
IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.3, March 2016

95

Manuscript received March 5, 2016
Manuscript revised March 20, 2016

MapReduce-based Similarity Measurement for Business
Processes

Juntao GAO, Xueshan WANG, Yongan WANG

School of Computer and Information Technology, Northeast Petroleum University, Daqing, 163318 China

Summary
Similarity measurement of business processes is a basic operator
which is useful in several scenarios, such as business process
management, business process searching, business process re-
engineering and so on. Firstly, the framework of the
methodology is proposed; secondly, two kinds of trace
generation method is discussed ; thirdly, the measurement of
trace similarity is studied from information theory perspective;
fourthly, the parallel algorithm to compute similarity of business
processes is described based on MapReduce; at last, the
experiments is illustrated and the conclusion is drawn.
Key words:
business processes, similarity measurement, MapReduce.

1. Introduction

Nowadays, Business process management has been widely
adopted to improve the efficiency, reduce the cost and
raise the quality. Along with time, plenty of business
process models have been accumulated and become
important intellectual assets which represent the business
handling procedures of the organizations [1~3]. It is
important to make a deep insight into these business
processes and their mutual relationship. Similarity
measurement is a basic operation in many applications in
business process management, such as, process mining [4],
process retrieval and process integration.
Researches on process similarity measurement have been
conducted from different perspectives. In graph theory,
graph isomorphism is often used to measure the similarity
between two graphs [5]. However, the method usually
only examine edges and nodes without catching the
syntactical issues of business processes. The delta-
algorithm is proposed to measure the difference between
two models in database field [6]. Unfortunately, it still
doesn’ t resolve the issues of the method mentioned
above. In process algebra theory, Trace equivalence and
bisimulation equivalence are usually employed to compare
two process models [7-9]. A method based on trace
equivalence is also proposed to assign weights to each
trace based on execution logs which reflect the importance
of a certain trace [10]. These methods determine whether
two process models are identical or not, but they do not
tell how much they differ.The common activity names are
used to compute the similarity score[11].While this

method is very simple and fast to implement, it major
shortage is that the structure of processes does not be taken
into considered.Furthermore, its application is limited to a
domain with controlled vocabulary.Label matching
similarity is proposed in [12], in which no information
about the order of nodes has been taken into account.
Ehrig[13] measure the similarity of process models based
on so-called semantic business process models. The
measure is not symmetric which is one of the important
properties of similarity.Graph edit distance is employed to
capture structural similarity[12,14~16]. However, the
different graphs dose not represent different business
processes.
So far, traces are one of the most widely acknowledged
representation of the behavior of business processes. This
paper studies the semantic similarity between business
processes based on traces. Next section proposes the
framework of the methodology which involves three
stages; the third section analyzes the way to capture trace
set from a business process and studies the algorithm to
implement the trace generator; the forth section studies the
method to comparing traces from different models that is
the basic blocks in this methodology; the fifth section give
the algorithm to compute the business process similarity
based on MapReduce.

2. The Framework of Methodology

The methodology proposed in this paper employ trace set
to specify the behavior of business processes. It involves
three steps: Trace Generation, Trace Comparison and
Model Similarity Computing. Firstly, generating traces
from predefined business process models. The execution
of business process results in a trace. The trace faithfully
records the process of businesses. In some cases, traces
can be directly retrieved from the log of PAIS(Process-
Aware Information Systems), such as ERP(Enterprise
Resource Planning), SCM(Supply Chain Management),
PDM(Product Data Management) and WFM(Workflow
Management system). In some other cases, traces can not
be directly retrieved but be generated by simulation. The
technology to achieve the traces from business processes is
detailed in section 3.

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.3, March 2016

96

Fig1. The framework of the methodology

Secondly, comparing the traces from different models. As
we known, a trace is a sequence of actions(events)
occurred in the system. The lengths of traces compared
may be different and the position of actions have different
influence on the semantic of the trace. The metric for
traces is studied in the section 4.
Thirdly, The similarities of traces are merged to compute
the similarity between business process models. The count
of the traces in the computing is bigger, the result of
similarity is more accurate. On the other hand, time
complexity of the computing is higher. In order to resolve
the problem of the high complexity, MapReduce is
employed to implement the algorithm in distributed
architecture.

3. Trace Generation

Trace generation is the first step in this methodology.
There two essential questions in this step: (1) how to select
typical traces from the real process executions in the case
of the PAIS already enacts; (2) how to simulate traces
from business process models.
Trace selector
The simplest selecting algorithm is to select the universal
set of available traces. However, the count of universal set
is usually too large to handle efficiently. Therefore, it is
important to find the least subset which has the
approximate effect to the universal set.
Intuition 1:
The same traces imply the same semantic information of
business process models.
Intuition 2:
Different traces may have different effect on the business
process models. According to the above two intuitions, the
algorithm is described as below pseudo-codes.
 void simplify(array us, array ss, array count)
{
 int count=0;
 for(int i=0;i<us.size();i++)
 {

 int j;
 for(j=0;j<count;j++)
 {
 if (us[i]==ss[j])
 {
 count[j]++;
 break;
 }
 }
 if(j==count) {
 ss[count]=us[i];
 count++;
 }
 }
}
 The algorithm iterates the universal set of traces us, if
the trace occurs in the array of ss, then increase the
corresponding value of count, else append it on the tail of
ss. Finally, the elements of ss are selected as candidates to
compare the similarity of business processes.
Trace simulator
Trace simulator is designed to generate traces from some
business process by simulation. During each simulation
one trace is generated. There are two issues from loop
structure need to address. If the business process model
includes loops, the sets of traces may become infinite and
the length of the trace may also be infinite. In order to
address the two issues, the weight of traces is introduces
into trace simulator. The basic logic is that the weight of
traces depends on the its occurrence times. The algorithm
is described as follows.
(1) trace-arrival. The case arrival function can be seen as
defining the actual start of a process and how often this
process is triggered within a certain time.
(2) decision making. Decision making function is
employed to make the decision which route to take at the
fork point. The rules of decision setup based on the
possibility or random selection.
(3) weight determining. If the trace is generated, the
weight is determined using this formula

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.3, March 2016

97

∏=
i

iyPossibilitω

i represents the ith decision making at the fork point.

Fig 2. the business model example

Tab 1. the result of trace by simulation
Number sequence weight

1 abcde 0.2
2 abcdf 0.3
3 abdce 0.2
4 abdcf 0.3

4. Trace Comparison
Little research has been conducted on comparison between
traces [17][18][19]. These papers focus on the action
traces in which each action is a symbol or numeric value.
However, the real action traces are often described by a
short text. The relationship between these actions is often
not identical or completely different. Further more, the
same action traces may be represented in different ways in
different organizations. This is because that different
organization using different terminologies and the problem
of semantic heterogeneity makes it a tedious job to
compare textual action traces. Next, a definition of action
trace similarity is constructed according to information
theory. The idea of similarity propagation is introduced to
pick out a mapping between corresponding activities and
data, and Hungarian algorithm is expanded to reduce its
time complexity.

Suppose ∑ denotes the universe of actions, there exist two

traces α and β ,

1 2, ,.. mx x xα =< > and , [1,]ix i m∈∑ ∈

1 2, ,..., ny y yβ =< > and
, [1,]jy j n∈∑ ∈

ix denotes the i-th action in trace α , i=1,2,...,n. | |α
denotes the length of trace α , which is the number of

actions in α . jy
 denotes the j-th action in trace β ,

j=1,2,...,n. | |β denotes the length of trace β , which is

the number of actions in β .

The commonality of α and β is depicted by
(,)common α β ,

(,) ,common X Y lctα β =< > , X is the action set

of α ,Y is the action set of β . Because the action may
occur more than once, X and Y are both multiset. The

commonality of α and β includes two parts: one is the

common action set X Y , the other is the longest
common subtrace, lcs for short, from the common action
set.

The combination of race α and β is depicted by
(,)description α β ,
(,) ,{ , }description X Yα β α β=< > ， the

combination of α and β also includes two parts, one is

the union of action set X Y , the other is two alternative

action sequences { , }α β .
 According to information theory[5] ， the reference
similarity of action traces is ：

log ((,))(,)
log ((,))

P commonsim
P descritipn

α βα β
α β

=
 (1)

 If the probability of trace is known, the above formula
can be computed using the following formula.

2 2| | | |(,)
| | | |
X Y lctsim
X Y X Y

α β ε φ= × + ×


 
，

where 1ε φ+ = (2)
 The value of ε and ϕ is determined by the amount of
information contained in the action sets and their orders.
Generally, the cardinality of universal action set is very
large, the probability of common actions occur is very
little and so the amount of information contained in action
sets is very large. While given the common action set, the
probability of same order occur is relatively big and so the
amount of information contained in it is relatively less.
Therefore, ε is bigger than ϕ .

5. Model Similarity Computing
This section presents some preliminary information about
MapReduce, describes in detail the algorithm to solve the
Similarity computing problem in a parallel manner and
presents the modifications to improve the algorithm’s
performance
The MapReduce framework was introduced in [20]. The
Map-Reduce-Merge variant [21] extends the MapReduce
framework with a merge phase after the reduce stage to
facilitate the implementation of operations like join. Map-
Join-Reduce [22] is another MapReduce variant that adds
a join stage before the reduce stage. In this approach,

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.3, March 2016

98

mappers read from input relations, the output of mappers
is distributed to joiners where the actual join task takes
place, and the output of joiners is processed by the
reducers.

Algorithm 1
Input: trace set M, N
Output: similarity collection.
Steps:
1.m mappers read the input trace slices. Compute

the similarity of each trace pair NMp ×∈ .
1.1. Constructing the Similarity Matrix
1.2. Picking up the best Matching
1.3. Computing the Commonality
1.4. Compute the similarity between traces

2.To output the similarity of the trace set.
2.1. Computing the sum of the similarity of trace
pairs
2.2. Computing the average value of similarity

3.R reducers receive the results of trace slices
3.1. Computing the sum of the similarity of trace
slices
3.2. Output the average value of similarity

Although there is no standard way to evaluate
computational measures of model similarity, one
reasonable way to judge can be agreement with human
similarity ratings.
In the experiments, twenty subjects was chosen and given
20 model pairs. The subjects were all experienced clerks in
an airplane manufacturing enterprise. The models were
sent to the subjects in different order by email. According
to the judgments, the subjects choose one of results:
identical (1), very similar (0.8), similar (0.6), different
(0.4), very different (0.2), and absolutely different (0).

Fig 3. the result of experiment

Fig.3 shows the result of the experiment. The average
similarity over the twenty subjects was compared with the
computational similarity measurement. The average
difference is 0.15, and the biggest difference is 0.25.

6. Conclusion
In this paper a new approach to measure similarity
between business process models on distributed
architecture is proposed. In order to address the issues that

the complexity of computation is too high, MapReduce is
employed to implement the parallel algorithm. The work
in this paper has been applies into a project of cross
organization ERP implementation. In the future, the
method still needs more projects to verify.

Acknowledgments
The research is supported by the Education Department of
Heilongjiang province science and technology research
projects (No. 12541094).

Reference
[1] M. Dumas, W.M.P. Van der Aalst, A.H.M. Ter Hofstede,

Process-Aware Information Systems: Bridging People and
Software through Process Technology, Wiley & Sons, 2005

[2] M. Rosemann. Potential pitfalls of process modeling:part b.
Business Process Management Journal,12(3):377-384, 2006

[3] M. Dumas, L. Garcia-Banuelos, R. Dijkman:Similarity
search of business process models. IEEE Data Engineering
Bulletin 32 (2009) 23-28

[4] Rakesh Agrawal, Dimitrios Gunopulos, Frank Leymann.
Mining Process Models from Workflow Logs. Lecture
Notes in Computer Science Volume 1377, 1998, pp 467-483

[5] E. B. Krissinel and K. Henrick, "Common subgraph
isomorphism detection by backtracking search," Software:
Practice and Experience, vol. 34, pp. 591-607, 2004.

[6] W. M. P. van der Aalst, "Business Alignment: Using
Process Mining as a Tool for Delta Analysis," Requirements
Engineering, vol. 10, pp. 198-211, 2005.

[7] W. Yongxiang, W. Jinzhao, and J. Jianmin, Process algebra
－symmetry and action decomposition: Science Press, 2007.

[8] J. Hidders, M. Dumas, W. M. P. van der Aalst, A. H. M. T.
Hofstede, and J. Verelst, "When Are Two Workflows the
Same?," in Australaian Symposium on theory of Computing,
vol. 41: ACM, 2005, pp. 3-11.

[9] W. M. P. van der Aalst and T. Basten, "Inheritance of
Workflows: An approach to tackling problems related to
change," Theoretical Computer Science, vol. 270, pp. 125-
203, 2002.

[10] W. M. P. van der Aalst, A. K. A. de Medeiros, and A. J. M.
M. Weijters, "Process Equivalence: Comparing Two
Process Models Based on Observed Behavior," presented at
BPM'06, Vienna, Austria, 2006.

[11] R. AKKiraju, A. Ivan, Discovering business process
similarities: An empirical study with SAP best practice
business processes. In: Service-Oriented Computing- 8th
International Conference. Volume 6470 of LNCS. (2010)
515-526

[12] R. Dijkman, M. Dumas,B. Van Dongen, R. Kaarik, J.
Mendling, Similarity of business process models: Metrics
and evaluation. Inf. Syst. 36(2011) 498-516

[13] M. Ehrig, A. Koschmider, A. Oberweis, Measuring
similarity between semantic business process models. In:
Fourth Asia-Pacific conference on Conceptual modelling -
Vol. 67 (2007) 71-80

[14] R. Dijkman, M. Dumas, L. Garcia-Banuelos, Graph
matching algorithm for business process model similarity

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.3, March 2016

99

search. In: Business Process Management. Volume 5701 of
LNCS. Springer(2009) 48-63

[15] C. Li, M. Reichert, A. Wombacher, On measuring process
model similarity based on high-level change operations.
In:27th International Conference on Conceptual Modeling,
Springer(2008) 248-264

[16] J. Bae, J. Caverlee, L. Liu, H. Yan, Process mining by
measuring process block similarity. In: Business Process
Management Workshops 2006. Volume 4103 of LNCS.,
Springer(2006) 141-152

[17] LI Yan, FENG Yu-qiang. A Quantitative Analysis Method
of Business Process based on Sequence Alignment. System
Engineering Theory and Practice,2007, 27(4):54-61

[18] Gerke, K., Cardoso, J.,Claus, A.: Measuring the compliance
of processes with reference models. In: On the Move to
Meaningful Internet Systems – Confederated International
Conferences 2009, Proceedings, Part I, Springer(2009) :76-
93

[19] David Maier (1978). "The Complexity of Some Problems
on Subsequences and Supersequences". J. ACM (ACM
Press) 25 (2): 322– 336

[20] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. In OSDI, 2004.

[21] H.-c. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker. Map-
reduce-merge: simplified relational data processing on large
clusters. In ACM SIGMOD, 2007.

[22] D. Jiang, A. K. H. Tung, and G. Chen. Map-join-reduce:
Toward scalable and efficient data analysis on large clusters.
IEEE Trans. on Knowl. And Data Eng., 23:1299– 1311,
September 2011.

Juntao GAO, received the PhD.
degrees in Computer Science from
BeiHang University in 2009. During 2009-
2014, he stayed in Northeast Petroleum
University to teach software engineering.
His interest and research areas include
process modeling, software requiremen-
ts, semantic computing. Email:
gjt@nepu.edu.cn.

Xueshan WANG, graduate student to
study software engineering in Computer
Science from Northeast Petroleum
University in 2014. . Her interest and
research areas include data quality,
software requirements, process modeling.
Email: 745785501@qq.com

Yongan WANG, master, he is now works
in the Northeast Petroleum University. His
interest and research areas include
information retrieval, clustering, and data
integration.
Email:wyajiessie9@126.com

	4. Trace Comparison
	5. Model Similarity Computing
	6. Conclusion
	Acknowledgments

