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Abstract 
A new rotation- invariant and scale invariant representation for 
texture image retrieval process on steerable pyramid 
decomposition. To obtain rotation or scale invariance, the feature 
elements are aligned by considering either the dominant 
orientation or dominant scale of the input textures. Initially, take 
a various train images (data samples) then extract the various 
features from that rotational texture images and stored in data 
base. Similarly test the images, then extract the features of text 
images and compare with data base based similarity features we 
can extract image (similar) from the data base. In test 
Experiments were conducted on the broad database aiming to 
compare our approach to the conventional steerable pyramid 
decomposition, and a recent proposal for texture characterization 
based on Gabor wavelets with regard to their retrieval 
effectiveness. Results demonstrate the maximum similarity 
images are extracted from the data base and conclude the image 
retrieval application using feature extraction basis. 
Index Terms 
Texture classification, feature extraction, steerability, rotation   
invariance, Gabor wavelet. 

1. Introduction 
 

Texture can be broadly defined as the visual or tactile 
surface characteristics and appearance of something. 
Texture is an important characteristic for analysis of many 
types of images. Texture is present in many real as well as 
artificial data. Its importance and present everywhere in 
image data a formal approach or definition of texture 
analysis does not exist. Texture is a natural property of 
almost all surfaces the grain of wood, the pattern of crop in 
fields etc. It contains important information about the 
structural arrangement of surfaces and their relationship to 
the surrounding environment.  
 

 

Fig 1: Sample Texture images. 

Texture classification tasks involve two main steps: (1) 
Feature extraction step, where texture features are 
extracted from the image and (2) Classification step, where 
texture class membership is assigned according to the 
extracted texture features. A feature is a characteristic that 
can capture a certain visual property of an image either 
globally for the whole image, or locally for objects or 
regions. texture image retrieval applications consists 
therefore in achieving rotation- and scale- invariant feature 
representations for non-controlled environments. Texture 
may be coarse, fine, and smooth, granulated, rippled 
regular, irregular, or linear 
 One of the approaches to texture feature extraction is the 
filter bank approach that decomposes a texture image into 
subbands using a linear transform or filter bank. Several 
previous works extract texture features based on wavelet 
packet signatures and wavelet frames. Although these 
methods allow for a multiresolution decomposition, they 
are limited in directional selectivity and not able to capture 
directional information. Two patterns that are visually very 
different can have identical global distributions of scales 
and directions. Two patterns that are visually very 
different can have identical global distributions of scales 
and directions. The multiresolution theory of the wavelet 
transform provides an elegant solution to the locality 
problem for scale characterization.  
Many existing systems do not care about such variations or 
they handle it in a very limited way.In texture analysis, 
rotation and illumination invariance plays a great attention. 
Many researchers have been done on rotation and 
illumination invariance. There are various algorithms, such 
as GLCM [1], Gabor filters [2], wavelet transforms [3], 
Markov random field [4], Many algorithms for texture 
classification are not rotation and illumination invariant. 
The effectiveness of a texture classification algorithm can 
be increased by using a module for feature extraction 
followed by classification. Classification we are using two 
different methods one is Support Vector Machine and 
another is k- nearest neighbor and we are find that by 
using which classifier it gives better result.  
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2. Related work 
      

Image retrieval is very interesting and vast field. Since 
1970, research on the advance image retrieval is started. In 
1979, a conference on Database Techniques for Pictorial 
Applications was held in Florence due to which many 
researchers attracted towards the field of image database 
management. After that several researches had been done 
on features based image retrieval, later a system [7] was 
proposed which uses the concept of texture based image 
retrieval system combines with the wavelet decomposition 
[12] and gradient vector [18]. 
 In that system every image is associated with a coarse 
feature descriptor and a fine feature descriptor was derived 
through the use of wavelet coefficients related to the 
original image. In the first stage coarse feature descriptor 
is used so that non-promising images can be quickly 
separated, so that searching for similar images can be done 
efficiently. Another image retrieval system was introduced 
[4] which was based on the principle of motif co-
occurrence matrix (MCM), which can easily find out the 
basic difference between pixels and can also convert them 
into a basic graphic. It can compute the probability of 
occurrence of pixels in the adjacent area and work as an 
image feature.  
Another system was proposed which utilizes the properties 
like contrast [14], coarseness and directionality models [17, 
13] to achieve texture classification and recognition. After 
that, a texture-based image retrieval method was proposed 
which was based on two-stage content-based image 
retrieval system by using texture similarity[5] which 
enhanced the image retrieval technique. To obtain better 
result, we have proposed  a better retrieval technique 
which integrated color and texture features in order to 
improve image retrieval.  
Color histogram [19] is one of the common techniques 
used in image retrieval systems texture features are 
extracted by using the concept of Pyramid Structure 
Wavelet Transformation combined with Euclidean 
Distance from those images which was previously 
classified through color model. The result obtained by 
using this system is better than other convention systems 
which only use color, texture features individually. Hence 
we can say that combination of color and texture feature 
for finding similar image retrieval makes system more 
efficient and effective. . Manual image annotation is time-
consuming, laborious and expensive; to address this, there 
has been a large amount of research done on automatic 
image annotation. Additionally, the increase in social web 
applications and the semantic web have inspired the 
development of several web-based image annotation tools. 

3. Proposed System 
 

1. Input images: 

Here the input images are texture images. The term texture 
generally refers to repetition of basic texture elements 
called Texel’s. The Texel contains several pixels, whose 
placement could be periodic, quasi-periodic or random.  

 

Figure 2 Texture images 

 
  Texture may be coarse, fine, and smooth, granulated, 
rippled regular, irregular, or linear. From left to right, and 
from top to bottom, they include: Bark, Brick, Bubbles, 
Grass, Leather, Pigskin, Raffia, Sand, Straw, Water, 
Weave, Wood, and Wool From this database, three 
different image datasets were generated: non-distorted, 
rotated-set A, and rotated-set B. The non-distorted image 
dataset was constructed just from the original input 
textures. Each texture image was partitioned into sixteen 
128×128 non-overlapping sub images. The second image 
dataset is referred to as rotated image dataset A, and was 
generated by selecting the four 128×128 innermost sub 
images from texture images at 0, 30, 60, and 120 degrees. 

2. Steerable pyramid decomposition: 

The steerable pyramid decomposition is a linear multi 
resolution image decomposition method, by which an 
image is subdivided into a collection of sub bands 
localized at different scales and orientations. Using a high- 
and low- pass filter (H0, L0) the input image is initially 
decomposed into two sub bands: a high- and low-pass sub 
bands, respectively. Further, the low pass sub band is 
decomposed into K-oriented band-pass portions 
B0…....Bk-1, and into a low-pass sub band L1. The 
decomposition is done recursively by sub sampling the 
Lower low-pass sub band (Ls) by a factor of 2 along the 
rows and columns. Each recursive step captures different 
directional information at a given scale.  
The basis functions of the steerable pyramid are 
directional derivative operators, that come in different 
sizes and orientations. An example decomposition of an 
image of a white disk on a black background is shown to 
the right. This particular steerable pyramid contains 4 
orientation sub bands, at 2 scales. The number of 
orientations may be adjusted  
 by changing the derivative order. 
The smallest sub band is the residual low pass information. 
The residual high pass sub band is not shown. The block 
diagram for the decomposition (both analysis and 
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synthesis) is shown to the right. Initially, the image is 
separated into low and high pass sub bands, using filters 
L0 and H0.  

 

 

Figure 3 Decomposition in texture images 

The dominant orientation (DO) is defined as the 
orientation with the highest total energy across the 
different scales considered during image decomposition. It 
is decomposed by finding the highest accumulated energy 
for the K different orientations considered during image 
decomposition     

   DOi
= max�E0

(R), E1
(R), … . , E(K−1)

(R) � 
Where I is the index where the dominant orientation 
appeared, and: 
En

(R) = ∑ E(m, n)S−1
M=0 ,      n=0,1……k-1 

 Note that each En(R) covers a set of filtered 
images at different scales but at same orientation. The low 
pass sub band is then divided into a set of oriented band 
pass sub bands and a low(er)-pass sub band. This low(er)-
pass sub band is sub sampled by a factor of 2 in the X and 
Y directions. 
  The recursive (pyramid) construction of a 
pyramid is achieved by inserting a copy of the shaded 
portion of the diagram at the location of the solid circle 
(i.e., the low pass branch). The steerable pyramid performs 
a polar-separable decomposition in the frequency domain, 
thus allowing independent representation of scale and 
orientation. 

4. Feature extraction: 

i. Histogram: 

In a more general mathematical sense, a histogram is a 
mapping mi that counts the number of observations that 
fall into various disjoint categories (known as sbins), 
whereas the graph of a histogram is nerely one way to 
represent a histogram. Thus, if we let n be the total number 
of observations and k be the total number of bins, the 
histogram mi meets the following conditions. 

ii. Standard deviation: 
There are two common textbook definitions for the 
standard deviation s of a data vector X. 

s = �
1

n − 1
�(xi − x�)2
n

i=1

� 

             Where 

x� =
1
n
� xi

n

i=1

 

 The two forms of the equation differ only in versus in the 
divisor. s = std(X), where X is a vector, returns the 
standard deviation. The result s is the square root of an 
unbiased estimator of the variance of the population from 
which X is drawn, as long as X consists of independent, 
identically distributed samples. If X is a matrix, std(X) 
returns a row vector containing the standard deviation of 
the elements of each column of X. If X is a 
multidimensional array, std(X) is the standard deviation of 
the elements along the first non singleton dimension of X. 
s = std(X, flag) for flag = 0, is the same as std(X). For flag 
= 1, std(X, 1) returns the standard deviation using (2) 
above, producing the second moment of the set of values 
about their mean.             s = std(X, flag, dim) computes 
the standard deviations along the dimension of X specified 
by scalar dim. Set flag to 0 to normalize Y by n-1; set flag 
to 1 to normalize by n 

iii. Mean: 
Average or mean value of array is known as mean. 
Syntax: 
        M = mean (A) 
       M = mean (A, dim) 
 
M = mean (A) returns the mean values of the elements 
along different dimensions of an array. If A is a vector, 
mean (A) returns the mean value of A. If A is a matrix, 
mean (A) treats the columns of A as vectors, returning a 
row vector of mean values. 
 If A is a multidimensional array, mean (A) treats the 
values along the first non-singleton dimension as vectors, 
returning an array of mean values. M = mean (A, dim) 
returns the mean values for elements along the dimension 
of A specified by scalar dim. For matrices, mean (A, 2) is 
a column vector containing the mean value of each row.  
      
Example: If X = [0 1 2 3 4 5] 
Then mean(X, 1) is [1.5 2.5 3.5] and  
Mean(X, 2) is [1 4] 

5. Classification  

Texture classification refers to the process of grouping test 
samples of texture into classes, where each resulting class 
contains related samples according to some similarity 
criterion. The goal of classification in general is to select 
the most appropriate category for an unknown object, 
given a set of known categories. While perfect 
classification is frequently impossible, the classification 
may also be performed by determining the probability for 
each of the known categories. There are three major 
groups of classifiers are popularly used, including k-
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Nearest Neighbors, Artificial Neural Networks (ANN) and 
Support Vector Machines (SVM). But in our work we 
used k-NN and SVM classification methods. So, here we 
introduced some concept of that svm classifiers. 
 
A. SVM 
The original SVM algorithm was invented by Vladimir N. 
Vapnik and the current standard soft margin was proposed 
by Vapnik and Corinna Cortes in 1995. SVM is supervised 
learning classifier. SVM are the newer trends in machine 
learning algorithm which is popular in many pattern 
recognition problems in current years, as well as texture 
classification. SVM is designed to maximize the marginal 
distance between classes with decision boundaries drawn 
using different kernels. SVM is designed to work with 
only two classes by determining the hyper plane to divide 
two classes. This is prepared by maximizing the margin 
from the hyper plane to the two classes. The samples 
nearest to the margin that were selected to determine the 
hyper plane is known as support vectors. Multiclass 
classification is also applicable, the multiclass SVM is 
basically built up by various two class SVMs to solve the 
problem, either by using one versus all or one versus one. 
The winning class is then determined by the highest output 
function or the maximum votes  
respectively. Despite that, SVM is still considered to be 
powerful classifier which was replacing the ANN and has 
slowly evolved into one of the most important main stream 
classifier. They are now widely used in the research of 
texture classification. 

6. Similarity measure: 

Similarity between images is obtained by computing the 
distance of their corresponding feature vectors. The 
smaller the distance, the more similar the images. Given 
the query image (i), and the target image (j) in the dataset, 
the distance between the two patterns 
 

d(i, j) = �� dmn(i, j)
mm

 

 
Where: 

dmn(i, j) = �
µmn2 − µmn3

α(µmn) � + �
σmn2 − σmn3

α(σmn) � 

 Denote the standard deviations of the respective features 
over the entire dataset. The SIFT algorithm used in the 
similarity measure. They are used for feature 
normalization purposes. 

7. Experimental Setup 

OVA SVM models using Gaussian kernels as are used 
both to learn texture signatures and to classify the texture 
instances in the final feature space obtained after k 
iterations. OVA SVM models are trained in this final 
feature space using the training instances. The remaining 
test instances obtained are used to evaluate the 
performance. All data processing was performed using 
MATLAB R2009b 

A. Datasets 

To evaluate the effectiveness of our approach, we selected 
thirteen texture images obtained from the standard brodatz 
dataset. Before being digitized, each of the 512 X 512 
texture images were rotated at different degrees. To test 
the rotation-invariance, and scale-invariance of the method, 
three different image datasets were generated: non-
distorted, rotated, and scaled. The non-distorted image 
dataset was constructed just from input textures with no 
rotation and scale changes. Each texture image was 
partitioned into sixteen 128 X 128 non-overlapping sub 
images. This dataset comprises 208  different images. The 
second image dataset is referred to as rotated image dataset, 
and was generated by selecting the four 128 X 128 
innermost sub images from texture images at 0, 30, 60, and 
120 degrees. A total number of 208 images were generated 
the (13 X 4 X 4). Finally in the scaled image dataset,the 
512 X 512 non-rotated textures were first partitioned into 
four 256 X 256 non-overlapping images. Each partitioned 
sub image was further scaled by using four different  
ranging from 0.6 to 0.9 with 0.1 intervals. This led to 208  
scaled images. 

B.Retrieval effectiveness evaluation: 

In our project, a simulated query is represented by any of 
the 208 images in a dataset. The relevant images for each 
query are defined as the 15 remaining sub images from the 
same input texture. In this context, a total number of 
43056(207 X 208) queries were performed in each dataset. 
The retrieval effectiveness was measured in terms of 
relevant retrieval average rate, i.e., the percentage of 
relevant images among the top N retrieved images. 
                         7. RESULTS           

Rotation- invariant representation’s achieved by 
computing the dominant orientation of the texture images 
followed by feature alignment. . Initially, take a various 
train images (data samples) then extract the various 
features from that rotational texture images and stored in 
data base. Similarly test the images, then extract the 
features of text images and compare with data base based 
similarity features we can extract image (similar) from the 
data base.sFinally, rotation-invariance is obtained by 
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shifting circularly featured elements within the same scales, 
so that first elements at each scale correspond to dominant 
orientations.  

8. Conclusion 

Three series of experimental were conducted to evaluate 
the retrieval effectiveness our method. In the first ones, we 
evaluate the discriminating power of conventional 
steerable pyramid decomposition in characterizing texture 
images, and retrieval effectiveness is affected by the 
presence of scaled and rotated versions of texture patterns. 
The second and third series of experiments are used to 
evaluate the rotation, and scale- invariant properties of our 
approach. Comparisons with the conventional pyramid 
decomposition and with a recent proposal for rotation, and 
scale- invariance texture retrieval based on Gabor 
Wavelets are futher discussed.      
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