
IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.2, February 2016

54

Manuscript received February 5, 2016
Manuscript revised February 20, 2016

Compare proposed model CPDC Architecture with Docker
Architecture in enterprise integration systems

Masoud Rafighi† and Yaghoub Farjami ††,

University of Qom, Department of Computer Engineering and Information Technology, Iran

Summary
In this paper, the architectures of distributed systems are
investigated. Three of the most important and most efficient
architectures are compared and their problems will be expressed.
Each of these architectures is unable and ineffective to answer
the considered deficiencies for distributed systems. It is
necessary to have architecture that responses deficiencies and
problems.
Key words:
Docker, CPDC Architecture, Software architecture, Distributed
systems.

1. Introduction

Customers’ requirements control the creation and
deployment of software. Customers demand more and
better functionality, they want it tailored to their needs, and
they want it “yesterday.” Very often, large shops prefer to
develop their own in-house add-ons, or tweak and replace
existing functions. Nobody wants to reinvent the wheel,
but rather to integrate and build on existing work, by
writing only the specialized code that differentiates them
from their competitors. Newer enterprise-class application
suites consist of smaller stand-alone products that must be
integrated to produce the expected higher-level functions
and, at the same time, offer a consistent user experience.
The ability to respond quickly to rapid changes in
requirements, upgradeability, and support for integrating
other vendors’ components at any time all create an
additional push for flexible and extensible applications[9].
Down in the trenches, developers must deal with complex
infrastructures, tools and code. The last thing they need is
to apply more duct tape to an already complex code base,
so that marketing can sell the product with a straight face.
Software Architecture [26,2,25] describes the high-level
structure of a system in terms of components and
component interactions. In design, architecture is widely
recognized as the provider of a beneficial separation of
concerns between the gross system behavior of interacting
components and that of its constituent components.
Similarly this separation is also beneficial when
considering deployed systems and evolution as it allows us

to focus on change at the component level rather than on
some finer grain.
For instance, previous work described some of the issues
involved in specifying a limited form of dynamic software
structure for distributed systems in which the set of
components and their interaction change as execution
progresses and the system evolves [23]. A change in the
software architecture could occur either as the result of
some computation performed by the system or as a result
of some external management action such as insertion of a
new component and change of those connections within
the system to accommodate the new component.
Management actions are performed by a configuration
manager [24] which maintains an overall view of the
structure of a system in terms of components and their
interconnections and performs changes in the context of
that view. In essence, the configuration manager is
responsible for ensuring that an executing system conforms
precisely to its architectural specification. This approach
can however be too restrictive for current dynamic, open
systems.

2. Software architecture

Architecture is the fundamental organization of a system
consisting of components that each of which is associated
with each other and with the system and the principles
governing its design and evolution. Software architecture
is in fact the selection of a general structure for
implementing a software project based on a set of user
requirements and business of software systems in order to
be able to implement the intended applications and also to
optimize and accelerate the quality of software, its
production and maintenance. Nowadays due to the
development of distributed systems that are constantly
changing, the need for a flexible architecture can be felt
more than ever [10,11].

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.2, February 2016

55

Fig. 1 Architecture: place in system development cycle [10,11].

3. Distributed systems

A distributed system is essentially a computer system
where components of the system are held on physically
separated, autonomous computers. These machines
communicate through the use of a computer network,
either a fixed or, in the case of mobile applications, a
wireless network. The distributed systems appear to users
as a single, integrated computing facility [2,6].
In recent years, distributed systems have become
increasingly popular and important in modern computing.
They provide opportunities for increasing the reliability,
availability and performance of applications. However,
perhaps the most important feature of a distributed system
is that it allows the integration of existing systems.
Companies do not wish to rewrite large numbers of legacy
applications and a distributed system allows these
applications to be integrated in a relatively straightforward
manner [3,1].
A distributed system may comprise components written in
a number of different programming languages, running on
different operating systems on a variety of computer
architectures.
In many cases, a distributed system may be cheaper than a
single, centralized system. A large number of small, low-
power systems may prove cheaper to purchase than a
single mainframe or supercomputer. This is the approach
employed in Beowulf clusters, which allow a collection of
computers to act as a single large computer [7,8].
There are obviously many significant disadvantages to
distributed systems. They are much more complicated to
design, build and maintain than an equivalent centralized
system. There are a large number of possible failures that
could occur in a distributed system, far more than would be
found in a centralized system. Because of this, a
distributed system will have multiple points of failure,
increasing the likelihood of the system not functioning
correctly. Communication over a network will always be

far slower and less reliable than communication over a
local bus, which has a significant effect on the performance
of a distributed system [4, 5].
• Distributed systems architectures

• Client--server architectures
• Distributed services which are called on by

clients. Servers that provide services are
treated differently from clients that use
services.

• Distributed object architectures
• No distinction between clients and servers.

Any object on the system may provide and
use services from other objects [14,24].

4. Architectures for development of Software
distributed

4.1 Docker

Docker is an open platform for developing, shipping, and
running applications. Docker is designed to deliver your
applications faster. With Docker you can separate your
applications from your infrastructure and treat your
infrastructure like a managed application. Docker helps
you ship code faster, test faster, deploy faster, and shorten
the cycle between writing code and running code [16,20].
Docker does this by combining a lightweight container
virtualization platform with workflows and tooling that
help you manage and deploy your applications. At its core,
Docker provides a way to run almost any application
securely isolated in a container. The isolation and security
allow you to run many containers simultaneously on your
host. The lightweight nature of containers, which run
without the extra load of a hypervisor, means you can get
more out of your hardware. Surrounding the container
virtualization are tooling and a platform which can help
you in several ways:

A. getting your applications (and supporting
components) into Docker containers

B. distributing and shipping those containers to your
teams for further development and testing

C. Deploying those applications to your production
environment, whether it is in a local data center or
the Cloud.

Docker is perfect for helping you with the development
lifecycle. Docker allows your developers to develop on
local containers that contain your applications and services.
It can then integrate into a continuous integration and
deployment workflow.For example, your developers write
code locally and share their development stack via Docker

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.2, February 2016

56

with their colleagues. When they are ready, they push their
code and the stack they are developing onto a test
environment and execute any required tests. From the
testing environment, you can then push the Docker images
into production and deploy your code [17,21].

4.1.1 Deploying and scaling more easily

Docker’s container-based platform allows for highly
portable workloads. Docker containers can run on a
developer’s local host, on physical or virtual machines in a
data center, or in the Cloud.
Docker’s portability and lightweight nature also make
dynamically managing workloads easy. You can use
Docker to quickly scale up or tear down applications and
services. Docker’s speed means that scaling can be near
real time [18,21].

4.1.2 Achieving higher density and running more
workloads

Docker is lightweight and fast. It provides a viable, cost-
effective alternative to hypervisor-based virtual machines.
This is especially useful in high density environments: for
example, building your own Cloud or Platform-as-a-
Service. But it is also useful for small and medium
deployments where you want to get more out of the
resources you have.
Docker uses client-server architecture. The
Docker client talks to the Docker daemon, which does the
heavy lifting of building, running and distributing your
Docker containers. Both the Docker client and the
daemon can run on the same system, or you can connect a
Docker client to a remote Docker daemon. The Docker
client and daemon communicate via sockets or through a
RESTful API [19,20].

Fig. 2 Docker Architecture [16,20].

Fig. 3 structure of Docker [16,20].

The Docker daemon

As shown in the diagram above, the Docker daemon runs
on a host machine. The user does not directly interact with
the daemon, but instead through the Docker client.

The Docker client

The Docker client, in the form of the docker binary, is the
primary user interface to Docker. It accepts commands
from the user and communicates back and forth with a
Docker daemon [20,22].

Inside Docker

To understand Docker’s internals, you need to know about
three components:

• Docker images

A Docker image is a read-only template. For example, an
image could contain an Ubuntu operating system with
Apache and your web application installed. Images are
used to create Docker containers. Docker provides a
simple way to build new images or update existing images,
or you can download Docker images that other people
have already created. Docker images are
the build component of Docker [20,22].

• Docker registries

Docker registries hold images. These are public or private
stores from which you upload or download images. The
public Docker registry is provided with the Docker Hub. It
serves a huge collection of existing images for your use.
These can be images you create yourself or you can use
images that others have previously created. Docker
registries are the distribution component of Docker [20,22].

• Docker containers

Docker containers are similar to a directory. A Docker
container holds everything that is needed for an application
to run. Each container is created from a Docker image.
Docker containers can be run, started, stopped, moved, and
deleted. Each container is an isolated and secure
application platform. Docker containers are
the run component of Docker [20,22].

Fig. 4 Docker components structure [16,20].

http://hub.docker.com/

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.2, February 2016

57

4.2 The proposed model CPDC Architecture

This architecture made of combining Data- centric
architecture, plug-in architecture and component
architecture so that in this architecture all components are
connected to the data center but the components must
appear with two hands (it is getting from plug-in
architecture with this innovation that both hands SERVICE
INTERFACE and Plug in interface added to every
component. It means components have two hands instead
of one hand). So in addition to connection they can transfer
services and data.By using SOC discuss we concluded that
every component must maintain its own data and just
Common data such as Authentication and etc. will be kept
in Data- Centric. We called the proposed architecture,
CPDC Architecture which contains bellow parts:

 Data center: Information in the data center,
public data, such as user categories,
authentication and organizational chart of the

organization need to be placed in the center
[13,15].

 Service interface: An interface to transfer
services from one component to another
component.

 Plug in interface: Certain protocol for
connecting components.

 Service: Services and operations that are
performed on the data in each module.

 Plug in manager: management, control and
configure of plugin will done.

 Specific data: Data that is for a special system
and there is no need to exist in other systems.

 Host component: The various modules which are
available in the organization [10,11,12].

 ESB: this part cause strengthened and better
performance processes between components.

Fig. 5 Proposed model, CPDC Architecture.

5. Measurement and analysis of
the architecture criteria

5.1 Layout of components:
Components, as the
original block and computational entities participating in
the construction of system through internal

computation and external communication do
their choruses. Every component communicates with
environment by one or more port. A user interface can
be a common
variable; the name of a procedure which calls from
other component; it is a set of events that can occur as
a component and other mechanisms. Properties of

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.2, February 2016

58

a component, specifies data for analysis
and software implementation.

5.2 Create
Configuration is a connected graph which is
sometimes referred to as the topology
composed of components and connectors and describes
the structure of architecture.

5.3 Connection
When connector makes a connection between
two components, component defines an interface. And
every component can have several interfaces. An interface
is concerned to just one component and every interface of
one component can connect to several interfaces in other
components. For example in Bus-Oriented architecture the
interface of every component is connected to the bus
connector and so it will be connected to several interface
in other components. Attributes can
also be indicated by some of the features, such
as communication, buffering capacity and so on.

5.4 development
Development and promotion in computer systems will
cause the development and software update. Therefore an
important metric that can be considered in the selection

of the architecture is extensible metric. The software
architecture must be extensible. We evaluate it since this
metric has a major role in architecture.

5.5 The main advantage
Each
of software architecture has advantages compared to other
architectures. The software architecture eliminates defects
in other architectures
and complements previous architectures.

5.6 The main problem
Although each of software architectures is trying to be the
best and perfect, but, in spite of the development and
expansion of information systems, they
are still facing problems and in some cases, some
complications.
These criteria were chosen only for the problems and
shortcomings of Distributed software development
architectures and of course there are other factors and
criteria that are not effective in this research. To see
a full description and explanation of software metrics can
be [M. Shaw and D. Garlan, 1996] presented [27].

6. Compare architectures

Table 1. Compare architectures.

CPDC Docker
Architecture

Criterion

Information in the data center,
public data, such as user categories,
authentication and organizational
chart of the organization need to be
placed in the center.
every component must maintain its
own data

Docker is an open platform for developing, shipping, and
running applications. Docker is designed to deliver your
applications faster. With Docker you can separate your
applications from your infrastructure and treat your
infrastructure like a managed application. Docker helps you
ship code faster, test faster, deploy faster, and shorten the
cycle between writing code and running code.
Docker does this by combining a lightweight container
virtualization platform with workflows and tooling that help
you manage and deploy your applications.

Layout

This architecture is based on
component architecture and plugin
architecture.

It makes an image Of an application with all the
configuration settings then you can quickly load and run it
anywhere

Creation

Components have two hands (it is
getting from plug-in architecture
with this innovation that both hands
SERVICE INTERFACE and Plug in
interface added to every component).
So in addition to connection they
can transfer services and data.

Docker is not depending to special issue and is usable in all
systems. Main part of dacker is:

• Docker images.
• Docker registries.
• Docker containers.

Connection

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.2, February 2016

59

Every system can add easily as a
new component if include:
Service interface
Plug in interface
Plug in manager
Service
Specific data

It sets a an application include data base, data specification,
image, with all the configuration settings on a box that all of
the program can work to gather then you can quickly transfer
and develop it anywhere Development

This architecture made of combining
Data- centric architecture, plug-in
architecture and component
architecture

It is the infrastructure for using components.
It is selected from component architecture and client/server.

Elected or a
combination

of other
architectures

Easy extended, in a way that in
addition to connection they can
transfer services and data and
implement comprehensive processes
between the components.

The advantages of doker:
Software portability, separate the processes, Consumption of
resources management, Requires fewer resources, easy use, it
is Based on programmer, it solves many of problems of
coding and specially dependencies.

The main
advantage

Security issues and BAM has not
been seen in this architecture.

Program of different boxes cannot be available to each other
files and processes between the components don’t implement

The main
problem

7. Conclusion

By comparing these two methods with parameters (layout,
create, connect, development, main advantage, the main
problem) we conclude that due to the lack of dependence
on the docker architecture, system can be easily extended
which it shown on fig.4, but this is not included the
extendibility of processes between the components and
docker does not have an answer for implementation of
processes between the components but in CPDC structure
is:

In this architecture using standard protocols soap, an xml-
based messaging feature and WSDL document that
describes the state of the service, is based on XML, the
formal contract between the provider and the service
consumer will be increase the integration of system, So
that the ESB as a biztalk server and the data centric as
active directory operate.
So in this architecture with combining Data- centric
architecture, plug-in architecture and component
architecture and using SOAP and WSDL standards we can
develop system and implement comprehensive processes
between the components. Its External view is shown on
fig.7.

Using with docker

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.2, February 2016

60

Fig. 6 Relation of component in docker

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.2, February 2016

61

Using with CPDC Architecture

Fig. 7 doing comprehensive processes between the components

Fig. 8 External view of comprehensive processes between the components

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.2, February 2016

62

References
[1] Masoud Rafighi, Yaghoub Farjami, Nasser Modiri,

Assessing component based ERP architecture for
developing organizations, International Journal of Computer
Science and Information Security, vol-14-no-1-jan-2016,
Pages 72-92.

[2] ERP SYSTEMS: PROBLEMS AND SOLUTION WITH
SPECIAL ,REFERENCE TO SMALL & MEDIUM
ENTERPRISES, Indu Saini,Dr. Ashu Khanna,Dr. Vivek
Kumar, International Journal of Research in IT &
Management, IJRIM , Volume 2, Issue 2 (February 2012)

[3] The Future of ERP Systems: look backward before moving
forward, Ahmed Elragal , Moutaz Haddara, CENTERIS
2012 – Conference on ENTER prise Information Systems /
HCIST 2012 – International Conference on Health and
Social Care Information Systems and
Technologies,ELSEVIER, Procedia Technology5(2012)21
– 30

[4] SaaS Enterprise Resource Planning Systems: Challenges of
their adoption in SMEs, Jacek Lewandowski, Adekemi O.
Salako, Alexeis Garcia-Perez, IEEE 10th International
Conference on e-Business Engineering, 2013

[5] Custom Development as an Alternative for ERP Adoption
by SMEs: An Interpretive Case Study, Placide Poba-Nzaou
& Louis Raymond, Information Systems Management, 02
Sep 2013.Published online: 21 Oct 2013

[6] Self-development ERP System Implementation Success
Rate Factors Analysis, Liu Chen, Liu Xinliang, IEEE
XPLORE Symposium on Robotics and Applications(ISRA)
2012

[7] McIlroy, Malcolm Douglas (January 1969). "Mass produced
software components". Software Engineering: Report of a
conference sponsored by the NATO Science Committee,
Garmisch, Germany, 7-11 Oct. 1968. Scientific Affairs
Division, NATO. p. 79.

[8] Ralf H. Reussner, Heinz W. Schmidt, Iman H.
Poernomo,”Reliability prediction for component-based
software architectures”, Journal of Systems and Software,
Volume 66, Issue 3, 15 June 2003, Pages 241-252

[9] D. Bennouar, T. Khammaci, A. Henni, A new approach for
component’s port modeling in software architecture, Journal
of Systems and Software, Volume 83, Issue 8, August 2010,
Pages 1430-1442

[10] Majdi Abdellatief, Abu Bakar Md Sultan, Abdul Azim
Abdul Ghani, Marzanah A. Jabar ,A mapping study to
investigate component-based software system metrics,
Journal of Systems and Software, Volume 86, Issue 3,
March 2013, Pages 587-603

[11] Manuel Oriol, Thomas Gamer, Thijmen de Gooijer,
Michael Wahler, Ettore,Ferranti, Fault-tolerant fault
tolerance for component-based automation systems, in:
Proceedings of the 4th International ACM SIGSOFT
Symposium on Architecting Critical Systems (ISARCS
2013), Vancouver, Canada, 2013.

[12] William Otte, Aniruddha S. Gokhale, Douglas C.
Schmidt, Efficient and deterministic application
deployment in component-based enterprise distributed
real-time and embedded systems, Inf. Softw. Technol.
55 (2)(2013) 475–488.

[13] Séverine Sentilles, Aneta Vulgarakis, Tomáš Bureš, Jan
Carlson, Ivica Crnkovic´,A Component model for control-
intensive distributed embedded systems, in:Michel
Chaudron, Clemens Szyperski, Ralf Reussner (Eds.),
Component-Based Software Engineering, Lecture Notes in
Computer Science, vol. 5282, Springer, Berlin/Heidelberg,
2008, pp. 310–317.

[14] Xuehai Tang, Zhang Zhang, Min Wang, Yifang Wang, Qing
qing Feng, Jizhong Han, Performance Evaluation of Light-
Weighted Virtualization for PaaS in Clouds, Algorithms and
Architectures for Parallel Processing,Volume 8630 of the
series Lecture Notes in Computer Science pp 415-428

[15] James Turnbull, The docker book, April 25, 2015
[16] Di Liu, Libin Zhao” The research and implementation of

cloud computing platform based on docker,IEEE, Wavelet
Active Media Technology and Information Processing
(ICCWAMTIP), 2014 11th International Computer
Conference on,19-21 Dec. 2014, 475 - 478

[17] WHITE PAPER “Modern Application Architecture for the
Enterprise” January 28, 2016

[18] https://docs.docker.com/v1.9/engine/introduction/understan
ding-docker/

[19] http://www.zdnet.com/article/what-is-docker-and-why-is-it-
so-darn-popular/

[20] Na Luo, Weimin Zhong, Feng Wan, Zhencheng Ye, Feng
Qian, An agent-based service-oriented integration
architecture for chemical process automation, Elsevier,
Chinese Journal of Chemical Engineering 23 (2015) 173–
180

[21] J. Magee, J. Kramer, “Dynamic Structure in Software
Architectures, 4th ACM SIGSOFT Symposium on the
Foundations of Software Engineering (FSE 4),” San
Francisco, California, USA, 21, pp. 3-14, October 1996.

[22] S. Crane, N. Dulay, H. Fosså, J. Kramer, J. Magee,
M.Sloman and K. Twidle, “Configuration Management for
Distributed Systems,” Proc. of the IFIP/IEEE International
Symposium on Integrated Network Management (ISINM
95), Santa Barbara.

[23] M. Shaw, D. Garlan, “Software Architecture: Perspectives
on an Emerging Discipline,” Prentice Hall, 96.

[24] D. E. Perry, A. L. Wolf, “Foundations for the Study of
Software Architectures, ACM SIGSOFT Software
Engineering Notes,” Vol. 17, No. 4, pp. 40-52, 1992.

[25] M. Shaw and D. Garlan, Software architecture: perspectives
on an emerging discipline. Prentice Hall, 1996.

https://sites.google.com/site/ijcsis/vol-14-no-1-jan-2016
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
http://www.sciencedirect.com/science/article/pii/S016412121000066X
http://www.sciencedirect.com/science/article/pii/S016412121000066X
http://www.sciencedirect.com/science/article/pii/S0164121212002798
http://www.sciencedirect.com/science/article/pii/S0164121212002798
http://link.springer.com/book/10.1007/978-3-319-11197-1
http://link.springer.com/book/10.1007/978-3-319-11197-1
http://link.springer.com/bookseries/558
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Di%20Liu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Libin%20Zhao.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7063853
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7063853
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7063853
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7063853

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.2, February 2016

63

Masoud rafighi was born in Tehran, Iran
on 1983/08/10. He is PHD student of Qom
University. He receives M.Sc degree in
computer engineering software from Azad
University North Tehran Branch, Tehran,
IRAN. He has recently been active in
software engineering and has developed
and taught various software related courses
for the Institute and university for

Advanced Technology, the University of Iran. His research
interests are in software measurement, software complexity,
requirement engineering, maintenance software, software
security and formal methods of software development. He has
written a book on software complexity engineering and published
many papers.

Yaghoub Farjami received his PhD
degree in Mathematics (with the highest
honor) in 1998 from Sharif University of
Technology, Tehran, Iran. He is Assistant
Professor of Computer and Information
Technology Department at University of
Qom. His active fields of research are ERP,
BI, and Information Security.

