
IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.2, February 2016

88

Manuscript received February 5, 2016
Manuscript revised February 20, 2016

Comparative Study of Dictionary based Compression Algorithms
on Text Data

Amit Jain Kamaljit I. Lakhtaria

Sir Padampat Singhania University, Udaipur (Raj.) 323601 India

Abstract:
With increasing amount of text data being stored rapidly,
efficient information retrieval and Storage in the compressed
domain has become a major concern. Compression is the process
of coding that will effectively reduce the total number of bits
needed to represent certain information. Data compression has
been one of the critical enabling technologies for the ongoing
digital multimedia revolution. There are lots of data compression
algorithms which are available to compress files of different
formats. This paper presents survey on several dictionary based
lossless data compression algorithms and compares their
performance based on compression ratio and time ratio on
Encoding and decoding. A set of selected algorithms are
examined and implemented to evaluate the performance in
compressing benchmark text files. An experimental comparison
of a number of different dictionary based lossless data
compression algorithms is presented in this paper. This paper
concluded by stating which algorithm performs well for text data.
The paper is concluded by the decision showing which algorithm
performs best over text data.
Keywords -
LZW, Dictionary Encoding, Compression
Ratio, Compression time.

1. Introduction

Compression is the art of representing information in a compact
form rather than its original or uncompressed form [1]. The main
objective of data compression is to find out the redundancy and
eliminate them through different efficient methodology; so that
the reduced data can save, space: to store the data, time: to
transmit the data and cost: to maintain the data. To eliminate the
redundancy, the original file is represented with some coded
notation and this coded file is known as ‘encoded file’. For any
efficient compression algorithm this file size must be less than
the original file. To get back the original file we need to ‘decode’
the encoded file

Types of Compression:
Compression can be of two types: Lossless Compression, Lossy
Compression.

Lossless Compression:
In the process compression if no data is lost and the exact replica
of the original file can be retrieved by decrypting the encrypted
file then the compression is of lossless compression type. Text
compression is generally of lossless type. In this type of
compression generally the encrypted file is used for storing or

transmitting data, for general purpose use we need to decrypt the
file. Lossless compression technique can be broadly
categorized in to two classes:

i) Entropy Based Encoding:
In this compression process the algorithm first counts the
frequency of occurrence of each unique symbol in the document.
Then the compression technique replaces the symbols with the
algorithm generated symbol. These generated symbols are fixed
for a certain symbol of the original document; and doesn’t
depend on the content of the document. The length of the
generated symbols is variable and it varies on the frequency of
the certain symbol in the original document.

ii) Dictionary Based Encoding:
This encoding process is also known as substitution encoding. In
this process the encoder maintain a data structure known as
‘Dictionary’ [2]. This is basically a collection of string. The
encoder matches the substrings chosen from the original text and
finds it in the dictionary; if a successful match is found then the
substring is replaced by a reference to the dictionary in the
encoded file.
There are quite a few lossless compression techniques nowadays,
and most of them are based on dictionary or probability and
entropy. In other words, they all try to utilize the occurrence of
the same character/string in the data to achieve compression.
Various dictionary based lossless data compression algorithms
have been proposed and used. Some of the main techniques in
use are the LZ77, LZR, LZSS, LZH and LZW Encoding and
decoding. This paper examines the performance of the above
mentioned algorithms are used. In particular, performance of
these algorithms in compressing text data is evaluated and
compared.
The paper is organized as follows: Section I contains a brief
Introduction about compression and its types, Section II presents
a brief explanation about different dictionary based compression
techniques, Section III has its focus on comparing the
performance of compression techniques and the final section
contains the Conclusion.

2. Data Compression Techniques

Various kind of text data compression algorithms have been
proposed till date, mainly those algorithms is lossless algorithm.
Dictionary coding techniques rely upon the observation that
there are correlations between parts of data (recurring patterns).
The basic idea is to replace those repetitions by (shorter)
references to a "dictionary" containing the original. This paper
examines the performance of the while family of of Lempel Ziv

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.2, February 2016 89

Algorithm. Performance of above listed algorithms for
compressing text data is evaluated and compared.

2.1 LEMPEL ZIV ALGORITHMS

The Lempel Ziv Algorithm is an algorithm for lossless
data compression. It is not a single algorithm, but a whole
family of algorithms, stemming from the two algorithms
proposed by Jacob Ziv and Abraham Lempel in their
landmark papers in 1977 and 1978.

2.1.1 LZ77:

Jacob Ziv and Abraham Lempel have presented their
dictionary-based scheme in 1977 for lossless data
compression [3]. Today this technique is much
remembered by the name of the authors and the year of
implementation of the same.

LZ77 exploits the fact that words and phrases within a text
file are likely to be repeated. When there is repetition, they
can be encoded as a pointer to an earlier occurrence, with
the pointer accompanied by the number of characters to be
matched. It is a very simple adaptive scheme that requires
no prior knowledge of the source and seems to require no
assumptions about the characteristics of the source.

In the LZ77 approach, the dictionary is simply a portion of
the previously encoded sequence. The encoder examines
the input sequence through a sliding window which
consists of two parts: a search buffer that contains a
portion of the recently encoded sequence and a look ahead
buffer that contains the next portion of the sequence to be
encoded. The algorithm searches the sliding window for
the longest match with the beginning of the look-ahead
buffer and outputs a reference (a pointer) to that match. It
is possible that there is no match at all, so the output
cannot contain just pointers. In LZ77 the reference is
always output as a triple <o,l,c>, where ‘o’ is an offset to
the match, ‘l’ is length of the match, and ‘c’ is the next
symbol after the match. If there is no match, the algorithm
outputs a null-pointer (both the offset and the match
length equal to 0) and the first symbol in the look-ahead
buffer[4].

The values of an offset to a match and length must be
limited to some maximum constants. Moreover the
compression performance of LZ77 mainly depends on
these values. Usually the offset is encoded on 12–16 bits,

so it is limited from 0 to 65535 symbols. So, there is no
need to remember more than 65535 last seen symbols in
the sliding window. The match length is usually encoded
on 8 bits, which gives maximum match length equal to
255[5].

The LZ77 algorithm is given below:

While (lookAheadBuffer not empty) {
get a reference (position, length) to longest match;
if (length > 0) {
output (position, length, next symbol);
shift the window length+1 positions along;
}
else {
output (0, 0, first symbol in the lookahead buffer);
shift the window 1 character along;
}
}

With regard to other algorithms the time for compression
and decompression is just the same. In LZ77 encoding
process one reference (a triple) is transmitted for several
input symbols and hence it is very fast. The decoding is
much faster than the encoding in this process and it is one
of the important features of this process. In LZ77, most of
the LZ77 compression time is, however, used in searching
for the longest match, whereas the LZ77 algorithm
decompression is quick as each reference is simply
replaced with the string, which it points to.
There are lots of ways that LZ77 scheme can be made
more efficient and many of the improvements deal with
the efficient encoding with the triples. There are several
variations on LZ77 scheme, the best known are LZSS,
LZH and LZB. LZSS which was published by Storer and
Szymanksi [6] removes the requirement of mandatory
inclusion of the next non-matching symbol into each
codeword. Their algorithm uses fixed length codewords
consisting of offset and length to denote references. They
propose to include an extra bit (a bit flag) at each coding
step to indicate whether the output code represents a pair
(a pointer and a match length) or a single symbol.
LZH is the scheme that combines the Ziv – Lempel and
Huffman techniques. Here coding is performed in two
passes. The first is essentially same as LZSS, while the
second uses statistics measured in the first to code pointers
and explicit characters using Huffman coding.
LZB was published by Mohammad Banikazemi[7] uses an
elaborate scheme for encoding the references and lengths
with varying sizes. Regardless of the length of the phrase
it represents, every LZSS pointer is of the same size. In
practice a better compression is achieved by having
different sized pointers as some phrase lengths are much
more likely to occur than others. LZB is a technique that
uses a different coding for both components of the pointer.

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.2, February 2016 90

LZB achieves a better compression than LZSS and has the
added virtue of being less sensitive to the choice of
parameters.

2.1.2 LZ78

In 1978 Jacob Ziv and Abraham Lempel presented their
dictionary based scheme [8], which is known as LZ78. It
is a dictionary based compression algorithm that maintains
an explicit dictionary. This dictionary has to be built both
at the encoding and decoding side and they must follow
the same rules to ensure that they use an identical
dictionary. The codewords output by the algorithm
consists of two elements <i,c> where ‘i’ is an index
referring to the longest matching dictionary entry and the
first non-matching symbol. In addition to outputting the
codeword for storage / transmission the algorithm also
adds the index and symbol pair to the dictionary. When a
symbol that is not yet found in the dictionary, the
codeword has the index value 0 and it is added to the
dictionary as well. The algorithm gradually builds up a
dictionary with this method.
The algorithm for LZ78 is given below:

w := NIL;
while (there is input) {
K := next symbol from input;
if (wK exists in the dictionary) {
w := wK;
}
else {
output (index(w), K);
add wK to the dictionary;
w := NIL;
}
}

LZ78 algorithm has the ability to capture patterns and
hold them indefinitely but it also has a serious drawback.
The dictionary keeps growing forever without bound.
There are various methods to limit dictionary size, the
easiest being to stop adding entries and continue like a
static dictionary coder or to throw the dictionary away and
start from scratch after a certain number of entries has
been reached. The encoding done by LZ78 is fast,
compared to LZ77, and that is the main advantage of
dictionary based compression. The important property of
LZ77 that the LZ78 algorithm preserves is the decoding is
faster than the encoding. The decompression in LZ78 is
faster compared to the process of compression.

2.1.3 LZW

Terry Welch has presented his LZW (Lempel–Ziv–Welch)
algorithm in 1984[9], which is based on LZ78. It basically
applies the LZSS principle of not explicitly transmitting

the next non-matching symbol to LZ78 algorithm. The
dictionary has to be initialized with all possible symbols
from the input alphabet. It guarantees that a match will
always be found. LZW would only send the index to the
dictionary. The input to the encoder is accumulated in a
pattern ‘w’ as long as ‘w’ is contained in the dictionary. If
the addition of another letter ‘K’ results in a pattern ‘w*K’
that is not in the dictionary, then the index of ‘w’ is
transmitted to the receiver, the pattern ‘w*K’ is added to
the dictionary and another pattern is started with the letter
‘K’.

The algorithm then proceeds as follows:

w := NIL;
while (there is input) {
K := next symbol from input;
if (wK exists in the dictionary) {
w := wK;
}
else {
output (index(w));
add wK to the dictionary;
w := k;
}
}

In the original proposal of LZW, the pointer size is chosen
to be 12 bits, allowing for up to 4096 dictionary entries.
Once the limit is reached, the dictionary becomes static.

LZFG which was developed by Fiala and Greene [10],
gives fast encoding and decoding and good compression
without undue storage requirements. This algorithm uses
the original dictionary building technique as LZ78 does
but the only difference is that it stores the elements in a
trie data structure. Here, the encoded characters are placed
in a window (as in LZ77) to remove the oldest phrases
from the dictionary.

3. Experimental Results

In this section we focus our attention to compare the
performance of LZ77 family algorithms (LZ77, LZSS,
LZH and LZB) and LZ78 family algorithms (LZ78, LZW
and LZFG). Research works done to evaluate the
efficiency of any compression algorithm are carried out
having two important parameters. One is the amount of
compression achieved and the other is the time used by the
encoding and decoding algorithms. We have tested several
times the practical performance of the above mentioned
techniques on files of Canterbury corpus and have found
out the results of Lempel –Ziv techniques selected for this
study.

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.2, February 2016 91

LZ algorithms considered here are divided into two
categories: those derived from LZ77 and those derived
from LZ78. The BPC measurements are referred from [11].
Table – I shows the comparison of various algorithms that
are derived from LZ77(LZ77, LZSS, LZH and LZB).
Table – II shows the comparative analysis of algorithms
that are derived from LZ78 (LZ78, LZW and LZFG). The
BPC values that are referred from [11] are based on the
following parameters.
The main parameter for LZ77 family is the size of the
window on the text. Compression is best if the window is
as big as possible but not bigger than the text, in general.
Nevertheless, larger windows yield diminishing returns. A
window as small as 8000 characters will perform much
better, and give a result nearly as good as the ones derived
from the larger windows. Another parameter which limits
the number of characters is needed for some algorithms
belonging to LZ family. Generally a limit of around 16
may work well. For LZ77, LZSS and LZB the storage
(characters in window) were assumed to be of 8 KB and
for LZH it was assumed as 16 KB. Regarding LZ78
family, most of the algorithm requires one parameter to
denote the maximum number of phrases stored. For the
above mentioned LZ78 schemes, except LZ78 a limit of
4096 phrases was used. Fig 1 shows a comparison of the
compression rates for the different LZ77 variants.

Table I. Comparison of BPC for the different LZ77 variants
S.

No.
File

Name
File
Size

LZ77 LZSS LZH LZB
BPC BPC BPC BPC

1 Bib 111261 3.75 3.35 3.24 3.17
2 Book1 768771 4.57 4.08 3.73 3.86
3 Book2 610856 3.93 3.41 3.34 3.28
4 News 377109 4.37 3.79 3.84 3.55
5 Obj1 21504 5.41 4.57 4.58 4.26
6 Obj2 246814 3.81 3.3 3.19 3.14
7 Paper1 53161 3.94 3.38 3.38 3.22
8 Paper2 82199 4.1 3.58 3.57 3.43
9 Progc 39611 3.84 3.24 3.25 3.08
10 Prog1 71646 2.9 2.37 2.2 2.11
11 Progp 49379 2.93 2.36 2.17 2.08
12 Trans 93695 2.98 2.44 2.12 2.12

Average BPC 3.88 3.32 3.22 3.11
The output of Table – I reveals that the Bits Per Character
is significant and most of the files have been compressed
to a little less than half of the original size of LZ77 family,
the performance of LZB is significant compared to LZ77,
LZSS and LZH. The average BPC which is significant as,
shown in Table – I, which is 3.11.
Amongst the performance of the LZ77 family, LZB
outperforms LZH. This is because, LZH generates an
optimal Huffman code for pointers whereas LZB uses a
fixed code.

Fig 1 Comparison of the compression rates for the different LZ77

variants

Table II. Comparison of BPC for the different LZ78 variants
S.
No.

File
Name

File Size LZ78 LZW LZFG
BPC BPC BPC

1 Bib 111261 3.95 3.84 2.9
2 Book1 768771 3.92 4.03 3.62
3 Book2 610856 3.81 4.52 3.05
4 News 377109 4.33 4.92 3.44
5 Obj1 21504 5.58 6.3 4.03
6 Obj2 246814 4.68 9.81 2.96
7 Paper1 53161 4.5 4.58 3.03
8 Paper2 82199 4.24 4.02 3.16
9 Progc 39611 4.6 4.88 2.89
10 Prog1 71646 3.77 3.89 1.97
11 Progp 49379 3.84 3.73 1.9
12 Trans 93695 3.92 4.24 1.76
Average BPC 4.26 4.90 2.89

We have tried to infer from Table – II the compression
performance of LZ78 family. Most of the
ASCII files are compressed to just less than half of the
original size and within each file the amount of
compression is consistent. The LZW method, having no
boundary, accepts phrases and so the compression
expands the file ‘obj2’ by 25%, which is considered as a
weakness of this approach. Also from Table – II it is
obvious that the performance of LZFG is the best amongst
these methods, giving an average BPC of 2.89 which is
really significant. Amongst LZ78 family, LZFG’s
performance is the best because the scheme that it uses is
carefully selected codes to represent a pointer which is
like the best scheme in the LZ77 family. Fig 2 represents a
comparison of the compression rates for the LZ78 family.

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.2, February 2016 92

Fig 2 Comparison of the compression rates for the different LZ78
variants

4. Conclusion

We have taken up Lempel Ziv algorithms for our study to
examine the performance in compression. In the
dictionary based compression techniques, LZB
outperforms LZ77, LZSS and LZH to show a marked
compression, which is 19.85% improvement over LZ77,
6.33% improvement over LZSS and 3.42% improvement
over LZH, amongst the LZ77 family. LZFG shows a
significant result in the average BPC compared to LZ78
and LZW. From the result it is evident that LZFG has
outperformed the other two with an improvement of
32.16% over LZ78 and 41.02% over LZW.

References
[1] Pu, I.M., 2006, Fundamental Data Compression , Elsevier,

Britain
[2] Kesheng, W., J. Otoo and S. Arie, 2006. Optimizing bitmap

indices with efficient compression, ACM Trans.
DatabaseSystems, 31: 1-38.

[3] Ziv. J and Lempel A., “A Universal Algorithm for
Sequential Data Compression”, IEEE Transactions on
Information Theory 23 (3), pp. 337–342, May 1977.

[4] Khalid Sayood, “Introduction to Data Compression”, 2nd
Edition, San Francisco, CA, Morgan Kaufmann, 2000.

[5] Przemyslaw Skibinski, “Reversible Data transforms that
improve effectiveness of universal lossless data
compression”, Ph.D thesis, Department of Mathematics and
Computer Science, University of Wroclaw, 2006.

[6] Storer J and Szymanski T.G., “Data compression via textual
substitution”, Journal of the ACM 29, pp. 928–951, 1982.

[7] Mohammad Banikazemi, “LZB: Data Compression with
Bounded References”, Proceedings of the 2009 Data
Compression Conference, IEEE Computer Society, 2009.

[8] Ziv. J and Lempel A., “Compression of Individual
Sequences via Variable-Rate Coding”, IEEE Transactions
on Information Theory 24 (5), pp. 530–536, September
1978.

[9] Welch T.A., “A technique for high-performance data
compression”, IEEE Computer, 17, pp. 8–19, 1984.

[10] Fiala E.R., and D.H. Greene, “Data Compression with finite
windows”, Communications of the ACM 32(4):490-505,
1989.

[11] Bell T.C, Cleary J.G, and Witten I.H., “Text Compression”,
Prentice Hall, Upper Saddle River, NJ, 1990.

Amit Jain is working in CSE Department,
Sir Padampat Singhania University,
Udaipur, India. He is having 17 years of
teaching experience. He has taught to post-
graduate and graduate students of
engineering. He is pursuing Ph.D. in
Computer Science, in the area of
Information Security. He has presented 3
papers in International Journal, 5 papers in

International Conference and 8 papers in National Conference.

Kamaljit I Lakhtaria is working in CSE
Department, Sir Padampat Singhaniya
University, India. He obtained Ph. D. in
Computer Science; area of Research is
“Next Generation Networking Service
Prototyping & Modeling”. He holds an
edge in Next Generation Network, Web
Services, MANET, Web 2.0, Distributed
Computing. His inquisitiveness has made

him present 18 Papers in International Conferences, 28 Paper in
International Journals. He is author of 8 Reference Books. He is
member of Life time member ISTE, IAENG. He holds the post
of Editor, Associate Editor in many International Research
Journal. He is reviewer in IEEE WSN, Inderscience and Elsevier
Journals.

