
IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.3, March 2016

119

Manuscript received March 5, 2016
Manuscript revised March 20, 2016

Secure Multi-owner Data Sharing For Dynamic Group In Cloud

C.Kayalvizhi, S.Arun Prasath, S.ArunKumar, C.Broons Gandhi

Computer Science and Engineering,
Dhanalakshmi College of Engineering.

Abstract
Security is a major issue in cloud computing environment as the
resources are dynamic, virtualized, scalable and elastic in nature.
Data Integrity is ensured. Auditing plays a vital role in providing
solution to the data integrity in cloud. Highly distributed and
non-transparent nature of cloud increases the complexity of
Auditing process. Auditing deals with monitoring and
compliance. A third party auditor is essential to perform auditing
to ensure data integrity on cloud services. In this paper, a
Dynamic Third Party Auditing System is proposed in which a
third party entity dynamically provides auditing services on cloud
computing environment. TPA makes task of Client by verifying
the integrity of data stored in cloud. The Dynamic third party
auditing system does auditing using public key based
homomorphic authentication.
Index Terms
Cloud Computing, Auditing, Load Balancing, Third Party
Auditor.

1. Introduction

Cloud computing is the new paradigm of data storing and
data sharing. Cloud is a large number of interconnected
computers [1] [2]. It allows the users to access the
resources like operating systems and professional software
like visual studio and adobe etc. The users can pay for
what they use as it reduces cost. Although the advent of
cloud computing ameliorates the problem of data loss, the
need for security is not contented. Security is a vital part
for consideration. To ensure security, cryptic techniques
cannot be directly employed as service provider preserves
their reputation by hiding the data corruption [5] [6] [7].
This problem can be eliminated by both manual auditing
and automatic auditing, this process collectively performed
by Trusted Party Auditor [3] [4]. Automatic auditing
examines every data while manual auditing examines
particular part of data. These auditing tasks ensure the data
possessor that his data are safe. Load balancing concept is
employed for resource allocation and job scheduling in a
distributed environment. The entire data is encrypted using
Advanced Encryption Standard algorithm. The encrypted
data is divided and stored using Merkle Hash Tree
algorithm.

2. Load Balancing

Load balancing concept performs two major tasks, one is
the resource allocation and other is job scheduling. It
ensures resources are easily available on demand and are
efficiently used under the condition of high or low load.
Thus cost of using resources is reduced. Energy is also
saved in case of low load. Resource allocation is the task
of mapping of the resources to different entities of cloud
on demand basis. Resources must be allocated in such a
manner that no node in the cloud is overloaded and all the
available resources in the cloud do not undergo any kind
of wastage. Task scheduling is done after the resources are
allocated to all cloud entities. Scheduling defines the
manner in which different entities are provisioned.
Resource provisioning defines which resource will be
available to meet user requirements whereas task
scheduling defines the manner in which the allocated
resource is available to the end user (i.e. whether the
resource is fully available until task completion or is
available on sharing basis). Task scheduling provides
“Multiprogramming Capabilities” in the cloud.
Task scheduling can be done in two modes:
a. Space shared
b. Time shared

3. Random Key Generation

For the generation of the key, a random string generation
algorithm is used to create a unique key. The key so

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.3, March 2016 120

generated is then encrypted by using AES Algorithm for
security purpose. It can be used as a replacement for the
DES Algorithm. It takes variable key length ranging from
32 bits to 448 bits and the default size is 128 bits. In this
paper, this algorithm is used to encrypt the key which has
to be passed in the AES algorithm. This is done to provide
extra security.

4. Advanced Encryption Standard
Algorithm

Assuming a 128-bit key, the key is also arranged in the
form of a matrix of 4 × 4 bytes. As with the input block,
the first word from the key fills the first column of the
matrix, and so on. The four column words of the key
matrix are expanded into a schedule of 44 words. In every
round it takes four words of the key schedule. It also
depicts the arrangement of the encryption key in the form
of 4-byte words and the expansion of the key into a key
schedule consisting of 44 4-byte words.

4.1 The Overall Structure

The number of rounds is for the case when the encryption
key is 128 bit long. If the keys are 192 and 256 bits, then
the number of rounds are 12 and 14 respectively. Before
any round-based processing for encryption can begin, the
input state array is XORed with the first four words of the
key schedule. The same thing happens during decryption
except that now we XOR the cipher text state array with
the last four words of the key schedule.
For encryption, each round consists of the following four
steps: 1) Substitute bytes, 2) Shift rows, 3) Mix columns,
and 4) Add round key. The last step consists of XORing
the output of the previous three steps with four words from
the key schedule.
For decryption, each round consists of the following four
steps: 1) Inverse shift rows, 2) Inverse substitute bytes, 3)
Add round key, and 4) Inverse mix columns. The third
step consists of XORing the output of the previous two
steps with four words from the key schedule. Note the
differences between the order in which substitution and
shifting operations are carried out in a decryption round

the order in which similar operations are carried out in an
encryption round. The last round for encryption does not
involve the “Mix columns” step. The last round for
decryption does not involve the “Inverse mix columns”
step.

5. Merkle Hash Tree

By using Merkle Hash Tree algorithm the data will be
audited via multiple level of batch auditing process. The
top hash value is stored in local database and other hash
code files are stored in cloud. Thus the original data cannot
be retrieved by anyone from cloud, since the top hash
value is not in cloud. Even if any part of data gets hacked,
it is of no use to the hacker [5] [8].Thus, the security can
be ensured.
Step 1: A file is split up into n number of data blocks.
Step 2: Each data block is hashed and these hashes of data
blocks are the leaves in hash tree.
Step 3: Nodes further up in the tree are the hashes of their
respective children.
Step 4: Final hash value in a single node becomes a top
hash value.

5.1 MERKLE-SIGNATURE SCHEME

The biggest problem of One-Time Signature Schemes is
the key management. Exchanging a public key is very
complex. It must be guaranteed, that the public key
belongs to the intended communication partner and that
the public key has not been modified. Therefore, few
public keys should be used and the public keys should be
rather short. But in One-Time Signature Schemes, a new
public key is used for every signature and the public key is
quite big, compared with other

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.3, March 2016 121

Signature schemes. To make One-Time Signature
Schemes feasible, an efficient key management, that
reduces the amount of public keys and their size, is needed.
In Merkle introduced the Merkle Signature Scheme (MSS),
in which one public key is used to sign many messages.

5.2 KEY GENERATION

The Merkle Signature Scheme can only be used to sign a
limited number of messages with one public key pub. The
number of possible messages must be a power of two, so
that we denote the possible number of messages as N = 2n.
The first step of generating the public key pub is to
generate the public keys Xi and private keys Yi of 2n one-
time signatures, as described in chapter 2. For each public
key Yi, with 1 ≤ i ≤ 2n, a hash value hi = H(Yi) is
computed. With these hash values hi a Merkle Tree (also
called hash tree) is build. We call a node of the tree ai, j
where i denotes the level of the node. The level of a node
is defined by the distance from the node to a leaf. Hence, a
leaf of the tree has level i = 0 and the root has level i = n.
We number all nodes of one level from the left to the right,
so that ai,0 is the leftmost node of level i. In the Merkle
Tree the hash values hi are the leafs of a binary tree, so
that hi = a0,i. Each inner node of the tree is the hash value
of the concatenation of its two children.
So a1, 0 = H(a0,0||a0,1) and a2,0 = H(a1,0||a1,1)
In this way, a tree with 2n leafs and 2n+1 − 1 nodes is
build. The root of the tree an, 0 is the public key pub of the
Merkle Signature Scheme.

5.3 SIGNATURE GENERATION

To sign a message M with the Merkle Signature Scheme,
the message M is signed with a one-time signature scheme,
resulting in a signature sig′, first. This is done, by using
one of the public and private key pairs (Xi, Yi). The
corresponding leaf of the hash tree to a one-time public
key Yi is a0,i = H(Yi). We call the path in the hash tree

from a0,i to the root A. The path A consists of n + 1 nodes,
A0, ...An, with A0 = a0,i being the leaf and An = an,0 =
pub being the root of the tree. To compute this path A, we
need every child of the nodes A1, ..., An. We know that Ai
is a child of Ai+1. To calculate the next node Ai+1 of the
path A, we need to know both children of Ai+1. So we
need the brother node of Ai. We call this node authi, so
that Ai+1 = H(Ai||authi). Hence, n nodes
auth0, ..., authn−1 are needed, to compute every node of
the path A. We now calculate and save these nodes
auth0, ..., authn−1. These nodes, plus the one-time
signature sig′ of M is the signature sig =
(sig′||auth2||auth3||...||authn−1) of the Merkle Signature
Scheme.

5.4 SIGNATURE VERIFICATION

The receiver knows the public key pub, the message M,
and the signature sig = (sig′||auth0||auth1||...||authn−1). At
first, the receiver verifies the one-time signature sig′ of the
message M. If sig′ is a valid signature of M, the receiver
computes A0=H(Yi) by hashing the public key of the one-
time signature. For j =1, .., n−1, the nodes of Aj of the path
A are computed with Aj = H(aj−1||bj−1).

The desired security requirements and it guarantees
efficiency as well.

5.5 COST ANALYSIS

The big advantage of the Merkle Signature Scheme is, that
many signatures can be generated with using only one
public key. However, this advantage comes with an
increase of computation time and signature length. In the
following we will examine the computation time of each
part of the signature process. To generate the public key
pub, 2n one-time signature keys must be generated. Then
every node of the hash tree must be computed. The tree
consists of 2n+1−1 nodes. One hash operation is needed to
calculate a node, so that 2n+1 − 1 hash operations are
needed to generate the public key. It is obvious, that the

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.3, March 2016 122

size of such a tree is limited. To compute 240 nodes is
very costly, to compute 280 nodes is impossible.
To generate a signature the nodes auth0, ..., authn−1 are
needed. If you do not store the nodes of the tree, the nodes
must be generated again for every signature. Generating
the tree is very expensive, so that generating the entire tree
for every signature is impracticable for bigger trees. But
saving all 2n+1−1 nodes would result in huge storage
requirements. Hence, a good strategy is needed, to
generate the signature without saving too many nodes, at a
still efficient time.
This problem is called The Merkle tree traversal problem.
The verification time is quite fast, compared to the
signature time. At first, the one-time signature must be
verified. After that, the path A = A1, ..., An must be
computed. To do this, only n hash operations are needed,
one for every node. The signature of the Merkle Signature
Scheme consists of the one-time signature sig′ and n nodes
auth0, ..., authn−1. If a 160 bit hash function is used, the
signature size would be |sig| = |sig′| + n ∗ 160 bits.

5.6 MERKLE TREE TRAVERSAL TECHNIQUES

For the traversal techniques, we need an algorithm, that
computes efficiently the nodes of the tree. Assume a
binary tree with 2n leafs. The height H of a node, is
defined by the distance of the node to a leaf. So the root
has the height H = n, while the leafs have the height H = 0.
We define the node ai,j as the jth node from the left
(starting with j = 0) of the height i. So a0,0 is the leftmost
leaf of the tree, and an,0 the root. To compute a node of
the height H = h, 2h − 1 nodes must be computed. The tree
hash algorithm needs 2h −1 operations, to calculate a node
of the height h, while saving as few nodes at once as
possible. The main idea of the tree hash algorithm is to
calculate the needed subtree from left to right and only
saving the nodes, that are still needed. This is done by
using a stack. At first the stack only consists of the
leftmost leaf. Then the next leaf is added. The algorithm
now checks whether the last two nodes on the stack are of
the same height or not. If they are of the same height, the
two nodes are removed from the stack, and their parent is
built and pushed on the stack. If
the last two nodes on the stack are of different height, then
a new leaf is pushed on the stack. This step is repeated,
until the node of the wanted height has been generated.

ALGORITHM: TREEHASH (start, maxheight)

1. Set leaf = start and create empty stack.
2. Consolidate: If top 2 nodes on the stack are equal

height:
• Pop node value P(nright) from stack.
• Pop node value P(nleft) from stack.

 • Compute P(nparent) = f(P(nleft||P(nright)).
 • If height of P(nparent) = maxheight, output

 P(nparent).
 • Push P(nparent) onto the stack.
 3. New Leaf: Otherwise:
 • Compute P(nl) = LEAFCALC(leaf).
 • Push P(nl) onto the stack.
 • Increment leaf.

4. Loop to step 2.
To be able to run multiple instances of tree hash, we define
an object stackh with two methods,
stackh.initialize(startnode, h) and stackh.update(t).
Withthe initialize method we simply define the start leaf
and the height of the resulting node. The method update
runs the steps 2 or 3 of the treehash algorithm t times. For
example stack2.initialize (0, 2) means, that in stack2 we
compute nodes up to the height h = 2, beginning with the
0th node. stack2.update (3) will now perform 3 operations
of tree hash on stack2. The first operation will be to push
node a0,0 on the stack. The second operation will be to
push the node a0,1 on the stack. Now the last two nodes on
the stack are of equal height. So in the third operation
these two nodes are removed and a1, 0 gets computed and
push on the stack. Because the tree hash should only
perform three operations, the algorithm stops at this point.
Whenstack2.update(t) is called again, the algorithm will
continue at this point, by pushing the node a0, 2 on the
stack.

5.7 THE CLASSIC TRAVERSAL

In the first step of the Merkle Signature Scheme, the public
key, which is the root of the tree, gets computed. This is
done, by using the treehash algorithm. During this
computation, every node of the tree is generated, so that
we can easily save
the first authentication path auth. We do this, by saving all
nodes auth I with authi = ai,1 for i = 1, ..., n − 1. These
nodes auth = {auth1, ..., authn−1} are the right brothers of
the nodes of the leftmost path. In addition to the authi
nodes we also store the nodes of the leftmost path in the
objects stacki, with
stacki = ai,0 for i = 1, ..., n−1. We will need these objects,
to efficiently generate the next authentication path. The
next phase is the output and update phase. In this phase,
we output the leaf value together with the authentication
path. After that, we generate the next authentication path.
Generating the output is quite simple. We use the function
LEAFCALC to calculate the value of the leaf (The leaf
values is the hash value of the public key of the one-time
signature. So LEAFCALC builds the hash value of the
one-time signature public key). The authentication path
auth = auth1, ..., authn−1 has been already computed. So
the important part is to calculate the next authentication
path.

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.3, March 2016 123

To do this, we need a counter leaf, which points to the
current leaf to be calculated, and we need the old
authentication path auth. In addition to that, we also have
the objects stacki for i =0, ..., n−1. We can modify these by
the functions stacki.initialize(startnode, h) and
stacki.update(t). We now have to determine which
authentication nodes authh have to be changed, so that
auth = autho, ..., authH−1 is the authentication path for the
next leafleaf + 1. The authentication node of the height h
only needs an update, if 2h
divides leaf + 1 without remainder. The new
authentication node authh has already been generated and
is saved in the stack stackh. So if 2h divides leaf +1, authh
= POP(stackh). Then stackh is empty and we use this stack
to precalculate the next authentication node. In 2h steps,
when leaf = leaf +1+2h, authh needs an update again. So
we search for the leftmost leaf, startnode, of the next
authentication node, of the height h. This is startnode =
leaf + 1 + 2h + 2h if the current authh is a left-node and
startnode = leaf + 1 if the current authh is a right-node. So
startnode = leaf + 1 + 2h ⊕ 2h. Hence we set
stackh.initialize(startnode, h). The next change of auth1
will be when leaf = leaf+1+21. Hence, we need the
authentication node of level 1 for the leaf +1+21. This
node is sack1. The leftmost leaf of this node stack1 is
leaf+1+21+21 = startnode. SO
stack1.initialize(leaf+1+21+21, 1).We could now use the
treehash algorithm to compute stackh at once. But this
would take 2h+1 − 1 steps. In the worst case, H − 1 nodes
authh can change at once, so that we would needH−1 Ph=0
2h+1 − 1 operations to compute one signature.We know,
that we do not need to change authh for the next 2h
signatures. Hence, we have 2h signatures time, to make the
2h+1 − 1 operations which generate thenext node.
Therefore, we only do two operations of updating for h =
0, ...,H −1 per signature, by calling stackh.update(2) for h
= 0, ...,H − 1. In this way, we only perform (H − 1) ∗ 2
 Operations per signature in the worst case.

ALGORITHM: CLASSIC MERKLE TREE
TRAVERSAL
1. Set leaf = 0.
2. Output:
 • Compute and output leaf with LEAFCALC(leaf)
 • For each h ∈ [0,H − 1] output {authh}.
3. Refresh Auth Nodes:
For h such that 2h divides leaf + 1:
 • Set authh be the sole node value in stackh.
 • Set startnode = (leaf + 1 + 2h) ⊕ 2h.
 • stackh.initialize(startnode, h).
4. Build Stacks:
For all h ∈ [0,H − 1]:
 • stackh.update(2).

5. Loop
 • Set leaf = leaf + 1.
 • If leaf < 2H go to Step 2.

6. CONCLUSION

In this paper developed an Innovative approach for secure
multi-owner data sharing for dynamic groups in an
untrusted cloud. In this scheme a user is able to share data
with others in the group without revealing identity privacy
to the cloud. Efficient user revocation can be achieved
through a public revocation list without updating the
private keys of the remaining users, and new users can
directly decrypt files stored in the cloud before their
participation. The storage overhead and the encryption
computation cost are varied. Extensive analyses show that
the proposed scheme satisfies

References
[1] Y. Deswarte, J. Quisquater, and A. Saidane, “Remote

integrity checking”, In Proc. of Conference on Integrity and
Internal Control in Information Systems (IICIS’03),
November \2003.

[2] T. Schwarz and E.L. Miller, “Store, forget, and check:
Using algebraic signatures to check remotely administered
storage”, In Proceedings of ICDCS ’06. IEEE Computer
Society, 2006.

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.3, March 2016 124

[3] C. Wang, S.S.M. Chow, Q. Wang, K. Ren, and W.
Lou,“Privacy-Preserving Public Auditing for Secure Cloud
Storage,” IEEE Trans.Computers, vol. 62, no. 2, pp. 362-
375, Feb. 2013.

[4] M. Venkatesh, “Improving Public Auditability, Data
Possession in Data Storage Security for Cloud Computing”,
ICRTIT-IEEE 2012.

[5] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, “Enabling
Public Auditability and Data Dynamics for Storage Security
in CloudComputing,” IEEE Trans. Parallel and Distributed
Systems vol. 22,no. 5, pp. 847-859, May 2011.

[6] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner,
Z.Peterson, and D. Song, “Provable Data Possession at
Untrusted Stores,” Proc. 14th ACM Conf. Computer and
Comm. Security (CCS ’07), pp. 598-609, 2007.

[7] M.A. Shah, R. Swaminathan, and M. Baker,
“PrivacyPreserving Audit and Extraction of Digital
Contents,” Cryptology ePrint Archive, Report 2008/186,
2008.

[8] P. Golle, S. Jarecki, and I. Mironov “Cryptographic
primitives enforcing communication and storage
complexity”. In Financial Cryptography, pages 120-135,
2002.

