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Abstract 
in this paper we propose a new algorithm for complex activities 
our approach accomplished all the requirements of GPLVM. It is 
suitable for both learning and inference of probabilistic models.  
The experimental performance has been measured on the basis of 
Benchmark data. Our propose methodology effectively learn 
latent spaces of complex multi activities data sets in a 
computational efficient manner. In addition we also introduce a 
new procedure for learning latent spaces incrementally. Our 
proposed model cannot tackle new training set without relearning. 
Our new method is very flexible and easily applied online settings 
without extensively repeating relearning method. It has positive 
impact in applications such as robotics, where domain adaptation 
plays a vital role for accurate prediction features.  
Index Terms 
Pose estimation, Human Motion, Complex Activities, Dynamic 
Motion 

1. Introduction  

Tracking human 3D articulated motions from video 
sequences is well known to be a challenging machine 
vision problem. Estimating the human body’s 3D location 
and orientation of the joints is notoriously difficult because 
it is a high-dimensional problem and is riddled with 
ambiguities coming from noise, monocular imagery and 
occlusions. To reduce the complexity of the task, it has 
become very popular to use prior models of human pose 
and dynamics [1, 2, 3, 4, 5, 6, 7].  
Linear models (e.g. PCA) are among the simplest priors [8, 
9, 10], though linearity also restricts a model’s 
expressiveness and results in inaccuracies when learning 
complex motions. Priors generated from non-linear 
dimensionality reduction techniques such as Isomap [11] 
and LLE [12] have also been used for tracking [13, 14].  
These techniques try to preserve the local structure of the 
manifold but tend to fail when manifold assumptions are 
violated, e.g., in the presence of noise, or multiple activities. 
Moreover, LLE and Isomap provide neither a probability 
distribution over the space of possible poses nor a mapping 
from the latent space to the high dimensional space. While 
such a distribution and or mapping can be learned post hoc, 
learning them separately from the latent space typically 
results in suboptimal solutions. Probabilistic latent variable 
models (e.g. probabilistic PCA), have the advantage of 
taking uncertainties into account when learning latent 

representations. Taylor et al. [15] introduced the use of 
Conditional Restricted Boltzmann Machines (CRBM) and 
implicit mixtures of CRBM (imCRBM), which are 
composed of large collections of discrete latent variables. 
Unfortunately, learning this type of model is a highly 
complex task.  
A more commonly used latent variable model is the 
Gaussian Process Latent Variable Model (GPLVM) [16] 
which has been applied to animation [18] and tracking [19, 
20, 21, 22]. While the GPLVM is very successful at 
modeling small training sets with single activities, it often 
struggles to learn latent spaces from larger datasets, 
especially those with multiple activities.  
The main reason is that the GPLVM is a non-parametric 
model; learning requires the optimization of a non-convex 
function, for which complexity grows with the number of 
training samples. As such, having a good initialization is 
key for success [23], though good initializations are not 
always available [24], especially with complex data. 
Additionally, GPLVM learning scales cubicly with the 
number of training examples, and application to large 
datasets is computationally intractable, making it necessary 
to use sparsification techniques to approximate learning [25, 
26].  
As a consequence, the GPLVM has been mainly applied to 
single activities, e.g., walking or running.  

2. Related work 

More recent works have focused on handling multiple 
activities, most often with mixture models [27, 28, 29] or 
switching models [30, 31, 32]. However, coordinating the 
different components of the mixture models requires 
special care to ensure that they are aligned in the latent 
space [33], thereby complicating the learning process.  
In addition, both mixture and switching models require a 
discrete notion of activity which is not always available, 
e.g. dancing motions are not a discrete set. Others have 
tried to couple discriminate action classifiers with action-
specific models [34, 35], though accuracy of such systems 
does not scale well with the number of actions. 
A good prior model for tracking should be accurate, 
expressive enough to capture a wide range of human poses, 
and easy and tractable for both learning and inference. 
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Unfortunately, none of the aforementioned approaches 
exhibit all of these properties.  
In this paper, we are interested in learning a probabilistic 
model that fulfill all of these criteria. Towards this end, we 
propose a stochastic gradient descent algorithm for the 
GPLVM which can learn latent spaces from random 
initializations. We draw inspiration for our work from two 
main sources.  
The first, [36], approximates Gaussian process regression 
for large training sets by doing online predictions based on 
local neighborhood. The second, [37], maximizes the 
likelihood function for GPLVM by considering one 
dimension of the gradient at a time in the context of 
collaborative filtering. Based on these two works, we 
propose a similar strategy to approximate the gradient 
computation within each step of the stochastic gradient 
descent algorithm.  
Local estimation of the gradients allows our approach to 
efficiently learn models from large and complex training 
sets while mitigating the problem of local minima. 
Furthermore, we propose an online algorithm that can 
effectively learn latent spaces incrementally without 
extensive relearning. We demonstrate the effectiveness of 
our approach on the task of monocular and multi-view 
tracking and show that our approach outperforms the state-
of-the-art on the standard benchmark HumanEva [38]. 

3. Overview of methodology  

We first review the GPLVM, the basis of our work, and 
then introduce our optimization method for learning with 
stochastic local updates. Finally, we derive an extension of 
the algorithm which can be applied to the online setting. 
The rest of paper we describe this article in such way. Pose 
Estimation of Complex Activities, we take an aside to 
discuss an alternative method for learning low-dimensional 
embedding’s. Learned low-dimensional manifolds are 
commonly used to simplify the pose-estimation problem 
but can be poor at generalization; models which are more 
expressive are more difficult or inefficient to learn. In this 
chapter, we explored an alternative method for embedding 
poses in a low-dimensional manifold to serve as a pose 
prior. Existing approaches for establishing pose priors tend 
to be either too simplistic (linear), too complex to learn, or 
can only learn latent spaces from ”simple data”, i.e. single 
activities such as walking or running. We presented an 
efficient stochastic gradient descent algorithm for learning 
probabilistic non-linear latent spaces composed of multiple 
complex activities. We further extend this method and 
derive an incremental learning algorithm for an online 
setting which can update the latent space without extensive 
relearning  

4. Introduction to GPLVM (Gaussian process 
latent variable model) 

The GPLVM assumes that the observed data has been 
generated by some unobserved latent random variables. 

More formally, let  be the set of 

observations   and   be the set of 

latent variables . The GPLVM relates the 
latent variables and the observations via the probabilistic 

mapping , with η being i.i.d. Gaussian 

noise, and (d) the d-th coordinate of the observations. In 
particular, the GPLVM places a Gaussian process prior 
over the mapping f such that marginalization of the 
mapping can be done in closed form. The resulting 
conditional distribution becomes 

    (1) 
Where K is the kernel matrix with elements 

 and the kernel k has parameters β. 
Here, we follow existing approaches [131] and use a kernel 
compounded from an RBF, a bias, and Gaussian noise, i.e., 

 
The GPLVM is usually learned by maximum likelihood 
estimation of the latent coordinates X and the kernel hyper 

parameters . This is equivalent to 

minimizing the negative log likelihood  

(
2) 
Typically a gradient descent algorithm is used for the 
minimization. The gradient of  with respect to X can be 
obtained via the chain rule, where 

  (3) 

Similarly, the gradient of  with respect to  can be found 

by substituting in Eq. (3) (see [70] for the 
exact derivation). As N gets large, however, computing the 
gradients becomes computationally expensive, because 
inverting K is of O(N3), with N the number of training 
examples. More importantly, as the negative log likelihood 

 is highly non-convex, especially with respect to X, 
standard gradient descent approaches tend to get stuck in 
local minima, and rely on having good initializations for 
success.. 
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We now demonstrate how a stochastic gradient descent 
approach can be used to reduce computational complexity 
as well as decrease the chances of getting trapped in local 
minima. In particular, as shown in our experiments 
(Section 3.3), we are able to obtain smooth and accurate 
manifolds (see Figure 3.1) from random initialization. 

A. Stochastic Gradient Descent 

In standard gradient descent, all points are taken into 
account at the same time when computing the gradient; 
stochastic gradient descent approaches, on the other hand, 
approximate the gradient at each point individually. 
Typically, a loop goes over the points in a series or by 
randomly sampling from the training set. Note that after 
iterating overall the points, the gradient is exact. As the 
GPLVM is a non-parametric approach, the gradient 
computation at each point does not decompose, making it 
necessary to invert K, an operation at every 
iteration. We propose, however, to approximate the 
gradient computation within each step of the stochastic 

gradient descent algorithm. Therefore, the gradient of  
can be estimated locally for some neighbourhood of points 

, centered at a reference point , rather than over all of 
X. Eq. (3.3) can then be evaluated only for the points 
within the neighborhood, i.e., 

 (4) 

Where  is the kernel matrix for  and  is the 
corresponding neighbourhood data points. 
We employ a random strategy for choosing the reference 

point . The neighbourhood can be determined by any 
type of distance measure, such as Euclidean distance in the 
latent space and/or data space, or temporal neighbours 
when working with time series. More critical than the 
specific type of distance measure, however, is allowing 
sufficient coverage of the latent space so that each 
neighbourhood is not restricted too locally. To keep the 
complexity low, it is beneficial to sample randomly from a 
larger set of neighbors (see Section 3.3.1). 
The use of stochastic gradient descent has several desirable 
traits that correct for the aforementioned drawbacks of 
GPLVMs. First, computational complexity is greatly 
reduced, making it feasible to learn latent spaces with much 
larger amounts of data. Secondly, estimating the gradients 
stochastically and locally improves robustness of the 
learning 

 

Algorithm 3-1: Algorithm 1 Stochastic GPLVM 

process against local minima, making it possible to have a 
random initialization. An algorithmic summary of 
stochastic gradient descent learning for GPLVMs is given 
in Algorithm 1. 

B. Incremental Learning 

In this section, we derive an incremental learning algorithm 
based on the stochastic gradient descent approach of the 
previous section. In this setting, we have an initial model 
which we would like to update as new data comes in on the 

fly. More formally, let  be the initial training data, 

and  and  be a model learned from  
using stochastic GPLVM. For every step in the online 
learning, let Yincr be new data, which can be as little as a 
single point or an entire set of training points.  

Let be the set of 
training points containing both the already trained data 

, and the new incoming data , and let 

 be the 
corresponding latent coordinates, where M is the number of 

newly added training examples. Let  be the estimate 
of the latent coordinates that has already been learned. 
A possible strategy is to update only the incoming points; 
however, we would like to exploit the new data for 
improving the estimate of the entire manifold, therefore we 
propose to learn the full X. To prevent the already-learned 
manifold from diverging and also to speed up learning, we 
add a regularizer to the log-likelihood to encourage original 
points to not deviate too far from their initial estimate. To 
this end, we use the Frobenius norm of the deviation from 

the estimate . Learning is then done by minimizing 
the regularized negative log-likelihood 
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    (5) 
 

Here, X1:N,:  indicates the first N rows of X, while  is a 
weighting on the regularization term. The gradient of 

with respect to  can then be computed as 

    (6) 
We employ a stochastic gradient descent approach for our 
incremental learning, where the points are sampled 
randomly from Xincr. Note that while xr is only sampled 
from Xincr in the subsequent learning step, this does not 
exclude points in Xorig from being a part of the 

neighbourhood , and thus from being updated. We have 
chosen a nearest neighbor approach by comparing Yincr to 
Yorig for estimating an initial Xincr, though other 
possibilities include performing a grid search in the latent 
space and selecting locations with the highest global log-
likelihood (Eq. (3.2)) or training a regressor from Yorig to 
Xorig to be applied to Yincr. An algorithmic summary of 
the incremental method is provided in Algorithm 2 

 

Algorithm 3-2: Algorithm 2 Incremental Stochastic GPLVM 

the highest global log-likelihood (Eq. (3.2)) or training a 

regressor from  to  to be applied to . An 
algorithmic summary of the incremental method is 
provided in Algorithm 2 

A. Tracking Framework 

During training, a latent variable model is learned from 

, where  are relative joint locations with respect to a 
root node. We designate the learned latent points 
as During inference, tracking is performed in the 
latent space using a particle filter. The corresponding pose 
is computed by projecting back to the data space via the 
Gaussian process mapping learned in the GPLVM. 

We model the state  at time  as  where 
 denotes position in the latent space, while  and  are 

the global position and rotation of the root node. 
Particles are initialized in the latent space by a nearest 
neighbour search between the observed 2D image pose in 
the first frame of the sequence and the projected 2D poses 
of . Particles are then propagated from frame to frame 
using a first-order Markov model 
   
(7) 
We approximate the derivative xi with the difference 
between temporally sequential points of the nearest 

neighbors in  while gi and ri are drawn from individual 
Gaussians with means and standard deviations estimated 
from the training data. The tracked latent position ^xt at 
time t is then approximated as the mode over all particles in 
the latent space while ^yt is estimated via the mean 
Gaussian process estimate 

   (8) 
With  the mean of  and    the vector 

with elements  for all  in . Note that the 

computation of needs to be performed only once and 
can be stored. 

5. Experimental results 

We demonstrate the effectiveness of our model when 
applied to tracking in both monocular and multi-view 
scenarios. In all cases, the latent models were learned with       

 
we annealed these parameters over the iterations. To 
further smooth the learned models, we incorporate a 
Gaussian Process prior over the dynamics of the training 
data in the latent space [138] for the GPLVM and the 
stochastic GPLVM. 
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Fig 1:  Cross-subject 3D tracking errors for each type of activity sequence 
with respect to amount of additive noise for different number of particles, 
where error bars represent the standard deviation from repetitions runs. 

 

 

Figure 2: Experimental result of complex activities and comparison of 3D 
tracking errors. 

6.  Conclusion & further extension   

in this article we provide a GPLVM model which is 
accurate for learning and inference it based on latent spaces 
of complex activities, data set and easily computational 
efficient. We implement our model on humanEva 
benchmark. Further we use learning latent spaces 
incrementally they cannot handel new training samples 
without re-learning. Our proposed method can easily 
applicable online setting without extensive relearning. In 
future we further investigate the incorporation of dynamics 
into the stochastic model specific for multiple activities and 
changing the paramenters of mathematics formulas to 
improve the efficiency and accuracy of our model.  
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