
IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.3, March 2016

105

Manuscript received March 5, 2016
Manuscript revised March 20, 2016

Enhanced Agent based Scheduling & Monitoring System in
Cloud Computing

Sonali Agrawal, Deepak Choubey(asst. prof.)

Dept of Computer Science & Engg SRIT Jabalpur(M.P.), India

Abstract
Scheduling and monitoring is the main challenge in cloud
computing paradigm. Various methods have been proposed but
they have their own pros and cons. The main challenge is
distributive nature of the cloud computing that create the problem
to implement the proper scheduling of the service (mainly SaaS)
and their efficient monitoring. Various users have access the
service of the cloud simultaneously and scheduling monitoring of
at the same time is bit challenging. Proposed system has adopted
the idea of software agent to gain the high efficiency in the same
direction (scheduling and monitoring).This article presents the
method for computing number of resources used and the solution
for better elasticity and their efficient monitoring of the resources
in the cloud which helps to gather analytical statistics of the
resources currently held and will be used such a memory, number
of instances and CPU. Proposed mechanism has influences from
the working of Aneka framework. For evaluation of the proposed
work, the components has been used, first the data set which is
the web application (jsp) developed for testing in cloud
environment. For this a java web application (SaaS) has been
developed onto the codenvy. Then deploying SaaS application in
the cloud a PaaS service required subscribing, for this Cloudbees
PaaS service has been used. Then for monitoring and scheduling
with software agent New Relic service has been used to
customized the agent functionality to meet the propose systems
requirement. The obtained result (Scalability, Availability,
Response Time, Average user Satisfaction, Average Utilization
Ratio) of the proposed mechanism has been found satisfactory
and performs better than existing one.
Keywords
Agent, Cloudbees, Cloud computing, Codenvy, Monitoring,
Public Cloud, Provisioning, New Relic, Scheduling.

1. Introduction

Heterogeneity in the computational requirement, dynamic
choice and infrequent usages types of resources of the
users in modern era has main challenge for service
provider (application developer and hardware
manufacturer). Secondly, Now computing power or
connected computing power (with network) has more
demanding and significant role in almost all areas of epoch
including market analysis, searching, map, accounting,
medical, trading, shopping, rescue operations and many
more, the list is endless. Various devices (computing) and
application has been developed and developing to fulfill

the common users need. However different users have
different requirements of computational power and
application and systems software. Hence demand of users
is heterogeneous in nature so that varieties of application
(hardware & software) have been developed to achieve the
highest user satisfaction. Advancement of electronics and
telecommunication field has done the job. Specialization
has more promising than generalization due to expertise in
specific job/function but it also has dark sides. Various
requirements require numerous specialized devices (CPU,
storage etc.) and software tools. Purchasing or licensing of
all such required items (devices & applications) is not
feasible to the organization or individuals in terms of the
cost and installation. Secondly most of the resources are
idle i.e. frequently not used. Hence the utility types of
computing paradigm will play an import role. Cloud
computing is a new computing paradigm based on utility
computing model which will fulfill the user’s requirement
dynamically on rent basis.
According to the Lewis Chunningham [36] “Cloud
computing is the internet to access someone else’s
software running on someone else’s hardware in someone
else’s data center”.
More comprehensive concept about cloud computing has
been narrated and drafted by National Institute of Standard
& Technology (NIST): According to NIST-
“Cloud computing is a paradigm for facilitating expedient,
on-demand network access to a shared cluster
(pool/collection) of configurable computing power and
resources (like applications, services, networks, servers,
and storage,) that can be expeditiously provisioned and
exemption with least management endeavor or without
service provider interaction. This cloud paradigm endorsed
availability and is possessed of five imperative
characteristics, three service models, and four deployment
models.”
Cloud computing is fast growing as an alternative to
conventional computing. However, the paradigm is
somehow same as, utility computing, grid computing,
cluster computing and distributed computing in
approximately .Cloud computing fabricate a virtual
paradigm for sharing data and computations over a
scalable network of nodes. Examples of such nodes
include end user computers, data centers, and web services.

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.3, March 2016 106

Such a scalable network of nodes is called cloud. An
application based on such clouds is taken as a cloud
application. Cloud computing is modern TCP/IP
integrations of computer and network technologies such as
fast micro processor, gigantic memory, high-speed
network and reliable system architecture [4]. Normally
cloud computing services are organized into three groups:

a. Software-as-a-Service (SaaS)
b. Platform-as-a-Service (PaaS) and
c. Infrastructure-as-a-Service (IaaS)

Cloud computing also is divided into five layers including
clients, applications, platform, infrastructure and servers.
The five layers look like more reasonable and clearer than
the three categories [11].
An Amazon EC2 instance is a virtual processing resource
(VM) in the Amazon cloud. The progression of
instantiating latest (fresh) Virtual Machine might take as
long as few minutes. The new VMs originate either as
fresh boots or replicas of an existing virtual Machine
(template VM), unconscious of the existing application
state.
For monitoring the resources various methods and tools
has been used like CloudWatch popular in Microsoft
Azure and Amazon EC2 cloud. CloudWatch is a type of
web service application that monitored the instances
(resource provision), as well as also responsible for
elasticity for the subscribed services i.e. Auto Scaling [4]
as per the need of the subscribed application by the cloud
subscriber. For instance, checking condition has been set
(like threshold condition) whenever there is need of
additional resources or less number of resource. For
example, if the mean CPU utilization (of particular
subscribers application) is greater than 70% add more
resources automatically, or remove the excess resources
when mean CPU utilization in below 10%. It takes an
action based on statistics collected and exposed by
CloudWatch contrary to our work. These metrics take a
purely system view such as utilization, but not the
application view such as average response time of a
request, or an associated Service Level Objective (SLO).
Further, Auto Scaling is atheist to the need for
provisioning data resources desirable for workload
execution. Amazon claims that the latency and throughput
of the volumes are designed to be significantly better than
the instance’s local store. Conversely, a volume can only
be attached to only single instance. Microsoft Windows
Azure does not offer automatic scaling, but it is the
primary tool for provisioning. Subscriber can provision
any number of instances that they craving to have
available for deployed application. Similar to Amazon
EC2, the instances are virtual processing resources.
Effectively, Azure provides provisioning mechanisms
which can be used by a management function to improve
application and system metrics.

Systems that jointly employ scheduling and provisioning
techniques have been explored in grids. The Falkon
scheduler triggers a provisionary component for host
increase or decrease. This host variation has also been
explored during the execution of a workload, hence
providing dynamic provisioning.
The scheduling and monitoring is the main challenge in
cloud computing paradigm. Various methods have been
proposed but they have their own pros and cons. The main
challenge is distributive nature of the cloud computing that
create the problem to implement the proper scheduling of
the service (mainly SaaS) and their efficient monitoring.
Various users have access the service of the cloud
simultaneously and scheduling monitoring of at the same
time is bit challenging.
Propose system has adopted the idea of software agent to
gain the high efficiency in the same direction (scheduling
and monitoring).
Rest of the article is organized as follow, Section II
describes related works. Section III presents enhanced
agent based solution for efficient provisioning and
monitoring in cloud. Section IV discusses the obtained
results and the performance analysis and finally Section V
concludes the papers with the future directions of this
work.

2. RELATED WORKS

Cloud computing is fast growing as an alternative to
conventional computing. However, the paradigm is
somehow same as, utility computing, grid computing,
cluster computing and distributed computing in
approximately .Cloud computing fabricate a virtual
paradigm for sharing data and computations over a
scalable network of nodes. Examples of such nodes
include end user computers, data centers, and web services.
Such a scalable network of nodes is called cloud.
According to author [3], cloud computing depicts- The
modern trends Cloud computing designated to provision
application (SaaS and PaaS) and efficient data center
service using in conjunction with hardware and software
mutually delivered via internet (network in case of private
cloud within campus) on rent basis. Virtualization is the
core concept behind cloud computing. One of the main
key function of the cloud computing is elasticity (shrink-in
and shrink-out) whereabouts required (variable) number of
in instances of VM (Virtual Machine) has been created
dynamically to fulfill the users heavy (shrink out) and light
(shrink in) on the users application demands [1,2]. The
cloud applications themselves have long been known as
Software-as-a-Service (SaaS). SaaS is a software delivery
paradigm where the software is hosted off-premises,
developed by service providers and delivered via Internet
and the payment mode follows a subscription model [3].

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.3, March 2016 107

For SaaS providers, having the power to scale up or down
an application to only consume and pay for the resources
that are required at that point in time is an attractive
capability and if done correctly it will be less expensive
than running on regular hardware from traditional hosting
[1].
Author [3] found that, However, in spite of the advantages
of using cloud computing to create highly scalable
applications, solving performance problems through cloud
computing is not a trivial decision if involved costs are
analyzed [4]. For example, Amazon Web Services charges
by the hour for the number of instances you occupy, even
if your machine is idle. In 2008, the image-processing
Animoto application deployed over Amazon EC2
infrastructure [5] experienced a demand surge that resulted
in growing from 50 servers to 3500 servers in three days;
after the peak collapsed, network traffic knock over to a
point so that it was well beneath the max point. Increasing
the number of resource (positive scalability) to achieve
shrink-out i.e. scale- up elasticity was not a cost expansion
approach although it’s an viable prerequisite, whereas
shrink-in i.e. scale-down elasticity permitted the steady-
state expenditure to more closely match the steady-state
workload. Indeed, Animoto’s provider charges by 3500
virtual instances because a peak load occurred at a certain
time frame and when this peak disappeared, it would pay
for unused resources [4]. This effect is still a barrier for
SaaS providers, whose applications have different peak
loads and they are highly prone to suffer over and under
provisioning of resources [6,7].
A computing cloud is a gigantic network of nodes. Hence,
elasticity or extensibility i.e. scalability ought to be an
eminence feature of the cloud. The paramount scalability
is Horizontal scalability, that is the capability to connect
and incorporate various clouds to endeavor as single
virtual/logical cloud [3,4]. For instance, a cloud providing
calculation services (calculation cloud) can access a cloud
providing storage services (storage cloud) to maintain
transitional outcomes. Two computational clouds can also
join together into a bigger computational or calculation
cloud.
Scalability should be transparent to users. For illustration
subscriber users can cache their information in the cloud
devoid of the necessitate to discern where it stores the data
or how it reprieve the data. For instance every cloud has
only a fixed volume of physical storage units. Therefore, a
cloud a1 may inquire about facilitate from a different
cloud a2 for shared storage units to perform some demands
on related to storage. Such sharing requirement may result
in the data to migrate among multiple clouds. However,
the cloud subscriber ought to not be conscious of the
scattered storage structure of the information of his/her
interest i.e. distributed [5]. Suppose whilst subscribers
needs to retrieve the cached data, the user may perhaps
exactly accessed it from the subscribed cloud i.e. cloud a1.

Then c1 is responsible for gathering the data from both a1
and a2, and returns the collected data to the user.
Consequently cloud offers location transparency to
subscribed applications i.e. seems to accessed from local
(subscribed) cloud.

Existing Work in Cloud Monitoring

The work in [37] describes a distributed monitoring
service, implemented in Java and JINI (with WS-*
bindings), called MonaLISA (Monitoring Agents in A
Large Integrated Services Architecture). An agent in
MonaLISA represents a service (i.e., that can be used by
other services or clients) that is discoverable, self-
describing and able to collaborate and cooperate with other
services in various monitoring tasks. Collected data is
stored, per service, in a local relational database. The Data
Collection Engine directs MonaLISA’s function. Clients
may request both real-time and historical data through use
of various filtering mechanisms (e.g., predicates, Agent
Filter).
Clayman et al. [38] [39] describe the Lattice monitoring
framework, designed to be a base framework on top of
which monitoring systems may be built. Though in
agreement with most of the requirements we specify here,
their focus is more on the actual probes for sensing low-
level metrics (e.g. CPU utilization probe). Authors are
more interested in the collection, aggregation, and
distribution of application- and system-level metrics from
third-party probes.
The work in [40] introduces an architecture for and
implementation of a private cloud monitoring system. The
architecture is quite high-level and is composed of three
layers: an Infrastructure layer, an Integration layer and a
View layer. The implementation is modular in design and
consists of several components that are mostly focused on
the integration layer of the architecture. Currently, it is
compatible with Eucalyptus (as a IaaS implementation);
however, it is mentioned that it could be extended to work
with alternative IaaS implementations in the future. It
appears to rely quite heavily on Nagios for its monitoring
functionality.
In [41], Kanstre and Savola define a set of requirements
for a distributed monitoring framework and a reference
architecture that satisfies those requirements. The
requirements include scalability, correctness, security,
adaptation and intrusiveness. The architecture is a
conceptual layered architecture and there is no reported
realization of it. An implementation of a distributed
network monitoring framework was proposed in [42]. The
authors showed how a three tier layered framework can be
used for monitoring computer networks in geographically
distributed locations. Compared with the above two
approaches, our approach is better-suited to federated
systems of clouds, though we share some common
requirements such as scalability.

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.3, March 2016 108

A cloud monitoring framework was proposed by Sun et al.
[43]. The authors use a conceptual Service Oriented
Architecture and focus mostly on message interchange
among entities and on the integration of the framework
with the existing system management processes. There is
no implementation or evaluation of the architecture.
Following works has need the next conceptual step,
recognizing the importance of scalability and intercloud
monitoring on a loosely-coupled publishes-subscribe
architecture. Lahmadi et al. [44] present a benchmark
effort for defining metrics for evaluating a performance
management framework.
Their metrics include overhead, delay and scalability in the
context of networks and services. Balis et al. [45]
described Gemini2, a monitor for grids built on a complex
event processing (CEP) system called Esper (stream
processing is in the same space as complex event
processors). They suggest CEP is well-suited for
monitoring as it enables access to streams of data in real
time. They propose what amounts to substantial shift in
how monitoring information is consumed: the end user
writes and submits an SQL-like query requesting
information, and the system deploys sensors to acquire this
monitoring information which is then pushed to the end
user. Support for existing monitoring services or even
conventional monitoring paradigms is not included.
The idea of using public clouds to enhance the capability
of grid resources has been explored theoretically in
different works. Assunção et al. [46] present a simulation-
based analysis of different algorithms for provisioning of
resources both in a local cluster and in the cloud. Such an
analysis is based on common grid and cluster workloads.
Kondo et al. [47] present a cost-analysis study of mixed
cloud and desktop grid environments for high-throughput,
CPU intensive applications. Such a study shows that
hybrid approaches where servers for the desktop grid are
hosted in the cloud enable savings in infrastructure costs.
Regarding actual implementations of systems supporting
hybrid clouds for scientific applications, CometCloud [48]
is an autonomic engine for hybrid grids and cloud systems,
which supports the execution of workflow applications.
Aneka, on the other hand, provides support for different
programming models such as workflow, MapReduce,
threads, and Actors oriented programming. Moreover, it
can also exploit resources from idle desktop machines,
including those running the Windows operating system.
The ASKALON grid environment has been extended [49]
to support the execution of workflow applications in both
grids and clouds (either public or private). The CaGrid
Workflow Toolkit [50] performs discovery, data access,
service invocation, and execution of workflows in multiple
types of resource. Both systems support only workflow
applications and limited types of resource, whereas Aneka
supports different programming models and computing
environments.

GridWay [51] supports the execution of applications both
in local grids and in different cloud providers with the help
of Globus Nimbus. It supports any type of local resource
that can be managed by the Globus middleware, and also
supports programming models supported by the latter.
Therefore, both GridWay and Aneka are able to provision
any type of resource to applications, even though Aneka
supports more application models than GridWay.
Finally, Elastic Site Manager [52] is a resource manager
that is able to dynamically provision resources from
private and public clouds to scientific applications.
OpenNebula combined with Haizea [53] supports the
dynamic provision of virtualized resources from private
and public Clouds. Resources managed by these systems
are virtualized resources only, whereas Aneka is able to
leverage applications with both virtualized and non-
virtualized resources simultaneously, due to its
provisioning capabilities.
Problem identified by [1]: From this scenario, the cloud
data storage and access may need not only intra-cloud
interactions; however it can also inter-cloud interactions.
That is to say, the cloud data haven’t only be retrieved in a
LAN, but also roamed in WAN. In LAN environment,
cloud computing system can use Remote Procedure Call
(RPC) or Remote Method Invocation (RMI) as the
intrinsic capacity, to implement the service directory
coherence and service migration. RPC and RMI can
accomplish excellent efficiency in Local Area Network,
but inappropriate for Internet or Wide Area Network [6].
Mobile agents on the Internet or WAN have the
characteristics as follows: Autonomy, Personality,
Communication, Mobility and High Performance and
Fault tolerance [7]. Mobile agents are mainly intended to
be used for applications distributed over wide area (slow)
networks because they can save communication costs by
moving the resource and service to the remote target
environment which is near the user.
A mobile agent based cloud computing system for WAN
(SaaAS) is presented by the [1]. According to author [1],
with the help of mobile agent rather than RPC/RMI as the
underlying facility to implement the service directory
coherence and service migration, SaaS is more suitable to
work in Internet.
In the article [1], author presents a code and data of service
load mechanism based mobile agent and divided-cloud and
convergent coherence mechanism of SaaAS, which can
effectively reduce the heavy communication overhead in
Internet.
Problem identified by [2]: In article [2], author has
surveyed many problem associated with cloud service
delivery especially while talking about the service
interoperability and portability of the data in the cloud.

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.3, March 2016 109

3. Enhanced Agent based Scheduling &
Monitoring System in Cloud Computing

Modern era is reflection of human creative thinking and
application of optimize solution for the problems mapped
and simulated into the machines using technological skills
and advancement on it. Cloud computing is another
example of technological advancement which offers
dynamic provisioning of the utility on rent basis to the
subscriber. Cloud offers instant service (software,
platform or infrastructure) to requisite dynamically.
Sometime’s subscriber need more resource (like network
bandwidth, CPU or memory) or sometimes it require to
less. Cloud service provider has deploy and manage to
sufficient number of resource that has been shared to all
the subscriber as per the load requirement of the
individuals. To achieve this task cloud service provider
required highly efficient scheduling approach and the
proper monitoring of the services provisioned or will be
provision to subscriber. All the scheduling and monitoring
assured the high reliability, automatic scalability, fault
tolerance services in secure manner.
Proposed agent based approach has provides the efficient
and accurate solutions for efficient scheduling and
monitoring in cloud computing. In the cloud computing.
Agents are the self executable code work on behalf of the
humans. They are able to communicate i.e. social in nature,
mobile i.e. can roam in the network, perform the task at
remote stations and send back the results to source
platform (where they been originated), agents are also
clone themselves and one of the core property of the agent
is autonomy i.e. autonomous and distributive in nature.
Hence agent based solution has been proposed to meet the
requirement of the modern cloud computing with pace of
dynamic provision to insure shrink in shrink out
(elasticity) of the cloud service provider to achieve highest
scalability and reliability in extent of the maximum
availability of the service to the requisites.
For implementation and evaluation of proposed approach
public cloud has been chosen due to cost effective
experimental setup. Outcome the results shows that the
provisioning of SaaS (Software as a service) and its
monitoring using agent has gives better result which is
more efficient than existing approach. Integration of the
agent in the propose system provides the cost effective and
reliable with dynamic pace, solution for efficient
scheduling (elasticity of the resource and services) and
proposer monitoring of the cloud computing systems.
For developing proposed agent based system three types of
public cloud and their services has been selected as test
bed for better evaluation and measurement of the accuracy
of the propose system. They are following with respective
functionality in the proposed system-

1. Codenvy – To develop an/are application i.e. SaaS
(Software as a service). For the proposed system an java
web application using jsp (Java Server pages) application
has been chosen to develop on to the codevny SaaS cloud
service provider.
2. Cloudbees – To deploy and test our SaaS application
onto the cloud, propose system needs a platform i.e.
Platform as a Service (PaaS). For this Cloudbees service
provider has been integrated onto the developed SaaS
application.
3. New Relic – To develop the core functionality of the
proposed system .i.e. monitoring and scheduling using
software agent New Relic service has been subscribed. In
this the java agent has been customized to meet the
monitoring and scheduling of the SaaS services.

A. Problem Identification and Proposed Solution
Propose system has surveyed and identified the problem
domain that must be addressed in context of the cloud
computing and consequently present the idea of agent
integration. These are following-
1. Service scheduling delay
2. Elasticity optimization
3. Better Provisioning of the SaaS
4. Fault tolerance
While author [1] and [2] proposed an agent based solution
to solve the above listed QoS parameter that greatly affect
the performance of cloud service especially SaaS.
But the main problem while looking [1] and [2] is the
realization and effectiveness of the agent with cloud for
better optimization of the service delivery. The main
lacking point in the article [1] and [2] is validation of the
proposed mechanism.
Additionally the requirements for such fast provisioning of
the cloud has been discuss in the recent year in the article
[3].
Our main research work is to enhance the agent based
model for SaaS delivery in the cloud as depicted in the [1]
and [2].
Following goals has been set during experimental setup as
a objective to solved with integrating of the Mobile Agent
to Cloud Computing service realization-

• To Evaluate and delivered the cloud computing
services (SaaS) using agent (for better and fast
delivery) using public cloud such as “New Relic
and cloud bees”.

• Deploying a web services under SaaS paradigm
and evaluate the effectiveness of the web
application in the cloud environment with the
help of agent. For SaaS development Codenvy
has been subscribed. In which jsp based
application has been develop and deployed on
cloudbees PaaS.

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.3, March 2016 110

• Evaluation and Public PaaS (plateform as a
Service) of the Cloudbees service integrating a
SaaS deployment on it and delivering through
agent.

• Measuring the performance of the proposed
analytical approach (influenced from Aneka) in
cloud services such as public Cloud bees.

B. Proposed Algorithm:
Provisions of service and resources in cloud PaaS is an
important function that provides analytical statistics about
the current view of cloud (running instance for a user or
group of users).
Model for Proposed Work
Our proposed work is to schedule and monitor cloud SaaS
application onto the cloud and evaluate the performance of
the same using proposed agent based.
Proposed Algorithm for Provisioning Application and
Resources:

Algorithm for Scheduling (influenced from Aneka) developed onto the
Cloudbees-

1. Initialize agent to continuous monitor the resources to
check the updates and send report to the
Monitoring_Agent –
1. Relaese_resources_Agent = List all the

resources_avaialble
2. Memory_agent = Calculated the free_space()
3. Throughput_Agent = Check and monitor the

requested_network usages
4. Req_res_agent = check the request and reply
5. Network_usages
6. CPU_Agent = Calculate the total free capacity of CPU

available (as per subscription)
2. Monitoring Agent – It Checks the required resource to

ensure the QoS (Quality of Service) and load requirement
to the subscriber

 for each subc_request with QoS constraints:

 {

 resources = available_resources for the requested SaaS
application;
 call Relaese_resources_Agent();
 call Memory_agent();
 call CPU_Agent();

 Jobs_pending = number of jobs in the queue;
 effort = (Jobs_pending /resources)× averageJobsRuntime;
 call Req_res_agent();
 if (effort > Remaining_Time_application)
 {

 additionalResources =
(Jobs_pending×averageJobsRuntime)

 Remaining_Time_application;
 Call CPU_agent();
 call Relaese_resources_Agent();
 CALL_Monitoring_Agents(job_Id); // for resource
provisioning
 }
 else
 toRelease = 0;
 call Relaese_resources_Agent();
 if (Jobs_pending < resources)

 {
 toRelease ← Jobs_pending − resources;
 call Relaese_resources_Agent();
 }
 else
 {
 Call CPU_agent();
 Jobs_pending = Jobs_pending + Jobs_running;
 Effort = (Jobs_pending /resources)× averageJobsRuntime;
 if (effort < Remaining_Time_application)
 toRelease ←resources –
(Jobs_pending×averageJobsRuntime)
 Remaining_Time_application

 }
 CALL_Relaese_resources_Agent(job_Id);
 end

 end

C. Monitoring of SaaS using Java Agent
Set of agent has been customized and configured as a java
agent onto the new relic to perform the monitoring of the
SaaS application.
Set of Agents-

7. Monitoring_Agent
8. Relaese_resources_Agent
9. Memory_agent
10. Throughput_Agent
11. Req_res_agent
12. Network_usages
13. CPU_Agent etc.

Brief Summary of the task assigned to Agent-
1. Resource utilization and monitoring like network,

memory, I/O request has been monitored by the
Monitoring_Agent the calculation of the
required resources has been evaluated using
above mentioned algorithm to ensure elasticity.
Monitoring_Agent(Job_id)
 {
 Check the resources required to the job
pending
 Call Memory_Agent(); //calculate the size
required to store the job in memory
 Call CPU_Agent()
 {
 Check the priority and computational
power required for the job
 Call Req_res_Agent();
 Call Network_Agent()
 {
 Check the achieved Throughput
during provisioning
 Call Throughput_Agent();
 }
}

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.3, March 2016 111

2. Error monitoring and page load response of the
SaaS while accessing from the browser and
respective users.

3. Relaese_resources_Agent

4. Results And Performance Analysis

For evaluating the performance of the proposed agent
system, the obtained results have been compared with base
paper [2] in which author has proposed “MABOCCF” the
realization of the federation of different cloud (cloud
interoperability) using agent. Author has choose two
matrices to evaluate the performance of the its proposed
MABOCCF technique – average user satisfaction and
another one is average utilization ratio which has been
derived from following fundamental (base) matrices –

1. Number of tasks submitted at instant i (Ni)
2. Time to execute the task
3. Availability
4. Scalability

 Author has compared the outcome of their experiment
with Non- MABOCCF (NMABOCCF) technique.
Proposed agent based solution has influenced from [2] but
it’s not the realization of cloud federation rather it has to
evaluate the scheduling and monitoring of the SaaS (task)
application in public cloud’s (cloud federation not
interoperability). All the matrices of the performance
checking has been same meaning as our proposed system
generated like –

1. Response time is same as to average utilization
ratio in addition to CPU usages.

Table 1.1 shows the response time of the deployed SaaS
obtained results and has been compared with existing
agent based method (in seconds)

Table 1.1(a) Response Time

Table 1.1 (b) Average user Satisfaction Ratio (in %)

Fig. 1.1 (a) Average user Satisfication

Fig. 1.1 (b) Average utilization Ratio

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 10
0

U
se

r S
at

is
fic

at
io

n
(in

 %
)

Number of task at time i (Ni)

Average User Satisfication

Proposed
Agent based

MBOCCF

NMBOCCF

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 10
0

U
til

iz
at

io
n

Ra
tio

 (i
n

%
)

Number of tasks submitted at i (Ni)

Average Utilization Ratio

Proposed
Agent based

MBOCCF

NMBOCCF

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.3, March 2016 112

5. Conclusion

This thesis paper the enhanced agent based solution to
ensure better elasticity and monitoring solution. Analytical
analysis is to collect statistics to check the required
number of resources needs or used and provides dynamic
indication to better elasticity achievement. Proposed agent
based solution for guaranteed better elasticity and their
efficient monitoring of the resources in the cloud which
helps to gather analytical statistics of the resources
currently held and will be used such a memory, number of
instances and CPU. Proposed mechanism has influences
from the working of Aneka framework. For evaluation of
the propose agent based method data set (jsp) has been
developed using jsp web pages and deployed onto the
cloud evaluating the elasticity and its monitoring. The
developed java web application (SaaS) has been developed
with the help of codenvy SaaS developed platform. To
deploying created SaaS application in the cloud a PaaS
service has been required to be subscribed, for this
cloudbees PaaS service has been chosen. Then for
monitoring and scheduling with software agent New Relic
service has been used to customized the agent
functionality to meet the propose systems requirement.
Proposed agent based methods obtained result has been
found satisfactory and performs better than existing
available solution.
In this article, the fundamental of cloud computing with
their latest functionality has been presented. Proposed
mechanism’s good thing is that it has been tested in public
cloud provider’s environment. As a future advancement as
derivative of the proposed agent based solution where the
current work can be taken further is Security enhancement
using Agent for following attack – internal attacks and
DoS (Denial of Service) attack. And develop a security
perimeter based on anomaly detection using Application
Process Management by integrating the mobile Agent on
them for the cloud computing paradigm.

References
[1] Gaoyun Chen, Jun Lu, Jian Huang and Zexu Wu “SaaAS -

The Mobile Agent based Service for Cloud Computing in
Internet Environment”, IEEE, Sixth International
Conference on Natural Computation (ICNC 2010), pp. 2935
– 2939, 2010.

[2] Zehua Zhang and Xuejie Zhang “Realization of Open Cloud
Computing Federation Based on Mobile Agent”, IEEE, pp.
642 – 646, 2009.

[3] Javier Espadas, Arturo Molina, Guillermo Jiménez, Martín
Molina, Raúl Ramírez and David Concha “A tenant-based
resource allocation model for scaling Software-as-a-Service
applications over cloud computing infrastructures”, Elsevier
Science Direct, Future Generation Computer Systems 29
(2013), pp. 273–286, 2013.

[4] IBM Blue Cloud project [URL]. http://www-03.ibm.com/
press/us/en/pressrelease/22613.wss/.

[5] Rizwan Mian, Patrick Martin and Jose Luis Vazquez-Poletti
“Provisioning data analytic workloads in a cloud”, Elsevier,
Future Generation Computer Systems, pp. The
Characteristics of Cloud Computing, 2012.

[6] Chunye Gong, Jie Liu, Qiang Zhang, Haitao Chen and
Zhenghu Gong “The Characteristics of Cloud Computing”,
39th International Conference on Parallel Processing
Workshops, pp. 2010.

[7] Amit Nathani, Sanjay Chaudhary and Gaurav Soman
“Policy based resource allocation in IaaS cloud”, Elsevier,
Future Generation Computer Systems 28 (2012) 94–103

[8] Naidila Sadashiv and S. M Dilip Kumar “Cluster, Grid and
Cloud Computing: A Detailed Comparison”,IEEE, The 6th
International Conference on Computer Science & Education
(ICCSE 2011) August 3-5, 2011. SuperStar Virgo,
Singapore.2011.

[9] Bernd Grobauer, Tobias Walloschek and Elmar Stöcker
Siemens “Understanding Cloud Computing Vulnerabilities”,
IEEE, Copublished By The IEEE Computer And Reliability
Societies, 2011

[10] Jianwei Yin, Yanming Ye, Bin Wu and Zuoning Chen
“Cloud Computing Oriented Network Operating System and
Service Platform”, 1st IEEE Workshop on Pervasive
Communities and Service Clouds, IEEE, 2011

[11] Dan Svantesson and Roger Clarke “Privacy and consumer
risks in cloud computing”, Elsevier, compute r law & securi
ty rev iew 26 (2010) 391e397.

[12] L.M. Vaquero, L.R. Merino, J. Caceres, and M. Lindner, “A
break in the clouds: towards a cloud definition,” ACM
SIGCOMM Computer Communication Review, v.39 n.1,
2009.

[13] D. Chappell, Introducing Windows Azure, David Chappell
& Associates, 2009.

[14] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, M. Wilde,
Falkon: a fast and light-weight tasK executiON framework,
in: Proceedings of the 2007 ACM/IEEE Conference on
Supercomputing, ACM, Reno, Nevada, 2007.

[15] Frederick Chong and Gianpaolo Carraro, "Architecture
Strategies for Catching the Long Tail," Microsoft
Corporation, April 2006. http://msdn.microsoft.com/enus/
library/aa479069.aspx.

[16] T. Dierks and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2,” 2008, IETF RFC 5246,
http://www.ietf.org/rfc/rfc5246.txt.

[17] A. Baumann, P. Barham, P.-E. Dagand, T. Harris,R. Isaacs,
S. Peter, T. Roscoe, A. Schüpbach, and A. Singhania, “The
multikernel: a new OS architecture for scalable multicore
systems”. In Proceedings of the ACM SIGOPS 22nd
Symposium on OS Principles, 2009, pp. 29–43.

[18] A. Schüpbach, S. Peter, A. Baumann, T. Roscoe, P. Barham,
T. Harris, and R. Isaacs. “Embracing diversity in the
Barrelfish manycore operating system”. In Proceedings of
the Workshop on Managed Many-Core Systems (MMCS)
2008. ACM, June 2008.

[19] S. Peter, A. Schüpbach, P. Barhamy, A. Baumann,R.
Isaacsy, T. Harrisy and T. Roscoe,”Design Principles for
End-to-End Multicore Schedulers”. In 2nd Workshop on
Hot Topics in Parallelism, Berkeley, CA, USA, June 2010.

[20] D. Malcolm, “The five defining characteristics of cloud
computing,” http://news.zdnet.com/2100-9595_22-
287001.html.

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.3, March 2016 113

[21] P. Sharma, “What kind apps are best suited for ‘Cloud
deployment’: 4 Solutions,”
http://www.techpluto.com/cloud-computing-characteristics/.

[22] D. Amrhein, “Forget Defining Cloud Computing,”
http://ibm.ulitzer.com/ node/1018801.

[23] D. Wentzlaff and A. Agarwal. “The Case for a Factored
Operating System (fos)”, MIT CSAIL Technical Report,
MIT-CSAIL-TR-2008-060, October 2008.

[24] D. Wentzlaff and A. Agarwal. “Factored Operating Systems
(fos): The Case for a Scalable Operating System for
Multicores”. ACM SIGOPS Operating System Review
(OSR), April 2009.

[25] Sean Marston, Zhi Li, Subhajyoti Bandyopadhyay,Juheng
Zhang, and Anand Ghalsasi “Cloud computing—The
business perspective”, Elsevier, Decision Support Systems
51 (2011) 176–189.

[26] M. Armbrust, et al. Above the clouds: a Berkeley view of
cloud computing, electrical engineering and computer
sciences, Technical Report No. UCB/EECS-2009-28,
University of California at Berkeley, February 2009.

[27] Dimitris Zeginis, Francesco D’andria, Stefano Bocconi,
Jesus Gorronogoitia Cruz, Oriol Collell Martin, Panagiotis
Gouvas, Giannis Ledakis And Konstantinos A. Tarabanis
“A User-Centric Multi-Paas Application Management
Solution For Hybrid Multi-Cloud Scenarios”, Scalable
Computing: Practice and Experience (SCPE), Volume 14,
Number 1, pp. 17–32.avaialable at http://www.scpe.org.

[28] C. S. Yeo, R. Buyya, M. Dias de Assuncao, J. Yu, A.
Sulistio, S. Venugopal, and M. Placek. Utility Computing
on Global Grids. In H. Bidgoli, editor, Handbook of
Computer Networks, Wiley Press, Hoboken, NJ, USA, 2008.

[29] R. Buyya, J. Broberg, and A. Goscinski (eds). Cloud
Computing: Principles and Paradigms. ISBN-13: 978-
0470887998, Wiley Press, USA, February 2011.

[30] C. S. Yeo and R. Buyya. Integrated Risk Analysis for a
Commercial Computing Service. Proceedings of the 21st
IEEE International Parallel and Distributed Processing
Symposium (IPDPS 2007), Long Beach, CA, USA, March
2007.

[31] M. Crouhy, D. Galai, and R. Mark. The Essentials of Risk
Management. McGraw-Hill, New York, NY, USA, 2006.

[32] R. R. Moeller. COSO Enterprise Risk Management:
Understanding the New Integrated ERM Framework. John
Wiley and Sons, Hoboken, NJ, USA, 2007.

[33] R. Mian, P. Martin, A. Brown, M. Zhang, in: S. Fiore, G.
Aliosio (Eds.), Managing Data Intensive Workloads in the
Cloud. Grid and Cloud Database Management, Springer
Publishing, 2011, pp. 235–260.

[34] J. Schad, J. Dittrich, J. Quiane-Ruiz, Runtime measurements
in the cloud: observing, analyzing and reducing variance, in:
Proceedings of 36th International Conference on Very Large
Databases, Singapore, September 2010.

[35] Lewis Chunningham, Oracle data architect, available at
http://www.slideshare.net/jeetraj17/cloud-computing-it703-
unit-1-2.

[36] H. Newman, I. Legrand, P. Galvez, R. Voicu, C. Cirstoiu,
Monalisa: a distributed monitoring service architecture,
2003. Arxiv Preprint.

[37] S. Clayman, A. Galis, C. Chapman, G. Toffetti, L. Rodero-
Merino, L.M. Vaquero, K. Nagin, B. Rochwerger,
Monitoring service clouds in the future Internet, in: Towards

the Future Internet—Emerging Trends from European
Research, IOS Press, 2010, pp. 115–126.

[38] S. Clayman, A. Galis, L. Mamatas, Monitoring virtual
networks with lattice, in: Network Operations and
Management Symposium Workshops, NOMS Wksps, 2010
IEEE/IFIP, pp. 239–246.

[39] S. De Chaves, R. Uriarte, C. Westphall, Toward an
architecture for monitoring private clouds, IEEE
Communications Magazine 49 (2011) 130–137.

[40] T. Kanstrén, R. Savola, Definition of core requirements and
a reference architecture for a dependable, secure and
adaptive distributed monitoring framework, in: 2010 Third
International Conference on Dependability, DEPEND, pp.
154–163.

[41] S. Hongjie, F. Binxing, Z. Hongli, A distributed architecture
for network performance measurement and evaluation
system, in: Sixth International Conference on Parallel and
Distributed Computing, Applications and Technologies,
PDCAT 2005, 2005, pp. 471–475.

[42] Y. Sun, Z. Xiao, D. Bao, J. Zhao, An architecture model of
management and monitoring on cloud services resources, in:
2010 3rd International Conference on Advanced Computer
Theory and Engineering, ICACTE, vol. 3, pp. V3-207–V3-
211.

[43] A. Lahmadi, L. Andrey, O. Festor, Performance of network
and service monitoring frameworks, in: IFIP/IEEE
International Symposium on Integrated Network
Management, 2009, IM’09, pp. 815–820..

	A. Problem Identification and Proposed Solution
	B. Proposed Algorithm:
	C. Monitoring of SaaS using Java Agent

