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Summary 
In advanced information and telecommunications network 
society, it is expected to utilize big data distributed among 
various organizations, such as cooperation groups, state 
organs and allied countries, with the goal of revealing 
intrinsic knowledge. In such collaborative data mining, 
however, personal privacy must be strictly preserved. This 
paper deals with a possible approach for utilizing 
distributed cooccurrence information in fuzzy co-
clustering context under privacy consideration. Fuzzy 
Clustering for Categorical Multivariate data (FCCM) is a 
basic fuzzy co-clustering model and have been extended 
so as to perform privacy preserving data analysis. The 
secure model is further improved in this paper so that we 
can find robust knowledge, which is free from the 
influences of unreliable site, considering site-wise 
confidences. The applicability of the proposed model is 
demonstrated in several numerical experiments.  
Key words: 
Fuzzy Clustering, Co-clustering, Privacy preserving data mining. 

1. Introduction 

In advanced information and telecommunications network 
society, it is expected to utilize various big data, which are 
stored in various formats and in distributed sites. 
Cooccurrence information is a type of data formats and is 
common in such tasks as document-keyword frequencies 
in document analysis and customer-product purchase 
history in market analysis. Fuzzy co-clustering is a 
fundamental approach for analyzing cooccurrence 
information among objects and items, and has been 
utilized in document analysis [1], personalized 
recommendation [2,3], and so on. Fuzzy co-clustering 
divides objects and items into some co-clusters such that 
mutually familiar objects and items belong to same 
clusters in order to reveal co-cluster structures among 
them.  

Fuzzy Clustering for Categorical Multivariate data 
(FCCM) [4] is a basic fuzzy co-clustering model, which 
was proposed by Oh et al. In FCCM, two different kinds 
of fuzzy memberships for objects and items are 
simultaneously estimated by alternately updating them.  

In many real world data analysis tasks, it is expected to get 
much more useful knowledge by utilizing multiple 
databases stored in different organizations. In general, 
however, they cannot publish their databases to other 
organizations because of fear of privacy issues. In order to 
utilize multiple databases distributed in multiple sites 
under privacy consideration, FCCM was extended to 
FCCM for Vertically Distributed cooccurrence matrices 
(FCCM-VD) [5], in which site-wise information is 
securely stored in each site and is protected by encryption 
approach in collaborative data analysis. Common intrinsic 
object cluster structures are shared by multiple sites but 
site-wise item cluster structures are utilized only in each 
site.  

   FCCM-VD is useful for fairly merging distributed 
knowledge, however, some organizations may have 
harmful effects on co-cluster estimation because of low 
confidence. In order to solve this problem, this paper 
considers site-wise confidence based on the degree of 
coincidence between the whole object memberships and 
site-wise object memberships. Considering site-wise 
confidence, we can have more reliable knowledge by 
emphasizing intrinsic common co-cluster structures shared 
by reliable sites. 

   The remaining parts of this paper are as follows: Section 
2 gives a brief review on Fuzzy Clustering for Categorical 
Multivariate data (FCCM). Section 3 describes FCCM for 
Vertically Distributed cooccurrence matrices (FCCM-VD). 
Section 4 proposes a novel approach for FCCM-VD 
considering site-wise confidence. In Section 5, the 
characteristics of the proposed algorithm is discussed 
through several numerical experiments with artificial 
matrices. Finally, summary conclusion is given in section 
6. 

2. Fuzzy Clustering for Categorical 
Multivariate Data (FCCM) 

Fuzzy co-clustering is a fundamental approach for 
analyzing cooccurrence information among objects and 
items. A representative fuzzy co-clustering algorithm is 
Fuzzy Clustering for Categorical Multivariate data 
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(FCCM) [4]. A brief review of FCCM is given in this 
section.  

Assume that we have a cooccurrence matrix { }ijrR =  on 

objects ni ,,1=  and items mj ,,1= , and each element
[ ]1,0∈ijr shows the cooccurrence degree among user i and 

item j . For example, ijr  can be the amount of product j  
purchased by customer i  in market analysis. FCCM 
divides objects and items into some co-clusters such that 
the degree of aggregations of each co-cluster is maximized. 
The objective function is as follows: 
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ciu  and cjw  are the fuzzy memberships of object i  and 
item j  to cluster c , respectively. The entropy terms are 
the fuzzification penalty in the entropy-based fuzzification 
approach [6]. uλ  and wλ  are the penalty weight for tuning 
the degree of partition fuzziness and larger weights bring 
fuzzier partitions. In order to extract co-cluster structures, 

ciu  and cjw  are iteratively optimized using updating rules 
of memberships derived considering the optimality of the 
objective function. The updating rules are as follows: 
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Object memberships ciu is forced to be exclusive such that 

1
1

=∑ =

C

c ciu . On the other hand, in order to avoid trivial 

solutions, item memberships cjw are responsible for 
representing the mutual typicality in each cluster such that 

1
1

=∑ =

m

j cjw . 

3. FCCM for Vertically Distributed 
Cooccurrence Matrices (FCCM-VD) 

If we can utilize multiple databases distributed in multiple 
sites, it is expected that we find more useful common 
knowledge rather than site-wise independent analysis. In 

utilizing personal information, however, personal privacy 
must be strictly preserved [7]. The remaining parts of this 
paper consider extraction of common co-cluster structures 
from distributed cooccurrence matrices.  

Assume that T sites ( Tt ,,1=  ) share common n objects 
( ni ,,1= ) and have separate cooccurrence information 
on different items, which are summarized into tmn×

matrices }{ t
ijt rR = , where tm is the number of items in 

site t and mmT

t t =∑ =1
. This type of data are called 

vertically distributed cooccurrence matrices in contrast to 
horizontally distributed matrices, in which multiple sites 
gathers information on same items (attributes) on different 
objects [8].  A sample of vertically distributed matrices is 
shown in Fig. 1.  

 
Fig. 1 A sample of vertically distributed matrices [5] 

 If we do not care about privacy issues, such distributed 
matrices should be gathered into a whole data set without 
information losses. Taking the privacy preservation into 
account, however, cluster analysis should be performed by 
concealing each data element within each site [8,9,10].  

   FCCM-VD [5] shares object partition information 
without broadcasting each cooccurrence matrix 

}{ t
ijt rR = . Because Eq. (2) implies that ijcj rw  plays a 

role for tuning the contribution of the cluster structure of 
item j  in ciu , the site-wise structural information can be 
reflected through the sum of site-wise object partition 
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revealing each cooccurrence element t
ijr . Furthermore, in 

order to share object partition considering personal privacy, 
the encryption approach can be adopted by concealing the 

actual values of ∑ =
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1
. The encryption approach is 

summarized in Fig. 2.  
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Fig. 2 Encryption operation [5] 

First, Site  1t  generates length C random vector 

Ttvv T
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for estimating common ciu . 

FCCM-VD algorithm is depicted as follows. 

[Algorithm 1: FCCM-VD (T > 2) [5]] 
Given 1mn×  matrix 1R , ... , Tmn× matrix TR , and let 
C be the number of clusters. Choose the fuzzification 
weights uλ  and wλ .  

Step1. [Initialization] In site 1t , randomly initialize ciu

such that 1
1

=∑ =

C

c ciu  and broadcast them to all 

other sites. 

Step2. [Iterative process] Iterate the following process 
until all ciu  are convergent. 

 (2-a) In site Ttt ,...,1 , update t
cjw using the current 

values of ciu . 

 (2-b) For ni ,...,1=  

      (i) In site 1t , generate length C random vectors    

                   Ttvv T
tCtt ,...,1,),...,( 1 ==v  such that              

∑ =
=

T

t t1
0v , and send tv to each site. 

      (ii) In each site, calculate ∑ =
+ tm

j
t

ij
t
cjtc rwv

1
, and 

in site 11,..., −Ttt , send their own values to site 

Tt . 

      (iii) In site Tt , calculate ∑ ∑= =

T

t

m

j
t

ij
t
cj

t rw
1 1

,and 

update common ciu  using the sum.  

(iv) Broadcast ciu  to all sites. 
 (2-c) Check the convergence condition.  

 
   In the case of 2=T , object memberships ciu  is 
alternately updated in each site without the encryption 
approach. 

4. FCCM-VD Considering Site-wise 
Confidence 

FCCM-VD provides common object memberships and 
site-wise item memberships securely from vertically 
distributed databases. Although some sites may have 
unreliable data for cluster estimation, FCCM-VD deals 
with separate matrices equally. In the case with unreliable 
sites, we want to weaken the responsibility of such sites on 
co-cluster estimation.  

So, in this paper, "site-wise confidence" is introduced into 
FCCM-VD. Brief definition of "site-wise confidence" is 
given in next subsection. 

4.1 Site-wise Confidence 

 In order to weaken the harmful effects of the unreliable 
sites on cluster estimation, this paper considers "site-wise 
confidence", which is measured by the degree of 
coincidence between site-wise object memberships and the 
global ones, and is defined as follows. 

[Definition 1: Calculation of Site-wise Confidence] 
Given 1mn×  matrix 1R , ... , Tmn× matrix TR , let C be 
the number of clusters. 
Step1. In site Ttt ,...,1 , update site-wise object 

memberships t
ciu  using current values of t

cjw . 

Step2. In site Ttt ,...,1 , defuzzify t
ciu  such as max 

1=t
ciu  and otherwise 0=t

ciu  for ni ,...,1= . 

Step3. In site Ttt ,...,1 , defuzzify the global object 

memberships ciu  such as max 1=ciu  and 

otherwise 0=ciu  for ni ,...,1= . 
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Step4. In site Ttt ,...,1 , count the number of coincidence 

between site-wise object memberships t
ciu  and the 

global ones ciu , and calculate 

necoincidencofnumbert /)(=α , where tα is the 
site-wise confidence in site t . 

 
Be noted that a site-wise cooccurrence information is 
reliable if it gives a similar co-cluster structure to the 
whole data case. Then, "coincidence" is measured by the 
degree of matching among t

ciu  and ciu with respect to n 

objects. If the confidence tα of site t  is large, its 

structural information should be emphasized in ciu
calculation.  

4.2 FCCM-VD Considering Site-wise Confidence 

Considering the above site-wise confidence, the FCCM-
VD algorithm is modified as follows. 
 
[Algorithm 2: FCCM-VD Considering Site-wise 
Confidence (T > 2)] 
Given 1mn×  matrix 1R , ... , Tmn× matrix TR , let C be 
the number of clusters. Choose the fuzzification weights 

uλ  and wλ .  

Step1. [Initialization] In site 1t , randomly initialize ciu

such that 1
1

=∑ =

C

c ciu  and broadcast them to all 

sites. 
Step2. [Iterative process] Iterate the following process 

until all ciu  are convergent. 

 (2-a) In site Ttt ,...,1 , update t
cjw using the current 

values of ciu . 

 (2-b) In site Ttt ,...,1 , update site-wise object 

memberships t
ciu  using the current values of t

cjw . 

 (2-c) In site Ttt ,...,1 , defuzzify t
ciu  such as max 

1=t
ciu  , other 0=t

ciu  for ni ,...,1= . 

 (2-d) In site Ttt ,...,1 , defuzzify the global object 

memberships ciu  such as max 1=ciu  , other 

0=ciu  for ni ,...,1= . 

 (2-e) In site Ttt ,...,1 , calculate tα  following 
Definition 1. 

 (2-f) For ni ,...,1=  

      (i) In site 1t , generate length C random vectors  

Ttvv T
tCtt ,...,1,),...,( 1 ==v  such that  

∑ =
=

T

t t1
0v , and send tv to each site. 

      (ii) In each site, calculate ∑ =
×+ tm

j
t

ij
t
cjttc rwv
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α , 

and in site 11,..., −Ttt , send their own values 

to site Tt  . 

      (iii) In site Tt , calculate ∑ ∑= =

T

t

m

j
t

ij
t
cjt

t rw
1 1
α , 

and update common ciu  using the sum.  

(iv) Send ciu to all sites. 
 (2-g) Check the convergence condition.  

 
Using the above algorithm, the effect of unreliable sites is 
weakened in ciu calculation, and it is expected to get much 
more reliable knowledge from vertically distributed 
databases than FCCM-VD. 

5. Numerical experiments 

We performed 3 numerical experiments with different 
artificial matrices. 

5.1 Four Sites Collaboration with Encryption 

An artificially generated 90100×  cooccurrence matrix 
}{ ijrR =  was used in this experiment, where 100 objects 

and 90 items form roughly 3 co-clusters. Figure 3(a) 
shows the original whole matrix, where black and white 
cells depict 1=ijr  and 0=ijr , respectively. Then, the 
matrix was arranged such that 90=m  items were 
vertically distributed into 4 sites with 
( ) ( )18,21,24,27,,, 4321 =mmmm   as shown in Fig. 3(b). 

      
(a) original matrix                  (b) arranged matrix 

Fig. 3 Artificial cooccurrence matrices 1 
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Here, the goal of collaborative analysis among 4 sites is to 
reconstruct the co-cluster structures, which are as similar 
to the whole data case as possible without publishing site-
wise information. So, the FCCM-VD algorithm was 
applied with/without consideration of site-wise confidence, 
and the partition quality is evaluated by comparing the 
correlation coefficients of site-wise item memberships t

cjw
with the whole data case, which is given by the 
conventional FCCM with the original non-distributed data. 
Fuzzification parameters were set as )001.0( =uλ , 

)0.100,0.100,0.100,0.100(),,,( 4321 =wwww λλλλ in 
FCCM-VD and the proposed model, respectively. In 
FCCM with the whole data, these parameters were set as

)0.100,001.0,( =wu λλ . Additionally, the partition 
quality is also compared with the case of site-wise 
independent analysis, where each site independently 
performed FCCM utilizing within-site information only. 
Fuzzification parameters were set as 

)0.100,003.0(),( =wu λλ in each site. Table 1 
summarizes the results, in which the best and mean values 
in 100 trials with different random initializations are 
compared for each site.  

The table shows that FCCM-VD with/without site-wise 
confidence achieved almost perfect performances in best 
while site-wise analysis could bring degraded 
performances only, i.e., this type of distributed information 
must be collaboratively analyzed. In comparison of mean 
performances, however, the proposed model with site-wise 
confidence outperformed the conventional FCCM-VD. 
The result indicates that considering “site-wise confidence” 
is meaningful.  

Table 2: Correlation coefficient with the base item memberships             
(4 sites collaboration)  

  Site1 Site2 Site3 Site4 
FCCM-VD with 

Site-wise 
Confidence 

Best 0.99 0.99 0.99 0.99 
Mean 0.89 0.93 0.91 0.93 

FCCM-VD 
Best 0.99 0.99 0.99 0.99 

Mean 0.85 0.89 0.91 0.90 

Site-wise 
FCCM 

Best 0.71 0.95 0.97 0.54 
Mean 0.62 0.84 0.89 0.60 

Next, the characteristics of site-wise confidences are 
studied. Figure 4 shows the transition of site-wise 
confidence of each site. In the initialization phase, i.e., 
iteration 1, object partition is almost random and the site-
wise confidences are all low, i.e., around 6.0=tα . But 
they became larger as co-cluster analysis proceeded. In the 
final phase, Site2 had a relatively smaller confidence than 
other three. It is because, as seen in Fig. 3(b), Site2 has 
somewhat different object partition from others. In this 

way, site-wise confidence is useful for reflecting 
differences among sites and can contribute to improving 
the performances of collaborative analysis.  

 
Fig. 4 The transition of "site-wise confidence"  

(4 sites collaboration) 

5.2 Rejection of Meaningless Site  

Second, the effect of meaningless site is studied, where 
one of four sites has no co-cluster structure. The noisy data 
matrix was generated from a noiseless matrix of Fig. 5(a), 
where sites 1, 2 and 4 has 4 co-cluster structures, but only 
site3 has no structure. A noisy cooccurrence matrix shown 
in Fig. 5(b) was generated by replacing '1' elements with 
'0' at a rate of 70% and '0' elements with '1' at a rate of 
10%. Varied sparsely in noise, the co-cluster structures are 
only weakly recognized. 

    
(a) noiseless matrix               (b) noisy matrix 

Fig. 5 Artificial cooccurrence matrices 2 

As is the case of Section 5.1, the correlation coefficient 
among site-wise item memberships derived from proposed 
model, FCCM-VD  or site-wise FCCM and the ones from 
the  whole data FCCM in order to investigate whether 
site3 can extract the similar co-cluster structures as the 
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whole data case using proposed method, although site3 
can't extract such structures only its own data.  

In the whole data FCCM and site-wise FCCM in each site, 
fuzzification parameter were set as 

)0.100,001.0(),( =wu λλ . In FCCM-VD and 
proposed model, object membership fuzzification was set 
as )003.0( =uλ , item membership fuzzification were 

set as )0.100( =wλ in each site. 

Table 2 compares the performances of the three models 
and implies that the collaborative analysis with FCCM-VD 
made it possible to share the whole data structure even 
when one site had no such structural information, i.e., site 
3 can also exploit the structure information with FCCM-
VD although it cannot in site-wise independent analysis. 
Especially, the partition quality of collaborative analysis 
was improved by considering site-wise confidence.  

Table 2: Correlation coefficient with the base item memberships 
(rejection of meaningless site)   

  Site1 Site2 Site3 Site4 
FCCM-VD with 

Site-wise 
Confidence 

Best 0.99 0.99 0.98 0.99 
Mean 0.81 0.76 0.76 0.76 

FCCM-VD 
Best 0.98 0.98 0.96 0.98 

Mean 0.76 0.72 0.70 0.72 

Site-wise 
FCCM 

Best 0.90 0.94 0.57 0.70 
Mean 0.64 0.64 0.52 0.53 

Next, Fig. 6 shows the transition of "site-wise 
confidence". Starting from low-confidence situation with 
random partition, sites 1 and 2 successfully gained 
higher confidences while the confidence of site 3 
(meaningless site) stayed with low value only. Here, site 
4 had a medium confidence. It may because the size of 
site 4 is relatively smaller than sites 1 and 2, and co-
cluster structure may be unclear.  

These results indicated that the proposed method still 
useful for cases with meaningless sites.  

 

 

 

 

 

 

 
Fig. 6 The transition of "site-wise confidence" 

(rejection of meaningless site) 

5.3 Dominant Structural Information Sharing  

Third, a much extreme case is considered, where only 
one site has a dominant structural information while 
others do not. The intended co-cluster structure and a 
noisy data matrix to be analyzed are shown in Fig. 7. In 
these matrices, site1 has 4 co-cluster structures, but 
other sites has no clusters.  

As is the case of Section 5.1 and 5.2, the correlation 
coefficient among site-wise item memberships derived 
from proposed model, FCCM-VD  or site-wise FCCM 
and the ones from the  whole data FCCM in order to 
investigate whether site2,3,4 can extract the intrinsic 4 
co-cluster structures in separate matrices, they can't 
extract such structures using  only its own data. 

In the whole data FCCM, fuzzification parameters were 
set as   )0.100,001.0(),( =wu λλ , and in site-
wise FCCM, these parameters were set as 

)0.100,004.0(),( =wu λλ . In FCCM-VD and 
proposed model, object membership parameter was set 
as )003.0( =uλ , )004.0( =uλ , respectively. Item 
membership parameters were set as )0.100( =wλ in 
each site. 

The result of the same experiment is shown in Table 3, 
and implies that the proposed method is also useful for 
sharing a dominant information among all sites.  

Fig. 8 shows the transition of "site-wise confidence". 
Only site 1 has high confidence. This implies site 2, 3 
and 4 has less effect on cluster estimation, and site 1 
has more informative. Thus, site 2, 3, 4 has larger (best 
and mean) correlation coefficients using proposed 
method because of sharing of the dominant information. 
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 (a) noiseless matrix                     (b) noisy matrix 

Fig. 7 Artificial cooccurrence matrices 3 

Table 3: Correlation coefficient with the base item memberships 
(dominant structural information sharing)   

  Site1 Site2 Site3 Site4 
FCCM-VD with 

Site-wise 
Confidence 

Best 0.98 0.95 0.97 0.96 
Mean 098 0.95 0.97 0.96 

FCCM-VD 
Best 0.99 0.94 0.86 0.94 

Mean 0.98 0.92 0.81 0.91 

Site-wise 
FCCM 

Best 0.96 0.50 0.41 0.48 
Mean 0.96 0.50 0.41 0.48 

 

 
  Fig.8 The transition of "site-wise confidence" 

(dominant structural information sharing) 

 

These results indicate that the proposed model is still 
useful even if only a few sites has dominant structural 
information and the responsibility of each site can be 
effectively captured by site-wise confidence.  

 

6. Conclusion 

   In this paper, a novel collaborative fuzzy co-clustering 
model for vertically distributed data was proposed 
considering "site-wise confidence". In numerical 
experiments, proposed model is more useful for estimating 
co-cluster structures in distributed matrices than the 
conventional collaborative model (FCCM-VD). 
Considering site-wise confidence, the effect of 
meaningless dataset is weaken, and the mechanism often 
work well on estimating the intrinsic co-cluster structures.  
   A possible future work is to adapt the proposed 
algorithm to other fuzzy co-clustering based on 
probabilistic models [11]. Another future work is hybrid 
use with some cluster validity measures [3]. 
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