
IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.2, February 2016

27

Manuscript received February 5, 2016
Manuscript revised February 20, 2016

Efficient Data-Types Analysis for a Functional Concurrent Model of
Programming

Mohamed A. El-Zawawy Mohammad N. Alanazi
College of Computer and Information Sciences, Al Imam

Mohammad Ibn Saud Islamic University (IMSIU), Riyadh,
Kingdom of Saudi Arabia;

 Department of Mathematics, Faculty of Science, Cairo
University, Giza 12613, Egypt

College of Computer and Information Sciences, Al Imam
Mohammad Ibn Saud Islamic University (IMSIU), Riyadh,

Kingdom of Saudi Arabia

Summary
Asynchronous tasks in programming are those tasks executed
free of context of the main task. Therefore asynchronous tasks
are methods implemented in a non-blocking style, permitting the
main method to continue running. Functional programming is a
programming style to express the hierarchy and components of
computer code. In this style calculations are treated similarly to
treating computations of functions in mathematics.
Hence memory-states and modifiable data structures are not
needed. Functional programming can be introduced as a
declarative style of coding in the sense that expressions replace
programs.
On a functional object-oriented model, this paper presents an
accurate type system for asynchronous operations. The job of the
type system is to stop undefined functions from execution and
hence from aborting programs. In other words, the type system
ensures soundness of data types and hence avoiding static errors
like field-not-defined and method-not-defined from occurring at
execution time. The paper introduces as well a programming
example for the proposed system.
Key words:
Data-Types Analysis, Type System, Functional Concurrent
Models, Syntax, Asynchronous Programming.

1. Introduction

Combination of event-based interactions and threads is
necessary for most of concurrent programs implementing
critical applications. Such programs include various
threads which do interactions via posting jobs to each
other. This posting has the form of asynchronous call of
functions. Function items are used to execute the
asynchronous calls to functions. Each function item is
mainly a container of a reference to the method that is to
be executed on a specific thread using the convenient
inputs. Typically, the inputs as well include function items
which act as callbacks. Reasoning about complicated
parallel structures including function references and
callback methods is part of the verification of these
programs. This makes the verification process a very
tricky one, notably in the existence of recursion.
Programming languages that are functional use no
assignment commands, no variables, and no iterative

structures. This architecture is inspired by the view of
mathematical functions which use segregation of different
cases in their definitions. Typically each of these cases is
defined separately by using (recursive) applications of
functions. In programming languages that are functional,
these definitions are expressed almost straightly into the
language syntax. Therefore, the complete program is just a
function. This function, in turn is defined using more
functions.
Models of asynchronous programming languages that are
functional are quite important as they combine the
advantages of asynchronous programming and that of
functional programming. However verifying programs
produced by such models is not an easy job as they are
very involved. One of the most important verification
issues for programming languages in general is that of type
compatibility. This verification aims at verifying the
correctness of type uses in the programs. On a powerful
model for asynchronous programming that are functional
and object-oriented programming model, this paper studies
the problem of types verifications. The paper presents an
accurate type system to verify programs produced by the
studied model. The system consists of set of types (defined
in the language) and a set of inference rules (built using
the language constructs). The paper also shows in details a
motivating example of the research behind the paper.

Contributions
Contributions of the paper are the following.
1) A new type system for asynchronous programming
using functional and object-oriented model of
programming.
2) A detailed motivation example of research presented in
this paper.

Paper Outline
The content in the remaining sections is as follows.
Section II shows in details a motivating program-example
of the research. Section III presents the proposed type
system. The related work is reviewed in Section IV that
also suggests future-work directions. Section V (the final
section) summaries the paper.

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.2, February 2016

28

Fig 1: A motivating Example.

Fig 2: Asynch-OP: A Robust Framework for asynchronies Operations on
a Functional Object-Oriented Model.

2. Motivating Example

Figure 1 presents a motivating example of our research.
The program is built using the syntax of Figure 2. The
program consists of a class that is defined in the lines 1 17.
The class consists of three integer variables ”x1, x2, and
x3” and three projection methods ”proj1, proj2, and proj3”.
The main program is in line 18 which consists of an
activity table of defined classes, a method table (empty
in this example), and a main expression, ”Post (new
c(1,2,void).proj1)”. This last expression is the main
program as our model is functional.
We note that the main expression posts a method of an
object that is created with three inputs. However the type
of the third input is not correct. A type system to detect
such errors in our model is necessary. Building such
system is the main motivation for the research of this
paper.

3. Syntax and Type system

The studied model for asynchronous programming in an
object-oriented and functional style is presented in Figure
2. The syntax of the figure uses the asterisks to express
sequences. Therefore for example the potentially empty
sequence e1;…;en is denote by e* and also the potentially
empty sequence t1 f1;…; tn fn is denoted by (t f)*. The
syntax uses semicolons and commas to express
concatenations. In the context of the syntax, it is assumed
that names of parameters, arrangements of variables
declarations, definitions of methods, and method names do
not include repeated names. The syntax is based on a main
class named ”Post class” which hosts required information
about each posting action. These information includes:
1) the name of the method that posted the concerned
method: root,
2) the result of the posted method: result, and
3) an indicator of if the posted method is finished: finished.

In the proposed syntax, every class is derived from
the ”Post class”. A class, c, definition in the syntax is
composed of the class name, the name ”Post class” of its
superclass, field presentations (t f)*, and a group of
presentations for the class methods M*.
The language syntax has two sorts of expressions: typical
and posting expressions . The command ”Post” represents
the classical posting command. The syntax provides a set
of advanced posting commands that are:

- DelayPosted e:m(e*): the command delaying a
method that is posted but not done yet.

- RunPostedNow e:m(e*): the command rushing up
the run of a method that is posted but not
executed yet.

- RemovePosted e:m(e*): the command removes a
previously posted method that is not required any
more.

Figures 3 and 4 present sub-typing relation of the types
presented in the language syntax and an algorithm to
determine types of syntax methods. Figure 5 presents the

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.2, February 2016

29

typing rules of our propped type system. Typing
judgments have the following form.

𝑃𝑃,Δ ⊨ 𝑒𝑒: 𝑡𝑡
In this form P denoted the set of posted methods and Δ
denotes the typing context (which assigns a type to each
variable in the program) of assigning the type t to the
expression e.

4. Related and Future Work

This section reviews most related work to the work
presented in this paper and presents directions for future
work. An active area of research is the study of sequential
verifications for asynchronous program analysis. The
verification presented in [1] was among the first tries in
this direction. In [1], a source-code-to-source-code
translation from parallel programs into sequential and
equivalent ones was presented. This technique
approximates the original-program behaviors. A better
approach was presented in [2] where the source-code to
source-code translation calculated a bound approximation
of context switches for any arbitrary context-bound.
Moreover, [2] provided a technique for predicting context-
switches values with constrains for later use at a
convenient program point during the program run.
However, a main drawback of [2] is that unreachable
control configurations in the original asynchronous
program may be considered in the equivalent sequential
form.
The work in [3] treated this drawback via repeated
execution to the configurations at which predicted values
are supposed to be used. The last two techniques were
compared in [4] using the testing-specification-verification
style, rather than in the model-checking style. In the earlier
style, advantages of a lazy approach are not obvious
because the technique using it overcomes the lazy
approach. The work in [5] presented a transformation
obtaining sequential programs for synchronous ones
equipped with schedulers that are priority-preemptive.
However the transformation is based on a bound for the
tasks count. All the techniques of sequentializations
reviewed above do not consider runtime taskinitiation.
However, [6] proposed a sequentialization technique for a
parameterized design-testing approach [7] with no bound
on tasks number.
One of the related research direction is the compositional
transformations from asynchronous programs to sequential
ones [8]. This process is called sequentialization. An
example of sequentialization is in [1] that studied multi-
threaded programs with at most a single context-switch
among threads. This work was later extended to treat a
parameterized number of context-switches among a fixed
(statically) group of threads that run in a specific order
(round-robin) [2]. Later [3] presented another

transformation that focused on model-testing sequential
programs resulted from transformation. This technique
was later generalized to treat parameterized programs with
statically-fixed threads of an unconstrained number [7].

This last result was even extended more in [9] to treat
unconstrained number of tasks dynamically-established.
This made the technique applicable both to multi-threaded
and event-based asynchronous programs [10], [11], [12].
Yet in the same direction is [13] that presented a
sequentialization which studied as many properties as
possible according to a given set of constraints. The last
reviewed two techniques of sequentializations can be
applied to asynchronous programs with dynamic
establishment of an unconstrained number of tasks.
However they do not consider priorities of task executions
nor many buffers of tasks. In [5] priority-style
sequentialization was presented. However reduction in [5]

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.2, February 2016

30

is based on a fixed number of tasks (statically-fixed) and
does not consider many buffers of tasks.
Many tries have been attempted to augment C and Java
with synchronous concurrency structures. Reactive C [14]
is one of such augmentations that uses the definitions of
preemptions and ticks. However it does not enable real
concurrency. FairThreads [15] is another augmentation
that uses native threads. Synchronous C [16] and Precision
Timed C (PRET-C) [17] are equipped with libraries for
expressing threads of synchronous concurrent.
Synchronous C as well allows runtime scheduling for
threads which makes it convenient many synchronous
program analyses. Using CCSscheduling communication
[18] and and exception handlers, SHIM [19], one more C-
augmentation, implements concurrent Kahn network
systems. SHIM followed spirit of synchronous languages.
However it does not employe the classical models
synchronous programming, Rater than that it is based on
using synchronisation channels for communications. All
languages including signals are black boxes that do not
disjoin updates and initialisations.
Signal methods can be included in Elm [20] gathering the
advantages of deterministic AFRP [21], [22], [23], [24],
[25] to Elm users permitting programs to install, on the run,
graphical structures, instead of using signals on signals.
Elms deterministic meanings make using concurrency and
asynchrony an obvious process. This was believed to be
very complex in a running AFRP. Processing of
concurrent signals are possible using parallel FRP [26],
such as Elm [20].
In Parallel FRP, events of a signal are ordered in such a
way that permitting events to be executed randomly. In an
extreme case, this amounts to the order of processing
requests is not the order of their arrival. Therefore, parallel
computing is possible and results in responses to be
returned immediately. It is not convenient to achieve this
intra-signal asynchrony in a GUI setting because it would
main tasks to be executed out of order. Alternatively, Elm
[20] allows asynchrony of inter signal via removing the
events order among various signals. It is believed that that
asynchrony of inter- and intra-signal are consistent.
However in GUI programming, it is more proper to focus
on asynchrony of inter-signal.
Trying to eliminate repeated computations motivated
selfadapting computations [27], [28], [29]. The benefits of
removing unnecessary repeated computations, as clear in
FElms signal evaluation using pipelines, improved
performance and guaranteed correctness. FElm 10
prevented some unnecessary recompilation. However it
permits propagation of various messages through graph of
the signal. Ideas from self adapting computation are usable
to eliminate such messages and to boost the performance.
Of course, it is likely that improved accesses [27] –
employed in self-adapting calculations to express values
that may adapt and thus initiate recalculations are usable to

encrypt signals, and to represent asynchronous signals [30].
For future work, it is interesting to study different and
important static analyses (like pointer analysis) of classical
programming models on the model studied in this article.

5. Summary

This paper presented a precise type system for
asynchronous operations, on a functional object-oriented
model. Stopping undefined functions from execution
(hence from aborting programs) is the main job of the type
system. Therefore, the type system guarantees correctness
of data types. Hence the type system as well prevents static
errors like field-not-defined and method-not-defined from
occurring at execution time. The paper introduced also a
programming example for the importance of the proposed
system.

Acknowledgement

The first author is affiliated with Department of
Mathematics, Faculty of Science, Cairo University, Giza
12613, Egypt. He is now on a sabbatical leave to College
of Computer and Information Sciences, Al Imam
Mohammad Ibn Saud Islamic University (IMSIU), Riyadh,
Kingdom of Saudi Arabia. The authors acknowledge the
support of Al Imam University.

References
[1] S. Qadeer and D. Wu, “KISS: keep it simple and sequential,”

in Proceedings of the ACM SIGPLAN 2004 Conference on
Programming Language Design and Implementation 2004,
Washington, DC, USA, June 9-11, 2004, 2004, pp. 14–24.

[2] A. Lal and T. W. Reps, “Reducing concurrent analysis
under a context bound to sequential analysis,” Formal
Methods in System Design, vol. 35, no. 1, pp. 73–97, 2009.

[3] S. La Torre, P. Madhusudan, and G. Parlato, “Reducing
contextbounded concurrent reachability to sequential
reachability,” in Computer Aided Verification, 21st
International Conference, CAV 2009, Grenoble, France,
June 26 - July 2, 2009. Proceedings, 2009, pp. 477–492.

[4] N. Ghafari, A. J. Hu, and Z. Rakamaric, “Context-bounded
translations for concurrent software: An empirical
evaluation,” in Model Checking Software - 17th
International SPIN Workshop, Enschede, The Netherlands,
September 27-29, 2010. Proceedings, 2010, pp. 227–244.

[5] N. Kidd, S. Jagannathan, and J. Vitek, “One stack to run
them all - reducing concurrent analysis to sequential
analysis under priority scheduling,” in Model Checking
Software - 17th International SPIN Workshop, Enschede,
The Netherlands, September 27-29, 2010. Proceedings,
2010, pp. 245–261.

[6] S. La Torre, P. Madhusudan, and G. Parlato,
“Sequentializing parameterized programs,” in Proceedings
Fourth Workshop on Foundations of Interface Technologies,

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.2, February 2016

31

FIT 2012, Tallinn, Estonia, 25th March 2012., 2012, pp. 34–
47.

[7] ——, “Model-checking parameterized concurrent programs
using linear interfaces,” in Computer Aided Verification,
22nd International Conference, CAV 2010, Edinburgh, UK,
July 15-19, 2010. Proceedings, 2010, pp. 629–644.

[8] M. Emmi, A. Lal, and S. Qadeer, “Asynchronous programs
with prioritized task-buffers,” in 20th ACM SIGSOFT
Symposium on the Foundations of Software Engineering
(FSE-20), SIGSOFT/FSE’12, Cary, NC, USA - November
11 - 16, 2012, 2012, p. 48.

[9] M. Emmi, S. Qadeer, and Z. Rakamaric, “Delay-bounded
scheduling,” in Proceedings of the 38th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages, POPL 2011, Austin, TX, USA, January 26-28,
2011, 2011, pp. 411–422.

[10] P. Ganty and R. Majumdar, “Algorithmic verification of
asynchronous programs,” ACM Trans. Program. Lang. Syst.,
vol. 34, no. 1, p. 6, 2012.

[11] R. Jhala and R. Majumdar, “Interprocedural analysis of
asynchronous programs,” in Proceedings of the 34th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2007, Nice, France,
January 17-19, 2007, 2007, pp. 339–350.

[12] K. Sen and M. Viswanathan, “Model checking
multithreaded programs with asynchronous atomic methods,”
in Computer Aided Verification, 18th International
Conference, CAV 2006, Seattle, WA, USA, August 17-20,
2006, Proceedings, 2006, pp. 300–314.

[13] A. Bouajjani, M. Emmi, and G. Parlato, “On sequentializing
concurrent programs,” in Static Analysis - 18th International
Symposium, SAS 2011, Venice, Italy, September 14-16,
2011. Proceedings, 2011, pp. 129–145.

[14] F. Boussinot, “Reactive C: an extension of C to program
reactive systems,” Softw., Pract. Exper., vol. 21, no. 4, pp.
401–428, 1991.

[15] ——, “Fairthreads: mixing cooperative and preemptive
threads in C,” Concurrency and Computation: Practice and
Experience, vol. 18, no. 5, pp. 445–469, 2006.

[16] R. von Hanxleden, “Synccharts in C: a proposal for light-
weight, deterministic concurrency,” in Proceedings of the
9th ACM & IEEE International conference on Embedded
software, EMSOFT 2009, Grenoble, France, October 12-16,
2009, 2009, pp. 225–234.

[17] S. Andalam, P. S. Roop, and A. Girault, “Deterministic,
predictable and light-weight multithreading using PRET-C,”
in Design, Automation and Test in Europe, DATE 2010,
Dresden, Germany, March 8-12, 2010, 2010, pp. 1653–1656.

[18] P. Noce, “Noninterference security in communicating
sequential processes,” Archive of Formal Proofs, vol. 2014,
2014.

[19] O. Tardieu and S. A. Edwards, “Scheduling-independent
threads and exceptions in SHIM,” in Proceedings of the 6th
ACM & IEEE International conference on Embedded
software, EMSOFT 2006, October 22-25, 2006, Seoul,
Korea, 2006, pp. 142–151.

[20] E. Czaplicki and S. Chong, “Asynchronous functional
reactive programming for guis,” in ACM SIGPLAN
Conference on Programming Language Design and
Implementation, PLDI ’13, Seattle, WA, USA, June 16-19,
2013, 2013, pp. 411–422.

[21] H. Liu and P. Hudak, “Plugging a space leak with an arrow,”
Electr. Notes Theor. Comput. Sci., vol. 193, pp. 29–45,
2007.

[22] H. Liu, E. Cheng, and P. Hudak, “Causal commutative
arrows and their optimization,” in Proceeding of the 14th
ACM SIGPLAN international conference on Functional
programming, ICFP 2009, Edinburgh, Scotland, UK,
August 31 - September 2, 2009, 2009, pp. 35–46.

[23] H. Nilsson, “Dynamic optimization for functional reactive
programming using generalized algebraic data types,” in
Proceedings of the 10th ACM SIGPLAN International
Conference on Functional Programming, ICFP2005, Tallinn,
Estonia, September 26-28, 2005, 2005, pp. 54–65.

[24] W. Jeltsch, “Categorical semantics for functional reactive
programming with temporal recursion and corecursion,” in
Proceedings 5th Workshop on Mathematically Structured
Functional Programming, MSFP 2014, Grenoble, France, 12
April 2014., 2014, pp. 127–142.

[25] N. Sculthorpe and H. Nilsson, “Safe functional reactive
programming through dependent types,” in Proceeding of
the 14th ACM SIGPLAN international conference on
Functional programming, ICFP 2009, Edinburgh, Scotland,
UK, August 31 - September 2, 2009, 2009, pp. 23–34.

[26] J. Peterson, V. Trifonov, and A. Serjantov, “Parallel
functional reactive programming,” in Practical Aspects of
Declarative Languages, Second International Workshop,
PADL 2000, Boston, MA, USA, January 2000, Proceedings,
2000, pp. 16–31.

[27] U. A. Acar, G. E. Blelloch, and R. Harper, “Adaptive
functional programming,” in Conference Record of POPL
2002: The 29th SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Portland, OR, USA,
January 16-18, 2002, 2002, pp. 247–259.

[28] U. A. Acar, A. Ahmed, and M. Blume, “Imperative self-
adjusting computation,” in Proceedings of the 35th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2008, San Francisco,
California, USA, January 7-12, 2008, 2008, pp. 309–322.

[29] A. J. Demers, T. W. Reps, and T. Teitelbaum, “Incremental
evaluation for attribute grammars with application to
syntax-directed editors,” in Conference Record of the
Eighth Annual ACM Symposium on Principles of
Programming Languages, Williamsburg, Virginia, USA,
January 1981, 1981, pp. 105–116.

[30] U. A. Acar, G. E. Blelloch, K. Tangwongsan, and D.
T¨urkoglu, “Robust kinetic convex hulls in 3d,” in
Algorithms - ESA 2008, 16th Annual European Symposium,
Karlsruhe, Germany, September 15-17, 2008. Proceedings,
2008, pp. 29–40.

