 

partition { }ciuU = . A smaller wλ  brings a fuzzier item 
partition but can derive a more crisp object partition. It 
may be because a fuzzier item memberships can contribute 
for concealing noise but emphasize the object cluster 
boundaries, i.e., object partition can be trapped into local 
maxima. Then, a more crisp item partition is expected to 
bring a fuzzier object partition and a DA process can be 

implemented by starting with a larger wλ  and degrading it 
to a (smaller) intended fuzziness penalty.  

In adopting the DA degradation with wλ , it should be 

noted that wλ  can take both positive and negative values in 
contrast with the general annealing parameters, which does 
not have negative values, i.e., the annealing schedule of Eq. 
(7) is designed only for positive values. A possible way for 

tuning wλ  among [ ]maxmin , ww λλ  is: 
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so that k
k

k TT ×=+ γ1  in the interval [ ]max,0 T  is 

virtually realized in ( )[ ]maxminmaxmin , wwww λλλλ −−  with the 

center 
min

wλ . 
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3.5 Possible Algorithmic Procedure of FCCMM with 
DA Implementation 

Then, a sample procedure of the proposed algorithm is 
written as follows: 
Algorithm: Fuzzy Co-Clustering induced by 
Multinomial Mixture models with Deterministic 
Annealing (FCCMM-DA) 

Step 1. Initialize fuzzy memberships ciu  and cjw  such that 

they satisfy 1
1

=∑ =

C

c ciu , i∀  and 1
1

=∑ =

m

j cjw , c∀ . 

Choose the possible interval of fuzziness penalty 

weight [ ]maxmin , uuu λλλ ∈  and [ ]maxmin , www λλλ ∈ , 
and termination criterion ε . Let the initial penalties be 

max
uu λλ =  and max

ww λλ = . 

Step 2. Update cluster volumes cα , Cc ,...,1=  by 
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Step 4. Update ciu , Cc ,...,1= , ni ,...,1=  by followings: 
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 For 0=wλ , 
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Step 5. Update uλ  and wλ  by Eqs. (7) and (8). 

Step 6. If ε<− OLD
ci

NEW
ciic

uu
,

max , then stop. Otherwise, 

return to Step 2. 

4. Numerical Experiments 

In this section, the characteristic features of the proposed 
method are demonstrated in numerical experiments. 

4.1 Artificial Data Set 

A noisy 100×60 artificial cooccurrence matrix R shown in 
Fig. 1-(b) was used in [7, 8], which was generated from a 
noise-less R0 with 100 objects (n = 100) and 60 items (m = 
60) shown in Fig. 1-(a). R0 = {rij0} and R = {rij} are the 
base matrix without noise and its noisy variant, whose 
elements are depicted by black and white cells as rij = 1 
and rij = 0, respectively. The noisy matrix R, which 
includes roughly 4 co-clusters (C = 4) in diagonal blocks 
while some items are shared by multiple clusters, was 
generated from R0 by replacing rij0 = 1 with rij = 0 at a 
rate of 50% and rij0 = 0 with rij = 1 at a rate of 10%.  

Fig.1 Artificial cooccurrence matrices [7,8] 

Table 1. Comparison of initialization sensitivity without DA in artificial 
data: the frequencies of RIu > 0.9 in 210 different trials [8] 

  Object penalty uλ  
0.5 1.0 2.0 

Item 
Penalty 

wλ  

0.3 
 0.0 
 -0.3 

185(88%) 
40(19%) 

      － 

202(96%) 
 108(51%) 
       0(0%) 

－ 
171(81%) 

 21(10%) 

 
The initialization sensitivity of the FCCMM algorithm is 
compared with and without annealing mechanisms, where 

the initial item membership vectors ( )Tcmcic www ,...,=  
of C = 4 clusters were constructed from normalized 

cooccurrence information vectors ( )Timii rrr ,,1 =  of 4 

objects such that ( )Timic rrw **
1,...,= and ∑ =

j ijr 1*

. The 
FCCMM algorithm with various penalty weight values was 
applied to the noisy cooccurrence matrix R with initial 
partitions given by 210 different 4-objects combinations 
constructed from 10 pre-selected objects, i.e., all trials 
started from common 210 initialization candidates for fair 
comparisons. The partition quality is compared with Rand 
Index (RI) of maximum membership partitions, where RIu 
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implies the ratio of matching with the ideal object partition 
of Fig. 1-(a) after maximum membership object partition. 
 In the previous research [8], without the DA scheme, the 
frequencies of the clustering results with RIu > 0.9 object 
partition was reported as Table 1, where "--" means that 
the algorithm cannot work because of overflow with too 
fuzzy or too crisp penalty settings. The initialization 

sensitivity was reduced with larger uλ  and wλ , i.e., a 
fuzzier object partition and a crisper item partition can 
contribute to stable co-clustering. 
In the following, the proposed annealing scheme is 
introduced with the goal of achieving the stable co-
clustering features by gradual tuning of fuzziness degrees. 
First, annealing of object membership fuzziness is 
considered with fixed item fuzziness, where the fuzziness 
penalty of object partition is reduced as: 

{ }maxmin 99.0,max u
k

uu λλλ = ,                                    (13) 
where k is the iteration index, and the final value was 

always be guaranteed as 
min
uu λλ =  in this experiment for 

comparison purposes. Table 2 shows that the initialization 
sensitivity of the FCCMM algorithm was efficiently 
reduced by introducing annealing of object fuzziness 
degrees and higher quality was achieved with smaller 
fuzziness degrees compared with Table 1. 

Table 2. Comparison of initialization sensitivity with object fuzziness 
annealing in artificial data: the frequencies of RIu > 0.9 in 210 different 

trials 
  Object penalty uλ  

 
min

max

u

u

λ

λ

↓
 1.0 

↓ 
0.5 

2.0 
↓ 
1.0 

3.0 
↓ 
2.0 

Item 
Penalty 

wλ  

0.3 
 0.0 
 -0.3 

200(95%) 
86(41%) 

      － 

207(99%) 
 161(77%) 

       21(10%) 

－ 
198(94%) 

 29(14%) 

Table 3. Comparison of initialization sensitivity with item fuzziness 
annealing in artificial data: the frequencies of RIu > 0.9 in 210 different 

trials 
  Object penalty uλ  
 minmax

ww λλ →
 

0.5 1.0 2.0 

Item 
Penalty 

wλ  

0.5→0.3 
0.3→0.0 
0.0→-0.3 

196(93%) 
182(87%) 
      － 

208(99%) 
 196(93%) 

       51(24%) 

－ 
207(99%) 

 90(43%) 

 
Second, annealing of item membership fuzziness is 
considered with fixed object fuzziness, where the fuzziness 
penalty of item partition is tuned as: 

{ })()(299.0,max minmaxminminmaxmin
wwwww

t
ww λλλλλλλ −−+−×= .   (14) 

Here, wλ  was replaced with 0=wλ  in case of 05.0<wλ  
for avoiding computational overflow. t is the iteration 
index, and the final value was always be guaranteed as 

min
ww λλ =  in this experiment for comparison purposes. 

Table 3 shows again that the initialization sensitivity of the 
FCCMM algorithm was efficiently by introducing 
annealing of item fuzziness degrees and higher quality was 
achieved with higher fuzziness degrees compared with 
Table 1. 

4.2 Document Clustering: citeseer  

4.2.1 Comparison of Initialization Sensitivities 

A document clustering experiment was performed with a 
benchmark document data set. citeseer is a famous 
benchmark document data set, which includes 3312 text 
documents composed of 3703 terms, and is available from 
LINQS webpage of Statistical Relational Learning Group 
UMD (http://linqs.cs.umd.edu/projects//index.shtml). This 
dataset consists of 6 different document collections: Agents, 
AI, DB, IR, ML, and HCI, and the goal is to classify the 
documents into the 6 intrinsic classes by unsupervised 
clustering. The observed values ijr indicate whether each 

term appears in each document, where 1=ijr implies a 
term j appears in a document i, on the other hand, 

0=ijr implies a term j doesn't appear in a document i.  

Table 4. citeseer (3312 documents × 3703 terms) 
Class name Objects 

b   DB 701 
IR 668 

Agents 596 
ML 590 
HCI 508 
AI 249 

First, the initialization sensitivity was compared. Table 5 
compared the average RIu in 50 different random 
initialization without DA. 

Table 5. Comparison of initialization sensitivity without DA in citeseer: 
the average RIu in 50 different trials 

  
Object penalty uλ  

0.5(0.9) 1.0 2.0 
Item 

Penalty 
wλ  

0.3 
 0.0 
 -0.3 

0.875 
(0.765) 

      － 

0.790 
0.769 

     － 

0.738 
0.800 
－ 
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Table 5 implies that better performances were achieved 
with a larger uλ  (fuzzier object memberships) or smaller 

wλ  (fuzzier item memberships, which also bring more crisp 
object memberships) in this experiment. In case of 

)3.0,0.2(),( =wu λλ , we can obtain only degraded solutions 
because it caused only one cluster (all objects were equally 
shared by all clusters) and could not find any cluster co-
structures. Moreover, in case of 3.0−=uλ , some 
memberships were overflowed in Eq. (10) or Eq. (11).  
Likewise, in case of )0.0,5.0(),( =wu λλ , we could find any 
cluster co-structure, so the result of )0.0,9.0(),( =wu λλ  
instead of )0.0,5.0(),( =wu λλ  is presented. 
Next, the initialization sensitivity is also compared by 
introducing annealing schemes. First, the effect of 
annealing of object membership fuzziness is considered. 
Table 6 shows that the average RIu of the clustering results 
was improved rather than Table 5. The effect of bad 
initialization was reduced by introducing annealing of 
object fuzziness degrees, however, in case of 

)0.0,0.10.2(),( →=wu λλ , the value became worse than 
)0.0,0.1(),( =wu λλ  in Table 5. It may be because the result 

in )0.0,0.2(),( =wu λλ  is very fuzzy, so it wasn't improved 
by introducing annealing scheme. 

Table 6. Comparison of initialization sensitivity with object fuzziness 
annealing in citeseer: the average RIu in 50 different trials 

  Object penalty uλ  

 
min

max

u

u

λ

λ

↓
 1.0 

↓ 
0.5(0.9) 

2.0 
↓ 
1.0 

3.0 
↓ 
2.0 

Item 
Penalty 

wλ  

0.3 
0.0 

 -0.3 

0.880 
(0.766) 

      － 

0.738 
0.789 

      － 

0.738 
0.810 
－ 

Second, we consider the effect of annealing of item 

membership fuzziness. Here, wλ  was replaced with 0=wλ  

in case of 1.0<wλ  for avoiding computational overflow 
in this experiment. 

Table 7. Comparison of initialization sensitivity with item fuzziness 
annealing in citeseer: the average RIu in 50 different trials 
  Object penalty uλ  

 minmax
ww λλ →  0.5(0.9) 1.0 2.0 

Item 
Penalty 

wλ  

0.5→0.3 
0.3→0.0 
0.0→-0.3 

 0.881 
 (0.865) 

        － 

0.738 
0.868 
 － 

0.738 
0.840 
－ 

 
Table 7 shows again that the average RIu of the clustering 
results was improved rather than Table 5. The effect of bad 

initialization was also reduced by introducing annealing of 
item fuzziness degrees. 

4.2.2 Performance Comparative Evaluation 

Next, performance evaluation was studied with F-measure. 
F-measure is a measure of test's accuracy, which is used 
often in document classification. The score can be 
interpreted as weighted average of the precision and recall, 
where it reaches its best value at 1 and worst at 0. The 
meaning of each value is as follows: 
TP: A success in data reporting in which a test result properly 

indicates presence of a condition 

FP: An error in data reporting in which a test result improperly 
indicates presence of a condition 

FN: An error in data reporting in which a test result improperly 
indicates no presence of a condition 

TN: A success in data reporting in which a test result properly 
indicates no presence of a condition 

Table 8. A simple example of F-measure  

 

Observed value 
(cluster label) 

1 0 
True value 

(class label) 
1 TP FN 
0 FP TN 

Precision, Recall and F-measure are calculated as: 

FPTP
TPecision
+

=Pr ,      
FNTP

TPcall
+

=Re , 

callecision
callecisionmeasureF

RePr
RePr2

+
××

=− . 

In this experiment, the binary classification criterion is 
extended to a multi-class one. The following two 
experimental results are compared, which corresponds to  

RI = 0.741 in Table 5 for ( uλ , wλ ) = (1.0 , 0.0)  and RI = 

0.767 in Table 6 for ( uλ , wλ ) = (2.0→1.0 , 0.0). Although 
these values are almost same from the RI viewpoint, the 
confusion matrices are slightly different as follows. Here, a 
confusion matrix was constructed such that each of objects 
with a class label are classified into each of clusters. 
Additionally, they used same initialization conditions. 
The purpose of this experiment is to obtain high quality co-
cluster structure by gradual tuning of fuzziness degrees. 
Table 9 and Table 11 show the cross tabulation of object 
class-cluster matching, where ideal results are the number 
of diagonal components (TP). 
First, Table 9 implies objects with class 2 (IR) , class 3 
(Agents) and class 4 (ML) were shared by multiple clusters, 
and the result is not an ideal one. 
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Table 9. Correlation between class label and cluster label for ( uλ , wλ ) = 
(1.0 , 0.0) 

cluster 1 2 3 4 5 6 sum 

C
la

ss
 la

be
l 

1 210 174 39 93 54 131 701 
2 126 149 67 137 124 65 668 
3 164 93 138 75 48 78 596 
4 67 125 16 179 82 121 590 
5 91 89 122 60 121 25 508 
6 38 55 21 49 30 56 249 

Table 10 implies a confusion matrix in conventional 
FCCMM and the result of F-measure. 

Table 10. Confusion matrix for ( uλ , wλ ) = (1.0 , 0.0) 

 
Observed value 
(cluster label) 

1 0 
True value 

(class label) 
1 853 491 
0 486 1482 

 

637.0
486853

853Pr =
+

=ecision , 635.0
491853

853Re =
+

=call  

636.0
635.0637.0

635.0637.02
=

+
××

=−measureF  

853 in Table 10 (TP) means the sum of the matching class 
label with maximum membership object partition in all 
clusters.  
Second, Table 11 implies the result with deterministic 
annealing.  

Table 11. Correlation between class label and cluster label for ( uλ , wλ ) 
= (2.0→1.0 , 0.0) 

cluster 1 2 3 4 5 6 sum 

C
la

ss
 la

be
l 

1 235 191 37 36 37 165 701 
2 92 232 52 163 90 39 668 
3 164 53 241 49 37 52 596 
4 49 105 10 220 88 118 590 
5 89 27 201 34 142 15 508 
6 38 44 26 43 27 71 249 

The number of diagonal components is improved 
comparing with Table 9. Especially, many objects with 
class 3 (Agents) are included in cluster 3. Moreover, in 
Table 9, the number of objects assigned to cluster 3 with 
class label 3 is not maximum in all clusters. On the other 
hand, in Table 11, the number is maximum in all clusters, 
i.e., higher quality was achieved with DA. 
Table 12 implies a confusion matrix in FCCMM with DA 
and the result of F-measure. 

Table 12. Confusion matrix for ( uλ , wλ )=(2.0→1.0, 0.0) 

 
Observed value 
(cluster label) 

1 0 
True value 

(class label) 
1 1141 466 
0 432 1273 

725.0
4321141

1141Pr =
+

=ecision , 710.0
4661141

1141Re =
+

=call   

718.0
710.0725.0

710.0725.02
=

+
××

=−measureF  

1141 in Table 12 (TP) means the sum of the matching 
class label with maximum membership objet partition in all 
clusters and it is possible to confirm the validity compared 
with Table 10. 
These results indicate the availability of deterministic 
annealing in document co-cluster analysis. However, 
optimal fuzzy degrees are dependent on dataset, and a 
future work includes the criterion for selecting the 
plausible fuzziness degrees. 

5. Conclusion 

In this paper, a novel DA framework for MMMs-induced 
fuzzy co-clustering was proposed, where the fuzziness 
degree of object partition is gradually degraded so that the 
robust feature of fuzzier partition is exploited in more crisp 
situations. The DA-based FCM concept was realized in 
two approaches: direct tuning of object partition fuzziness 
and indirect tuning through a side effect of item 
membership fuzzification, i.e., crisper item memberships 
can contribute to stable object partition. The experimental 
results demonstrated that the both DA approaches work 
well for deriving appropriate solutions more often than the 
conventional model without DA schemes. 
A possible future work includes the development of a 
better design of annealing schedules for achieving more 
effective operation of the DA framework. Another 
direction of future study is to investigate the influences of 
the DA schemes on the interpretability of co-cluster 
solutions especially from the item fuzziness tuning view 
point. Finally, in order to overcome several drawbacks of 
statistical co-clustering models, MMMs has been extended 
to Dirichlet mixture [12, 13, 14] in Statistics society. It is 
also a promising challenge to extend the proposed 
FCCMM algorithm to a Dirichlet mixture induced co-
clustering model. 
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