
IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.2, February 2016 

 

32 

Manuscript received February 5, 2016 
Manuscript revised February 20, 2016 

Adaptive Session Duration for Efficient Pooling of Time and 
Space in Content Delivery 

Mohammad 
Malli† 

Hassan 
Sbeity† 

Ahmad 
Fadlallah† Ali Hodroj†† Abed-Ellatif Samhat †† 

     

†Faculty of Computer Studies, Arab Open University, Lebanon ††Faculty of Engineering, Lebanese University, 
Lebanon 

 
Summary 
The availability of a wide variety of access technologies 
provides end- users (clients) with access to more than one 
communication network. In addition, service/content replication 
has become a trivial approach in overlay networks to provide a 
high availability of data and better Quality of Service (QoS).  
In this paper, we consider a multi-homed client seeking a 
replicated service/content in a Content Distributed Network 
(CDN), and we propose an adaptive model to improve the 
content distribution. This model is applied at the application 
level in a fully distributed way. It takes advantage of the 
connections “multiplicity” at both client and server sides in 
order to improve the content distribution. It consists of 
simultaneously downloading the requested content from the 
“best” server available through each client network interface. 
This is achieved in multiple sessions having adaptive durations 
estimated based on the passive measurement of network 
performance. In order to ensure the confidentiality of the content 
download, we enhance the model with an encryption scheme. 
Our measurement results show that our model is able to pool 
efficiently the network capacity over the space and time by 
improving considerably the latency. 
Key words: 
Multihoming, Service Replication, Passive Measurement, 
Content Delivery, Confidentiality 

1. Introduction 

Most End-user devices (PCs, Laptops, Handheld devices, 
etc.) are equipped nowadays with multiple network 
interfaces that allow users to access different network 
technologies whether wired (Ethernet, Fiber, etc.) or 
wireless (Wi-Fi, WiMAX, LTE, etc.), which is known as 
“multi-homing”. The advantages of multi-homing, from 
current users’ perspective, are: (1) the existence of 
alternative solutions (e.g. laptop users using Wi-Fi in the 
absence of Ethernet network) and (2) the use of each 
technology for specific purpose(s) (e.g. Mobile phone 
users using Bluetooth for file sharing and using LTE or 
Wi-Fi for Internet access). However, there is a growing 
interest in exploiting client multi-homing in another way 
through the simultaneous use of different network 
interfaces for the same service. This interest is driven by 
the possibility to access the Internet using different 

available network technologies: Wi-Fi, LTE, Ethernet, 
Bluetooth (in case a Bluetooth device is designated as an 
access point), and by the users’ interest to take advantage 
of all the available resources and to improve their quality 
of experience (QoE) and quality of service (QoS).  A 
typical example of application (from an end-user 
perspective) of multi-homing in such context is file 
download applications allowing to download the same file 
from the same server using different network interfaces. 
In a related domain, service/content replication is a 
scalable solution for the distribution of digital content 
over the Internet. It mainly aims to improve the quality of 
service (users can access the content from the “best”1 
servers hosting the requested content) and to ensure high 
data availability. Service replication can be achieved 
through different proposed overlay networks such as 
Content Distribution Networks (CDN) (e.g. Akamai [1]). 
In this work, we investigate the use of service replication 
in file downloading for a multi-homed network. A typical 
example is a client with multiple network interfaces 
downloading a content replicated in different servers of a 
CDN. The content requested by a client can be hosted on 
different servers. For a better QoS, the “best” server to 
request the file from, should be selected. The best server 
is defined as the one capable of providing the requested 
content to the client with the highest QoS compared to 
other servers (providing the requested content). The best 
server is defined per each network interface; each client 
can have a different best server for each network interface 
based on the conditions on the path connecting the client 
to the different servers through each network interface. 
The same goes between different clients for the same 
content; a client might have a best server different from 
the best servers of other clients. 
The objective of this work is to optimize (minimize) the 
total download time of a file replicated in the mirror 
servers of one CDN network or in multiple CDN 
networks (i.e., content multi-homing [18] [3] [11]). In 
order to achieve this objective, an application-level 
protocol is proposed. It works as follows: a client is 

                                                 
1 providing the higher download bitrate for users 



IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.2, February 2016 33 

downloading a replicated content from a certain set of 
best mirror servers simultaneously through its available 
network connections. First, the best server reachable 
through each network interface is determined based on 
any application utility function (e.g., [20] [21]). Then, the 
requested content is downloaded from these best servers 
simultaneously but with different calculated amounts. File 
chunks are of variable size in order to deal with the 
dynamicity of the network performance status. Content 
download is partitioned into successive sessions such that 
the network performance might considerably change after 
each session time. The session duration is estimated based 
on the passive measurement of the network performance. 
The security of the content download is also addressed by 
shuffling and encrypting the chunks.  
The rest of the paper is organized as follows: Section 2 
briefly presents the related works. Section 3 describes the 
proposed model in details. Section 4 presents the security 
part of this model. Section 5 presents the evaluation of the 
proposed solution through emulated scenarios. Finally, 
section 6 concludes the paper. 

2. Related Work 

The proposed solution falls in the following three 
domains: multi-homing, multi- path and service 
replication. Our survey of the similar works shows that - 
to the best of our knowledge - no solution covers all these 
aspects together, although some solutions include two of 
them. Nevertheless, the aim of the proposed solution is to 
optimize the latency in this context by proposing an 
adaptive model for download sessions.  
Many solutions [24] [4] [25] [26] were proposed to 
enhance the content distribution; they rely on particular 
network infrastructure nodes (e.g. load-aware Anycast 
router, route controller, peer coordinator, etc.) taking into 
account network-specific constraints (e.g. traffic 
engineering constraints) perceived by the Internet Service 
Provider (ISP) or the overlay network operator in order to 
solve the problem as a global optimization problem.  
While such approaches could be of great benefit for traffic 
engineering purposes, end-systems solutions are able to 
provide better enhancement of the performance perceived 
by the clients. In some scenarios, end-systems solutions 
are able to achieve better traffic engineering outcome than 
the ISPs themselves can do as shown in [29].  
Furthermore, deployment-related issues of the existing 
solutions can be avoided by implementing the solution at 
the end-user level in a fully distributed way. This high 
interest in multi-path-capable end systems has been 
demonstrated in several research works [29] [30] [13] [31] 
[14] in addition to the ongoing work of standardization 
bodies [10]. However, there is no standardized transport 
protocol with such capability so far.  

This work proposes to determine the best mirror server 
reachable through each client network interface using any 
application utility function (e.g., [20] [21]). Then, the 
client downloads the requested content from the 
determined best servers simultaneously through their 
corresponding interfaces. Each best server should deliver 
a specific estimated range of bytes (i.e. content chunk) to 
an independent TCP socket opened at the client side for 
being finally aggregated at the application-level. This is 
achieved in multiple sessions where in each session the 
size of each chunk is estimated based on the current 
network performance which is estimated passively. The 
proposed model has also taken advantage of this content 
delivery approach (multiple connections with multiple 
sessions) for strengthening the confidentiality of data 
transfer. 

3. Model Description 

The aim of this work is to offer a solution that optimally 
utilizes the multi-homing capabilities of a client wishing 
to download a content replicated on different CDN servers. 
The model is illustrated by considering a client requesting 
a content replicated in different servers. The client - 
through this model - is capable of downloading the 
content simultaneously and efficiently from the different 
servers using its available network connections. The 
simultaneous download requires dividing the content to be 
downloaded into a number of chunks; a chunk is to be 
downloaded from one of the mirror servers. The 
efficiency of content download is achieved by (1) 
selecting the best server for each network connection and 
avoiding the overlap and redundancy in downloaded 
chunks, and (2) considering different chunk sizes for each 
connection since the performance of the different 
available network connections are not the same; the 
throughput achieved through some connection(s) can be 
largely greater than that achieved through other 
connections. 
The best server for each network connection is determined, 
by the client, before starting the download using selection 
techniques such as that described in [21]. The selection 
process can also be triggered at a certain interface when 
the current corresponding best server is down. It can also 
be triggered when this best server is underperforming, 
however, this introduces additional overhead and thus 
might be deprecated. After selecting the best servers, the 
content download starts; it consists of one startup session 
and several download sessions running simultaneously 
through the different network connections. The duration 
of each download session is calculated using a session 
duration estimation algorithm (presented in 3.1). The size 
of chunks to be downloaded in a session through the 



IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.2, February 2016 34 

corresponding network connection is calculated based on 
the throughput achieved in the previous session. 
Both calculations (chunk size and session duration) are 
performed during a control phase that precedes each 
download session (as shown in Figure 1). 

 

  

Figure 1- Content Download Sessions 

The chunk size for the first session (called the startup 
session) is fixed (65 Kilobytes 2 ) for all network 
connections. The time taken to download this chunk is 
used to estimate the throughput at each interface, which 
will serve to calculate the chunk size for the first “regular” 
download session. Before proceeding with the detailed 
model description, Table 1 summarizes the different terms 
and notations used in the rest of this paper. 

Table 1-Terms and Notations 

 
 

The chunk size (CSj (sk)) at a session (sk) for a network 
connection (cj) is calculated as follows: 

𝑪𝑪𝑪𝑪𝒋𝒋(𝒔𝒔𝒌𝒌) = 𝑻𝑻𝑻𝑻𝒋𝒋(𝒔𝒔𝒌𝒌−𝟏𝟏) ∗ 𝑻𝑻(𝒔𝒔𝒌𝒌) (1) 
where (Thj (sk-1)) is the average TCP throughput at the 
previous session (sk-1) through the network connection 
(cj) and (T(sk)) is the estimated duration for session sk 
(calculated using the session duration estimation 
algorithm presented in section 3.1). The last session sf is 
reached when the expected number of bytes to be 
downloaded (sum of all chunk sizes) is greater than the 
number of remaining bytes R to be downloaded from the 
content: 

�𝑪𝑪𝑪𝑪𝒋𝒋�𝒔𝒔𝒇𝒇�
𝒏𝒏

𝒋𝒋=𝟏𝟏

> 𝑹𝑹 (2) 

                                                 
2 TCP maximum buffer size 

The chunk size during the last session (sf) through a 
network connection cj is set proportionally to the relative 
throughput according to Equation 3: 

𝑪𝑪𝑪𝑪𝒋𝒋 �𝒔𝒔𝒇𝒇� =  𝑹𝑹 ∗

⎝

⎜⎜
⎛

⎝

⎜
⎛

𝑻𝑻𝑻𝑻𝒋𝒋�𝒔𝒔𝒇𝒇−𝟏𝟏�
𝑻𝑻𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎�𝒔𝒔𝒇𝒇−𝟏𝟏�

∑ �
𝑻𝑻𝑻𝑻𝒋𝒋�𝒔𝒔𝒇𝒇−𝟏𝟏�
𝑻𝑻𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎�𝒔𝒔𝒇𝒇−𝟏𝟏�

�𝒍𝒍
𝒋𝒋=𝟏𝟏

⎠

⎟
⎞

⎠

⎟⎟
⎞

 (3) 

where, Thmax (sk) is the maximum throughput achieved 
in the session (sk) among all the network connections: 

𝑻𝑻𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎(𝒔𝒔𝒌𝒌)  =  𝑴𝑴𝑴𝑴𝑴𝑴𝒋𝒋=𝟏𝟏…𝒍𝒍𝑻𝑻𝑻𝑻𝒋𝒋(𝒔𝒔𝒌𝒌) (4) 
If the proportions calculated in Equation 3 do not sum up 
to the remaining bytes (R), the residual bytes are added to 
the range of bytes allocated to the best server (associated 
to the interface achieving the maximum throughput during 
the last session). Finally, the client application, upon 
reception of the different chunks, re-sequence the received 
chunks using a buffer of the same size of the requested 
content. 

3.1 Session duration estimation algorithm 

The main rationale for varying the session duration is to 
respond to the dynamicity of network performance. 
However, it is not feasible to find optimal values for the 
session duration T (sk) when running the scenarios over 
the internet; one cannot expect the values of time intervals 
during which changes of bandwidth might occur on the 
paths between client and servers. Basically, network 
performance can change (improvement/degradation) 
considerably as a result of traffic variability as well as 
routing changes. This variation has been addressed in 
several research works. 
[17] showed that routing events usually converge within 
several minutes. Besides, the authors in [15] showed that 
bottlenecks are more likely to occur on inter-AS 
(Autonomous System) links which could be changed in 
time depending on the level of congestion between the 
connected ASs.  According to [19], considerable changes 
in bandwidth are detected every 20 minutes. Moreover, 
the measurements presented in [12] showed that 
approximately two-thirds of all bandwidth detours persist 
for more than 90 minutes. In order to address the problem 
of unpredictable dynamicity of network performance, a 
dynamic value of T(sk) in each session sk is selected, 
which is estimated according to the algorithm presented 
below: 
- Session 0 (Startup Session):  The first session is 
denoted as a startup session s0. It consists of downloading 
(for each connection) 65 Kilobytes of content data. The 
reason is that at this stage, rapid and passive measurement 
of the average TCP throughput is needed in order to 
estimate an optimized value of the chunk size for the next 
sessions. It is important to mention that the choice for 



IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.2, February 2016 35 

passive measurement avoids the overhead of injecting 
active measurement packets. 
- Session 1:  The passive measurement of the average 
throughput (achieved in s0) can be used to estimate the 
chunk size of session s1 as per Equation 1. However, it is 
not sufficient to estimate the dynamicity of network 
performance and subsequently the optimal value of T(s1). 
Then, the period of this session is set to its minimum 
value Tmin where most likely the network performance 
will not considerably change before Tmin. 
- Session k (k ≥ 2):  The session estimation algorithm for 
session k is illustrated in Figure 2. If the average 
throughput in the last two sessions increased/decreased by 
less than a preset threshold ratio Rth, then it is assumed 
that there is no considerable change in network 
performance during the current session duration. 
Subsequently, the session duration is doubled for the next 
session checking (until reaching a preset maximum 
duration Tmax). This will reduce the number of the 
control phases and thus minimize their overheads 
(compared to shorter values of session period). On the 
other hand, if the average throughput in the last two 
sessions increased/decreased by more than Rth, a 
considerable change in network performance during the 
current session duration is assumed. Hence, the next 
session duration is decreased to the half, in order to have 
sessions where the network status remains steady. Finally, 
the session duration is set to the minimum value between 
the session durations estimated on every network 
connection (i.e., joining a network interface to its 
associated server) to synchronize the transfer of chunks 
among the different network connections. A tradeoff is 
needed for setting Tmin and Tmax: choosing longer time 
interval for the download sessions (larger Tmax) may lead 
to less optimal estimation of the chunks sizes but it 
reduces the overhead of the control phases. The opposite 
will happen when choosing shorter time intervals (smaller 
Tmin) where the overhead of the control phase increases 
for the benefit of more optimized session duration.  

 

Figure 2- Session duration estimation algorithm 

This section illustrates a basic scenario that illustrates how the proposed 
model works. Suppose that a client C requests to download a content 
replicated in two servers S1 and S2 (n=2). In this scenario, the client is 
assumed to have two network interfaces/connections c1 and c2 (l=2) 

that can be used to communicate with the servers. Based on a certain 
best server selection mechanism, it is assumed that S1 is the best server 
for C through c1 and S2 is the best server reachable through c2. 

- First session: In the startup session, C downloads respectively 65 
Kilobytes from S1 and S2 through c1 and c2. 

- Intermediate sessions: During the control phase preceding each session 
and based on the passive measurement of the average TCP throughput 
in the previous session, C calculates the chunk size for each interface, 
taking into account the session duration as presented in Equation 1. 
Then, C opens two TCP connections with S1 and S2 respectively and 
sends them first the next range of bytes to be downloaded through their 
associated interfaces. 

- Last session: When the remaining amount of bytes to be transferred is 
less than the summation of the estimated chunks (Equation 2), the 
last download session is reached. In this session, the chunk to be 
downloaded from each network interface is calculated based on 
Equation 3. 

4. Confidential Content Delivery 

The confidentiality of the content to be downloaded can 
be of high importance for certain application domains. 
The security of the proposed scheme relies on two 
aspects: scrambling and encryption. The content of the 
whole requested file is shuffled before transmission and 
each chunk is encrypted using a secret key shared 
between the server and the client application. 

4.1 Assumptions 

It is assumed that users wishing to use the secure file transmission, 
must be authenticated first using a password based scheme. Then, a 
master secret key (MSK) is exchanged between the client and the 
server applications, using a password- authenticated key exchange 
mechanism such as [6] [2] [7] [8]. The analysis and choice of the key 
exchange mechanism is out of the scope of this paper. It is important to 
mention that the MSK is related to one content download and thus, 
should be renewed upon any new download. 

4.2 Scrambling & Encryption 

The client application generates two random numbers r1(seed) and r2 
(salt). Then using a key derivation function (KDF) (e.g., [16], [28]), it 
generates a key k0 = KDF (MSK, r2) and encrypts r1 using k0. The 
integrity of k0 is ensured using a keyed-hashed Message 
Authentication Code function (HMAC) having k0 as an input and as a 
key at the same time.  The client application then sends (r2 || Ek0 (r1) || 
HMACk0 (k0)) to all the servers during the initialization session 
(preceding the startup session).  
A server receiving (r2 || Ek0 (r1) || HMACk0 (k0)) first calculates k0 
using KDF, MSK and r2. It verifies the integrity of k0 using the 
HMAC function and if the integrity check succeeds, it decrypts r1 
using k0. After correctly obtaining k0, r1 and r2, the server notifies the 
client application about successful initialization.  The server then 
shuffles the content/file using a secure permutation (e.g., [5] and its 



IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.2, February 2016 36 

variants, [23]) based on r1. Then it generates a key k1 = KDF (k0, r2), 
which is used to encrypt the file chunks. The encryption can be 
through a “pure” stream cipher (e.g., [27]) or a block cipher turned into 
a stream cipher using different modes of operations such as Cipher 
Feedback (CFB), Output Feedback (OFB) or Counter (CTR) modes 

[9]. The client application receives encrypted chunks. Knowing KDF, 
k0 and r2, it calculates k1 and uses it to decrypt the encrypted chunks 
received in each session. After receiving all the file chunks, the client 
application has to de-shuffle the whole file by reversing the shuffling 
algorithm using the same seed (r1).  

 
Figure 3- Key Exchange Mechanism 

Additional security can be integrated by encrypting the messages sent 
from the client to the servers (range of bytes to be downloaded in each 
session) using a session key kx = KDF (kx−1, kx−2), x=2...f, derived 
every session at both client and servers side. This will, as mentioned, 
improve the security of the scheme but increases the overhead of the 
scheme.  
Figure 3illustrates the message exchanges required between a client 
and a server. For clarity purposes, only one server is considered; 
however, the same exchange can be generalized to the exchanges 
between a client and multiple servers. The chosen cryptographic 
algorithms in the proposed solution are: 

- Encryption algorithm: Advanced Encryption Standard with 
key size of 256 bits in Counter mode (CTR) mode. 

- HMAC function: HMAC with Secure Hash Algorithm 
SHA-256 [22] 

- HMAC-based extract-and-expand key derivation function 
(HKDF) [16] as a key derivation function using the 
HMAC function selected above. 

It is important to mention that the above-mentioned choices were taken 
based on the literature review of the existing cryptographic algorithms 
and the recommendation or approval of the standardization institutes 
such as NIST. However, the security scheme can be implemented 
using any other corresponding algorithm while taking into 
consideration the key size and algorithm input details. The proposed 
scheme relies on the security of the MSK (reference to the Kirchhoff’s 



IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.2, February 2016 37 

principle3). The high complexity of breaking the scheme and thus 
“illegally” obtaining the content is based on the following points: 

- The eavesdropper must be able listen to all the network paths 
connecting the client’ interfaces to the servers. 

- The eavesdropper needs to decrypt all the chunks; 
- The eavesdropper should find the seed for de-shuffling the content. 
- Decrypting parts of the content will not be useful to get any information 

since the content is scrambled but the complete operation must be 
done successfully to acquire information. 

5. Model Validation 

The performance enhancement of the proposed model is validated 
through the comparison with the classical point-to-point content 
delivery and with the point-to-multipoint classical content delivery 
(with fixed size chunks). In order to avoid the dynamicity of the 
Internet that makes the comparison between the different mechanisms 
and protocols irrelevant, the scenarios were built and run in an 
emulation testbed. This allows to regenerate the same configuration 
settings for testing and comparing the different protocols by running 
them in a sequential manner without any assumption related to the 
variation rate of network performance metrics.  
The testbed (Figure 4) consists of: (i) one multi-homed client 
plugged simultaneously to two WiMAX network connections and (ii) 
two servers where each server is connected to one of the two WiMAX 
networks. All of these equipment is dedicated to the testbed and thus 
there is no external background traffic circulating in the WiMAX 
networks aside the traffic of the scenarios. The experimentations can be 
split into two measurement sets: 

- the first measurement set is to choose the model’ control 
parameters (Tmin, Tmax, and Rth). 

- The results of the first measurement set (parameters values) are 
used in the second set to evaluate the overall performance of the 
model in comparison with other solutions. 

 

 
Figure 4- Validation Testbed 

5.1 Control Parameters 

In order to study the impact of of control parameters on the model 
performance and overhead, 270 scenarios were built and run: Each 
scenario consists in downloading a 10 GB file using fixed network 

                                                 
3 A cryptographic system should be secure even if everything about the 

system, except the key, is public knowledge 

connection speed (24Mbps download and 1.1Mbps upload) using 30 
different combination values of protocol control parameters (Figure 
5). Then, each scenario is repeated three times using three different 
seed values for generating the random background traffic. Thereafter, 
the same three seed values are used when changing the combination of 
protocol control parameters for obtaining comparable scenarios of 
experimentation. Control parameters vary as follows: Tmin varies 
between 1 and 10 minutes, Tmax varies between 20 and 30 minutes 
and Rth between 0.1 and 1. The variation of the parameters is done by 
changing the value of one parameter as indicated above while fixing 
the value of the two other parameters to the minimum value (1 minute 
for Tmin, 20 minutes for Tmax and 0.1 for Rth). For each measurement, 
the following latency values are calculated: 

- Tm: the latency value measured when applying the proposed model. In 
this case, the content is delivered concurrently from the two servers 
through the two network connections according to the model 
presented in the previous section. 

- T1: the latency value measured when downloading the content in 
point-to-point mode from the first server. 

- T2: the latency value measured when downloading the content in 
point-to-point mode from the second server. 

Figures 6, 7 and 8 illustrate the average enhancement (E) (Equation 5) 
brought by the proposed protocol vis-à-vis the point-to-point download 
scheme for different values of Tmin, Tmax and Rth respectively. 

𝐸𝐸 =
𝐸𝐸1 + 𝐸𝐸2

2
=
�𝑇𝑇1 − 𝑇𝑇𝑚𝑚

𝑇𝑇1
� + �𝑇𝑇2 − 𝑇𝑇𝑚𝑚

𝑇𝑇2
�

2
 (5) 

The results show that better performance could be achieved using 
lower values of Tmin, Tmax and Rth. However, lower values require 
higher number of sessions and thus higher protocol overhead (e.g. 
processing). Thus, a tradeoff should be taken into account when tuning 
the values of these parameters. 

5.2 Model Evaluation 

The second measurement set presented in Figure 9 aims at evaluating 
the proposed model based on the results obtained in the first 
measurement set. 
In this set, external background traffic is used. Each experimentation 
scenario is defined by the following parameters: the network speed of 
the two clients’ connections, the background traffic, and the size of the 
file to download. Each scenario is repeated four times by downloading 
the file: 
1. simultaneously from the two servers according to the proposed 

model. 
2. from the first server in classical point-to-point mode through the 

first network connection. 
3. from the second server in classical point-to-point mode through 

the second network connection. 
4. simultaneously from the two servers associated to the network 

interfaces but in one session where the size of the chunk to be 
downloaded from each server is fixed and estimated 
proportionally to the network interface connection speed. 



IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.2, February 2016 38 

  
Figure 5- Measurement Set 1 

 

 



IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.2, February 2016 39 

Table 2 illustrates the value ranges of the different parameters in the 
emulated scenarios. To repeat the same scenario, the same seed and salt 
were used for generating the same random numbers. Besides, the 
following values of protocol control parameters were considered: 1 
minute for Tmin, 20 minutes for Tmax and 0.1 for Rth. As mentioned 
previously (in section 3.1), such low values require more processing. 
However, the purpose of this choice is to better evaluate the 
performance of the proposed model (the impact of tuning these 
parameters has been addressed in our experimentations but could not 
be included in this paper due to space limitation). The results collected 
from such emulated experiments are assumed to be analogous to the 
ones collected from downloading files of different sizes from different 
servers distributed in the Internet and in different times. During a 
three-month period of emulations, the results of 450 scenarios were 
collected in the following way: For each combination of network 
connection speed among the three, the downloads of 50 files having 
different sizes ranged from 10MB and 10GB were tested. Each 
download is repeated three times by generating different random 
background traffic. Then, each of the 450 scenarios is repeated four 
times with the same settings (for being comparable) to measure the 
three latency values previously mentioned (T1, T2   and Tm) in 
addition to T12 which is the latency value measured when 
downloading the file from the two servers simultaneously in one 
session. The size of the two chunks to be downloaded from the two 
servers is proportional to the speed of their network connections. In 
order to compare the proposed content delivery model with the 
point-to-point one, the enhancement (E) (Equation 5) is calculated.  
Figure 10 illustrates the Cumulative Distributed Function (CDF) of the 
metric enhancement estimated from the performed scenarios when 
compared to classical point-to-point download (single flow) and to 
multiple-servers download scheme (Multiple flows). The comparison 
with single flow case shows that more than 80% of the scenarios were 
subject to an enhancement between 45% and 80%. The rest of 
scenarios still witness an enhancement between 18% and 45%. The 
expected enhancement4  is near 55%. The comparison between Tm 
and T12 (multiple flows case) reflects the enhancement (Equation 6) 
provided by the proposed model which divides the download into 
sessions having adaptive durations. It is obvious that the enhancement 
is not the same as the classical point-to-point download but still there 
are 60% of the scenarios that improved for 10% to 55%. The Expected 
enhancement value is thus around 16%. 
 

𝐸𝐸12 = �
𝑇𝑇12 −  𝑇𝑇𝑚𝑚

𝑇𝑇12
� (6) 

  
Finally, the performance of the proposed model has been measured 
vis-à-vis the size of file to be downloaded. It is clearly seen in Figure 
115  that  in general the higher the file size is, the better the 
performance of the model is. However, the average enhancement is 
noticeable despite of the file size (ranging between 40% and 60%). 

                                                 
4 the average value over all the traces. 
5 the range of the file size is from 10 MB to 10 GB. The log scale is 
used to draw this wide range of values. The enhancement is calculated in 
comparison with the point-to-point case. 

The fact that the proposed model could provide better results for larger 
files is that larger files require higher number of sessions. This will 
allow the model to converge more rapidly to estimate more accurately 
the average throughput (passive measurement) and thus to have more 
accurate estimation of session duration.  This provides the model with 
more precise adaptivity to the dynamicity of network performance, 
which allows pooling the network capacity from the two servers (of 
the scenario) in a more efficient way and thus results in the latency 
enhancement. The proposed application-level protocol can be 
classified as “smart application”. It is smart in the sense that it 
automatically improves the latency based on the characteristics at the 
physical layer, link layer, and transport layer which are taken into 
consideration along the running time of the application. Such 
cross-layer awareness is illustrated by the following dependencies: (1) 
Each client’s network interface is associated to a specific network 
interface of the best server (best server selection procedure). (2) The 
network throughput is measured passively to estimate the current 
session duration. (3) The chunk size of each connection is calculated 
based on the estimated session duration. (4) Each TCP stream is 
communicated through the associated network interface. 

6. Conclusion 

In this paper, we propose an adaptive session duration model to 
improve the con- tent distribution in overlay networks. Our model 
takes advantage from the con- tent replication and multi-homing 
facilities which are widely available nowadays.  
Then, it consists of pooling the network capacity in space and time by 
striping data across multiple TCP sockets (i.e., associated to the 
network interfaces) that simultaneously download the content chunks 
from their associated best servers. This is achieved in multiple sessions 
having adaptive durations estimated based on the passive 
measurement of network performance. The proposed solution was 
enhanced with encryption and key exchange schemes in order to 
ensure the confidentiality of the content download. Our extensive 
measurements clearly show how our solution outperforms the existing 
content delivery techniques by considerably decreasing the latency. 
Our traces show that with high probability, the delivery time could be 
decreased to an amount smaller than half of its value when applying 
our model for content delivery instead of the classic point-to-point 
content delivery method. It also outperforms the classic concurrent 
download method by an expected value of 16%. This is due to the fact 
that it combines the bandwidth aggregation facility in multi-homing 
environment with our adaptive session duration mechanism. 



IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.2, February 2016 40 

 

 

References 
[1] Akamai Technologies, Inc.  Http://www.akamai.com/ , 

Last Accessed on 16/02/2016 
[2] Abdalla, M., Pointcheval, D.:   Simple password-based 

encrypted key exchange protocols.  In: A.  Menezes (ed.)  
Topics in Cryptology   CT-RSA 2005, Lecture Notes in 
Computer Science, vol. 3376, pp. 191–208. Springer Berlin 
Heidelberg (2005).  

[3] Adhikari, V., Guo, Y., Hao, F., Varvello, M., Hilt, V., 
Steiner, M., Zhang, Z.L.: Unreeling netflix:  
Understanding and improving multi-CDN movie delivery.   
In:  INFOCOM, 2012, Proceedings IEEE, pp. 1620–1628 
(2012) 

[4] Alzoubi, H.A., Lee, S., Rabinovich, M., Spatscheck, O., 
van der Merwe, J.E.: A practical architecture for an anycast 
cdn.  ACM Transactions on the Web 5(4), 17 (2011)  

[5] Black, P.E.: Fisher-yates shuffle. Dictionary of Algorithms 
and Data Structures 19 (2005) 

[6] Boyko, V., MacKenzie, P., Patel, S.:  Provably secure 
password-authenticated   key exchange using 
Diffie-Hellman.  In: B. Preneel (ed.)  Advances in 
Cryptology   EUROCRYPT 2000, Lecture Notes in 
Computer Science, vol.  1807, pp. 156–171.  Springer 
Berlin Heidelberg (2000) 

[7] Brusilovsky, A., Faynberg, I., Zeltsan, Z., Patel, S.:  
Password-Authenticated Key (PAK) Diffie-Hellman 
Exchange.  RFC 5683 (Informational) (2010). URL 
http://www.ietf.org/ rfc/rfc5683.txt 

[8] Chien, H.y.: Provably secure authenticated diffie-hellman 
key exchange for resource-limited smart card.   Journal of 
Shanghai Jiaotong University (Science) 19(4), 436–439 
(2014). DOI 10.1007/s12204-014-1521-7. URL 
http://dx.doi.org/10.1007/s12204-014-1521-7, Last 
Accessed on 16/02/2016 

[9] Dworkin, M.:  Recommendation for block cipher modes 
of operation:  Methods and techniques.   Special 
Publication 800-38A, National Institute of Standards and 
Technology (2001). URL 
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38
a.pdf, Last Accessed on 16/02/2016 

[10] Ford A.  Raiciu C., H.M., O., B.: TCP extensions for 
multipath operation with multiple addresses. IETF Internet 
Draft (2014) 

[11] G. Bertrand E. Stephan, G.W.T.B.P.E., Ma, K.: Use cases 
for cdni.  IETF Draft (2012) 

[12] Haddow, T., Ho, S.W., Ledlie, J., Lumezanu, C., Draief, M., 
Pietzuch, P.: On the feasibility of bandwidth detouring.  
In: Proceedings of the 12th International Conference on 
Passive and Active Measurement, PAM’11, pp. 81–91. 
Springer-Verlag, Berlin, Heidelberg (2011) 

[13] Hsieh, H.Y., Sivakumar, R.:  pTCP:  An end-to-end 
transport layer protocol for striped connections. In: 
Proceedings of the 10th IEEE International Conference on 
Network Protocols, ICNP ’02, pp. 24–33. IEEE Computer 
Society, Washington, DC, USA (2002) 

[14] Hsieh, H.Y., Sivakumar, R.:  A transport layer approach 
for achieving aggregate bandwidths on multi-homed mobile 
hosts.  Wireless Networks 11(1-2), 99–114 (2005) 

[15] Hu, N., 0002, L.L., Mao, Z.M., Steenkiste, P., Wang, J.: A 
measurement study of internet bottlenecks.  In: 
INFOCOM, pp. 1689–1700. IEEE (2005) 

[16] Krawczyk, H., Eronen, P.: RFC 5869: HMAC-based 
extract-and-expand key derivation function (HKDF). IETF 
RFC (2010). https://tools.ietf.org/html/rfc5869 , Last 
Accessed on 16/02/2016 

[17] Labovitz, C., Ahuja, A., Bose, A., Jahanian, F.: Delayed 
internet routing convergence. IEEE/ACM Trans. Netw. 
9(3), 293–306 (2001) 

[18] Liu, H.H., Wang, Y., Yang, Y.R., Wang, H., Tian, C.: 
Optimizing cost and performance for content multihoming.   
In:  Proceedings of the ACM SIGCOMM 2012 
Conference on Applications, Technologies, Architectures, 
and Protocols for Computer Communication, 
SIGCOMM ’12, pp. 371–382. ACM, New York, NY, USA 
(2012) 

[19] Logg, C., Cottrell, L., Navratil, J.: Experiences in traceroute 
and available bandwidth change analysis.   In:  
Proceedings of the ACM SIGCOMM Workshop on 
Network Troubleshooting: Research, Theory and 
Operations Practice Meet Malfunctioning Reality, Net ‘04, 
pp. 247–252. ACM, New York, NY, USA (2004)  

[20] Malli, M.:  Fast distribution of replicated content to multi-  
homed clients.  ACEEE International Journal of 
Information Technology 3(2), 7 (2013)  

[21] Malli, M., Barakat, C., Dabbous, W.:  CHESS: An 
application-aware space for enhanced scalable services in 
overlay networks. Computer Communications 31(6), 
1239–1253 (2008) 

http://www.akamai.com/
http://dx.doi.org/10.1007/s12204-014-1521-7
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
https://tools.ietf.org/html/rfc5869


IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.2, February 2016 41 

[22] NIST: Secure hash standard (shs) (2012).  URL 
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.p
df , Last Accessed on 16/02/2016 

[23] Ohrimenko, O., Goodrich, M.T., Tamassia, R., Upfal, E.: 
The melbourne shuffle: Improving oblivious storage in the 
cloud.  In: Automata, Languages, and Programming, pp. 
556–567. Springer (2014) 

[24] Peterson, R.S.: Efficient content distribution with managed 
swarms. Ph.D. thesis, Ithaca, NY, USA (2012). 
AAI3506806  

[25] Peterson, R.S., Wong, B., Sirer, E.G.: A content 
propagation metric for efficient content distribution.  
SIGCOMM Computer Communication Review 41(4), 
326–337 (2011) 

[26] Poese, I., Frank, B., Ager, B., Smaragdakis, G., Feldmann, 
A.: Improving content delivery using provider-aided 
distance information.  In: Proceedings of the 10th ACM 
SIGCOMM Conference on Internet Measurement, IMC ‘10, 
pp. 22–34. ACM, New York, NY, USA (2010) 

[27] Rivest, R.L., Schuldt, J.C.N.: Spritz-a   spongy rc4-like 
stream cipher and hash function.  Presented at Charles 
River   Crypto   Day (2014-10-24) (2014).    URL 
http://bostoncryptoday.wordpress.com/2014/09/07/friday-o
ctober-24-2014-at-mit/ , Last Accessed on 16/02/2016 

[28] Turan, M.S., Barker, E., Burr, W., Chen, L.:  
Recommendation for password-based key derivation, part 
1: Storage applications.   NIST SP  800-132 (2010).  
URL http://csrc. 
nist.gov/publications/nistpubs/800132/nist-sp800-132.pdf  

[29] Wischik, D., Handley, M., Braun, M.B.: The resource 
pooling principle. SIGCOMM Computer Communication 
Review 38(5), 47–52 (2008) 

[30] Wischik, D., Handley, M., Raiciu, C.: Control of multipath 
TCP and optimization of multipath routing in the internet.   
In:  Proceedings of the 3rd Euro-NF Conference on 
Network Control and Optimization, NET-COOP ’09, pp. 
204–218. Springer-Verlag, Berlin, Heidelberg (2009) 

[31] Zhang, M., Lai, J., Krishnamurthy, A., Peterson, L., Wang, 
R.: A transport layer approach for improving end-to-end 
performance and robustness using redundant paths. In: 
Proceedings of the Annual Conference on USENIX Annual 
Technical Conference, ATEC ’04, pp. 8–8. USENIX 
Association, Berkeley, CA, USA (2004)   

 
Mohammad G. Malli obtained the Diploma in Electrical 
and Electronics Engineering from the Lebanese University 
(Lebanon). He received the Master and PhD Degrees in 
Networking and Distributed Systems from the University of 
Nice Sophia Antipolis (France).  He is currently the coordinator 
of the ITC program in the Arab Open University - Lebanon. His 
research interests lie in the areas of Open Learning, Mobile 
Computing, Computer Networking, and Social Networking. 
 
Hassan Sbeity received the Dipl.-Ing degree in Electrical 
Engineering and Information Science form the Ruhr Universitaet 
Bochum (Germany) in 1993. He worked many years in the 
development of PC I/O devices and their drivers at EBS in 
Germany. In 2001, he received the DEA (Masters) in 
Informatics, Modeling and Intensive Calculation from AUF and 
the Lebanese University in Beirut. In 2005, He received PhD in 
Informatics at “Valenciennes et du Hainaut Cambresis”, LAMIH 

ROI (France) with collaboration of the University of Ghent 
(ELIS), Belgium. He is currently Assistant professor at the Arab 
Open University Lebanon branch (since 2003). His main 
research interests include open learning, computer architecture, 
application parallelization, Mobile computing, Multimedia 
applications, and memory optimization of embedded systems. 
 
Ahmad Fadlallah received his Engineering Diploma in 
Electrical Engineering and Electronics from the Lebanese 
University (Lebanon) in 2001.  In 2003, he received the DEA 
(MSc.) in Telecommunication Networks from the Lebanese 
University and University of Saint Joseph-Lebanon. In 2008, he 
received a PhD in Computer science and Networking from 
Telecom ParisTech-France. He is currently Assistant professor 
at the Information Technology and Computing Department in 
the Arab Open University – Lebanon branch (since 2008). His 
research interests lie in the areas of open and e-learning, mobile 
networks, multimedia services and computer & network 
security. 
 
Ali Hodroj  earned his Computer Communication 
Engineering degree from the Lebanese International University 
in 2012. Then, he has obtained his Master degree in networking 
from the Lebanese University in 2013. In September 2015, he 
has started his PhD thesis entitled “Enhancing content delivery 
in multi-homed broadband mobile networks” under the joint 
guardianship of Saint Joseph University and Rennes University. 
 
Abed Ellatif Samhat  received an engineering diploma 
from the Lebanese University, Beirut, in 2000 and PhD in 
computer science from the Pierre et Marie Curie University, 
Paris, in 2004. He was with Orange Labs-Paris from 2005 to 
2008 where he has been involved in several national and 
European projects including Ambient Networks and Gandalf. In 
2009, he joined Lebanese University, Beirut and he is currently a 
professor at the Faculty of Engineering. His areas of interest 
include heterogeneous wireless networks, access selection and 
mobility management. 

http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://bostoncryptoday.wordpress.com/2014/09/07/friday-october-24-2014-at-mit/
http://bostoncryptoday.wordpress.com/2014/09/07/friday-october-24-2014-at-mit/

