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Summary 
Asynchronous tasks in programming are those tasks executed 
free of context of the main task. Therefore asynchronous tasks 
are methods implemented in a non-blocking style, permitting the 
main method to continue running. Functional programming is a 
programming style to express the hierarchy and components of 
computer code. In this style calculations are treated similarly to 
treating computations of functions in mathematics. 
Hence memory-states and modifiable data structures are not 
needed. Functional programming can be introduced as a 
declarative style of coding in the sense that expressions replace 
programs. 
On a functional object-oriented model, this paper presents an 
accurate type system for asynchronous operations. The job of the 
type system is to stop undefined functions from execution and 
hence from aborting programs. In other words, the type system 
ensures soundness of data types and hence avoiding static errors 
like field-not-defined and method-not-defined from occurring at 
execution time. The paper introduces as well a programming 
example for the proposed system.  
Key words: 
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1. Introduction 

Combination of event-based interactions and threads is 
necessary for most of concurrent programs implementing 
critical applications. Such programs include various 
threads which do interactions via posting jobs to each 
other. This posting has the form of asynchronous call of 
functions. Function items are used to execute the 
asynchronous calls to functions. Each function item is 
mainly a container of a reference to the method that is to 
be executed on a specific thread using the convenient 
inputs. Typically, the inputs as well include function items 
which act as callbacks. Reasoning about complicated 
parallel structures including function references and 
callback methods is part of the verification of these 
programs. This makes the verification process a very 
tricky one, notably in the existence of recursion. 
Programming languages that are functional use no 
assignment commands, no variables, and no iterative 

structures. This architecture is inspired by the view of 
mathematical functions which use segregation of different 
cases in their definitions. Typically each of these cases is 
defined separately by using (recursive) applications of 
functions. In programming languages that are functional, 
these definitions are expressed almost straightly into the 
language syntax. Therefore, the complete program is just a 
function. This function, in turn is defined using more 
functions.  
Models of asynchronous programming languages that are 
functional are quite important as they combine the 
advantages of asynchronous programming and that of 
functional programming. However verifying programs 
produced by such models is not an easy job as they are 
very involved. One of the most important verification 
issues for programming languages in general is that of type 
compatibility. This verification aims at verifying the 
correctness of type uses in the programs. On a powerful 
model for asynchronous programming that are functional 
and object-oriented programming model, this paper studies 
the problem of types verifications. The paper presents an 
accurate type system to verify programs produced by the 
studied model. The system consists of set of types (defined 
in the language) and a set of inference rules (built using 
the language constructs). The paper also shows in details a 
motivating example of the research behind the paper.  
 
Contributions 
Contributions of the paper are the following. 
1) A new type system for asynchronous programming 
using functional and object-oriented model of 
programming. 
2) A detailed motivation example of research presented in 
this paper. 
 
Paper Outline 
The content in the remaining sections is as follows. 
Section II shows in details a motivating program-example 
of the research. Section III presents the proposed type 
system. The related work is reviewed in Section IV that 
also suggests future-work directions. Section V (the final  
section) summaries the paper. 
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Fig 1: A motivating Example.  

 

Fig 2: Asynch-OP: A Robust Framework for asynchronies Operations on  
a Functional Object-Oriented Model.  

2. Motivating Example 

Figure 1 presents a motivating example of our research. 
The program is built using the syntax of Figure 2. The 
program consists of a class that is defined in the lines 1  17. 
The class consists of three integer variables ”x1, x2, and 
x3” and three projection methods ”proj1, proj2, and proj3”. 
The main program is in line 18 which consists of an 
activity table of defined classes, a method table (empty  
in this example), and a main expression, ”Post (new 
c(1,2,void).proj1)”. This last expression is the main 
program as our model is functional. 
We note that the main expression posts a method of an 
object that is created with three inputs. However the type 
of the third input is not correct. A type system to detect 
such errors in our model is necessary. Building such 
system is the main motivation for the research of this 
paper. 

3. Syntax and Type system  

The studied model for asynchronous programming in an 
object-oriented and functional style is presented in Figure 
2. The syntax of the figure uses the asterisks to express 
sequences. Therefore for example the potentially empty 
sequence e1;…;en is denote by e* and also the potentially 
empty sequence t1 f1;…; tn fn is denoted by (t f)*. The 
syntax uses semicolons and commas to express 
concatenations. In the context of the syntax, it is assumed 
that names of parameters, arrangements of variables 
declarations, definitions of methods, and method names do 
not include repeated names. The syntax is based on a main 
class named ”Post class” which hosts required information 
about each posting action. These information includes: 
1) the name of the method that posted the concerned 
method: root,  
2) the result of the posted method: result, and  
3) an indicator of if the posted method is finished: finished. 

 
In the proposed syntax, every class is derived from 
the ”Post class”. A class, c, definition in the syntax is 
composed of the class name, the name ”Post class” of its 
superclass, field presentations (t f)*, and a group of 
presentations for the class methods M*. 
The language syntax has two sorts of expressions: typical 
and posting expressions . The command ”Post” represents 
the classical posting command. The syntax provides a set 
of advanced posting commands that are:  

- DelayPosted e:m(e*): the command delaying a 
method that is posted but not done yet.  

- RunPostedNow e:m(e*): the command rushing up 
the run of a method that is posted but not 
executed yet. 

- RemovePosted e:m(e*): the command removes a 
previously posted method that is not required any 
more.  
 

Figures 3 and 4 present sub-typing relation of the types 
presented in the language syntax and an algorithm to 
determine types of syntax methods. Figure 5 presents the 
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typing rules of our propped type system. Typing 
judgments have the following form.  

𝑃𝑃,Δ ⊨ 𝑒𝑒: 𝑡𝑡  
In this form P denoted the set of posted methods and Δ 
denotes the typing context (which assigns a type to each 
variable in the program) of assigning the type t to the 
expression e. 

4. Related and Future Work  

This section reviews most related work to the work 
presented in this paper and presents directions for future 
work. An active area of research is the study of sequential 
verifications for asynchronous program analysis. The 
verification presented in [1] was among the first tries in 
this direction. In [1], a source-code-to-source-code 
translation from parallel programs into sequential and 
equivalent ones was presented. This technique 
approximates the original-program behaviors. A better 
approach was presented in [2] where the source-code to 
source-code translation calculated a bound approximation 
of context switches for any arbitrary context-bound. 
Moreover, [2] provided a technique for predicting context-
switches values with constrains for later use at a 
convenient program point during the program run. 
However, a main drawback of [2] is that unreachable 
control configurations in the original asynchronous 
program may be considered in the equivalent sequential 
form.  
The work in [3] treated this drawback via repeated 
execution to the configurations at which predicted values 
are supposed to be used. The last two techniques were 
compared in [4] using the testing-specification-verification 
style, rather than in the model-checking style. In the earlier 
style, advantages of a lazy approach are not obvious 
because the technique using it overcomes the lazy 
approach. The work in [5] presented a transformation 
obtaining sequential programs for synchronous ones 
equipped with schedulers that are priority-preemptive. 
However the transformation is based on a bound for the 
tasks count. All the techniques of sequentializations 
reviewed above do not consider runtime taskinitiation. 
However, [6] proposed a sequentialization technique for a 
parameterized design-testing approach [7] with no bound 
on tasks number.  
One of the related research direction is the compositional 
transformations from asynchronous programs to sequential 
ones [8]. This process is called sequentialization. An 
example of sequentialization is in [1] that studied multi-
threaded programs with at most a single context-switch 
among threads. This work was later extended to treat a 
parameterized number of context-switches among a fixed 
(statically) group of threads that run in a specific order 
(round-robin) [2]. Later [3] presented another 

transformation that focused on model-testing sequential 
programs resulted from transformation. This technique 
was later generalized to treat parameterized programs with 
statically-fixed threads of an unconstrained number [7].  

 
This last result was even extended more in [9] to treat 
unconstrained number of tasks dynamically-established. 
This made the technique applicable both to multi-threaded 
and event-based asynchronous programs [10], [11], [12]. 
Yet in the same direction is [13] that presented a 
sequentialization which studied as many properties as 
possible according to a given set of constraints. The last 
reviewed two techniques of sequentializations can be 
applied to asynchronous programs with dynamic 
establishment of an unconstrained number of tasks. 
However they do not consider priorities of task executions 
nor many buffers of tasks. In [5] priority-style 
sequentialization was presented. However reduction in [5] 
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is based on a fixed number of tasks (statically-fixed) and 
does not consider many buffers of tasks. 
Many tries have been attempted to augment C and Java 
with synchronous concurrency structures. Reactive C [14] 
is one of such augmentations that uses the definitions of 
preemptions and ticks. However it does not enable real 
concurrency. FairThreads [15] is another augmentation 
that uses native threads. Synchronous C [16] and Precision 
Timed C (PRET-C) [17] are equipped with libraries for 
expressing threads of synchronous concurrent. 
Synchronous C as well allows runtime scheduling for 
threads which makes it convenient many synchronous 
program analyses. Using CCSscheduling communication 
[18] and and exception handlers, SHIM [19], one more C-
augmentation, implements concurrent Kahn network 
systems. SHIM followed spirit of synchronous languages. 
However it does not employe the classical models 
synchronous programming, Rater than that it is based on 
using synchronisation channels for communications. All 
languages including signals are black boxes that do not 
disjoin updates and initialisations. 
Signal methods can be included in Elm [20] gathering the 
advantages of deterministic AFRP [21], [22], [23], [24], 
[25] to Elm users permitting programs to install, on the run, 
graphical structures, instead of using signals on signals. 
Elms deterministic meanings make using concurrency and 
asynchrony an obvious process. This was believed to be 
very complex in a running AFRP. Processing of 
concurrent signals are possible using parallel FRP [26], 
such as Elm [20].  
In Parallel FRP, events of a signal are ordered in such a 
way that permitting events to be executed randomly. In an 
extreme case, this amounts to the order of processing 
requests is not the order of their arrival. Therefore, parallel 
computing is possible and results in responses to be 
returned immediately. It is not convenient to achieve this 
intra-signal asynchrony in a GUI setting because it would 
main tasks to be executed out of order. Alternatively, Elm 
[20] allows asynchrony of inter signal via removing the 
events order among various signals. It is believed that that 
asynchrony of inter- and intra-signal are consistent. 
However in GUI programming, it is more proper to focus 
on asynchrony of inter-signal.  
Trying to eliminate repeated computations motivated 
selfadapting computations [27], [28], [29]. The benefits of 
removing unnecessary repeated computations, as clear in 
FElms signal evaluation using pipelines, improved 
performance and guaranteed correctness. FElm 10 
prevented some unnecessary recompilation. However it 
permits propagation of various messages through graph of 
the signal. Ideas from self adapting computation are usable 
to eliminate such messages and to boost the performance. 
Of course, it is likely that improved accesses [27] –
employed in self-adapting calculations to express values 
that may adapt and thus initiate recalculations are usable to 

encrypt signals, and to represent asynchronous signals [30]. 
For future work, it is interesting to study different and 
important static analyses (like pointer analysis) of classical 
programming models on the model studied in this article. 

5. Summary 

This paper presented a precise type system for 
asynchronous operations, on a functional object-oriented  
model. Stopping undefined functions from execution 
(hence from aborting programs) is the main job of the type 
system. Therefore, the type system guarantees correctness 
of data types. Hence the type system as well prevents static 
errors like field-not-defined and method-not-defined from 
occurring at execution time. The paper introduced also a 
programming example for the importance of the proposed 
system.  
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