
IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.3, March 2016 

 

119 

Manuscript received March 5, 2016 
Manuscript revised March 20, 2016 

Secure Multi-owner Data Sharing For Dynamic Group In Cloud 

C.Kayalvizhi, S.Arun Prasath, S.ArunKumar, C.Broons Gandhi  
 

Computer Science and Engineering, 
Dhanalakshmi College of Engineering. 

Abstract 
Security is a major issue in cloud computing environment as the 
resources are dynamic, virtualized, scalable and elastic in nature. 
Data Integrity is ensured. Auditing plays a vital role in providing 
solution to the data integrity in cloud. Highly distributed and 
non-transparent nature of cloud increases the complexity of 
Auditing process. Auditing deals with monitoring and 
compliance. A third party auditor is essential to perform auditing 
to ensure data integrity on cloud services. In this paper, a 
Dynamic Third Party Auditing System is proposed in which a 
third party entity dynamically provides auditing services on cloud 
computing environment. TPA makes task of Client by verifying 
the integrity of data stored in cloud. The Dynamic third party 
auditing system does auditing using public key based 
homomorphic authentication. 
Index Terms 
Cloud Computing, Auditing, Load Balancing, Third Party 
Auditor.  

1. Introduction 

Cloud computing is the new paradigm of data storing and 
data sharing. Cloud is a large number of interconnected 
computers [1] [2]. It allows the users to access the 
resources like operating systems and professional software 
like visual studio and adobe etc. The users can pay for 
what they use as it reduces cost. Although the advent of 
cloud computing ameliorates the problem of data loss, the 
need for security is not contented. Security is a vital part 
for consideration. To ensure security, cryptic techniques 
cannot be directly employed as service provider preserves 
their reputation by hiding the data corruption [5] [6] [7]. 
This problem can be eliminated by both manual auditing 
and automatic auditing, this process collectively performed 
by Trusted Party Auditor [3] [4]. Automatic auditing 
examines every data while manual auditing examines 
particular part of data. These auditing tasks ensure the data 
possessor that his data are safe. Load balancing concept is 
employed for resource allocation and job scheduling in a 
distributed environment. The entire data is encrypted using 
Advanced Encryption Standard algorithm. The encrypted 
data is divided and stored using Merkle Hash Tree 
algorithm. 

 

2. Load Balancing 

Load balancing concept performs two major tasks, one is 
the resource allocation and other is job scheduling. It 
ensures resources are easily available on demand and are 
efficiently used under the condition of high or low load. 
Thus cost of using resources is reduced. Energy is also 
saved in case of low load. Resource allocation is the task 
of mapping of the resources to different entities of cloud 
on demand basis. Resources must be allocated in such a 
manner that no node in the cloud is overloaded and all the 
available resources in the cloud do not undergo any kind 
of wastage. Task scheduling is done after the resources are 
allocated to all cloud entities. Scheduling defines the 
manner in which different entities are provisioned.  
Resource provisioning defines which resource will be 
available to meet user requirements whereas task 
scheduling defines the manner in which the allocated 
resource is available to the end user (i.e. whether the 
resource is fully available until task completion or is 
available on sharing basis). Task scheduling provides 
“Multiprogramming Capabilities” in the cloud. 
Task scheduling can be done in two modes: 
a. Space shared 
b. Time shared  

3. Random Key Generation 

For the generation of the key, a random string generation 
algorithm is used to create a unique key. The key so 
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generated is then encrypted by using AES Algorithm for 
security purpose. It can be used as a replacement for the 
DES Algorithm. It takes variable key length ranging from 
32 bits to 448 bits and the default size is 128 bits. In this 
paper, this algorithm is used to encrypt the key which has 
to be passed in the AES algorithm. This is done to provide 
extra security. 

4. Advanced Encryption Standard            
Algorithm 

Assuming a 128-bit key, the key is also arranged in the 
form of a matrix of 4 × 4 bytes. As with the input block, 
the first word from the key fills the first column of the 
matrix, and so on. The four column words of the key 
matrix are expanded into a schedule of 44 words. In every 
round it takes four words of the key schedule. It also 
depicts the arrangement of the encryption key in the form 
of 4-byte words and the expansion of the key into a key 
schedule consisting of 44 4-byte words.  

 

4.1 The Overall Structure 

The number of rounds is for the case when the encryption 
key is 128 bit long. If the keys are 192 and 256 bits, then 
the number of rounds are 12 and 14 respectively. Before 
any round-based processing for encryption can begin, the 
input state array is XORed with the first four words of the 
key schedule. The same thing happens during decryption 
except that now we XOR the cipher text state array with 
the last four words of the key schedule. 
For encryption, each round consists of the following four 
steps: 1) Substitute bytes, 2) Shift rows, 3) Mix columns, 
and 4) Add round key. The last step consists of XORing 
the output of the previous three steps with four words from 
the key schedule. 
For decryption, each round consists of the following four 
steps: 1) Inverse shift rows, 2) Inverse substitute bytes, 3) 
Add round key, and 4) Inverse mix columns. The third 
step consists of XORing the output of the previous two 
steps with four words from the key schedule. Note the 
differences between the order in which substitution and 
shifting operations are carried out in a decryption round 

the order in which similar operations are carried out in an 
encryption round. The last round for encryption does not 
involve the “Mix columns” step. The last round for 
decryption does not involve the “Inverse mix columns” 
step. 

 

5. Merkle Hash Tree 

By using Merkle Hash Tree algorithm the data will be 
audited via multiple level of batch auditing process. The 
top hash value is stored in local database and other hash 
code files are stored in cloud. Thus the original data cannot 
be retrieved by anyone from cloud, since the top hash 
value is not in cloud. Even if any part of data gets hacked, 
it is of no use to the hacker [5] [8].Thus, the security can 
be ensured. 
Step 1: A file is split up into n number of data blocks. 
Step 2: Each data block is hashed and these hashes of data 
blocks are the leaves in hash tree. 
Step 3: Nodes further up in the tree are the hashes of their 
respective children. 
Step 4: Final hash value in a single node becomes a top 
hash value. 

5.1 MERKLE-SIGNATURE SCHEME 

The biggest problem of One-Time Signature Schemes is 
the key management. Exchanging a public key is very 
complex. It must be guaranteed, that the public key 
belongs to the intended communication partner and that 
the public key has not been modified. Therefore, few 
public keys should be used and the public keys should be 
rather short. But in One-Time Signature Schemes, a new 
public key is used for every signature and the public key is 
quite big, compared with other 
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Signature schemes. To make One-Time Signature 
Schemes feasible, an efficient key management, that 
reduces the amount of public keys and their size, is needed. 
In Merkle introduced the Merkle Signature Scheme (MSS), 
in which one public key is used to sign many messages. 

 

5.2 KEY GENERATION 

The Merkle Signature Scheme can only be used to sign a 
limited number of messages with one public key pub. The 
number of possible messages must be a power of two, so 
that we denote the possible number of messages as N = 2n. 
The first step of generating the public key pub is to 
generate the public keys Xi and private keys Yi of 2n one-
time signatures, as described in chapter 2. For each public 
key Yi, with 1 ≤ i ≤ 2n, a hash value hi = H(Yi) is 
computed. With these hash values hi a Merkle Tree (also 
called hash tree) is build. We call a node of the tree ai, j 
where i denotes the level of the node. The level of a node 
is defined by the distance from the node to a leaf. Hence, a 
leaf of the tree has level i = 0 and the root has level i = n. 
We number all nodes of one level from the left to the right, 
so that ai,0 is the leftmost node of level i. In the Merkle 
Tree the hash values hi are the leafs of a binary tree, so 
that hi = a0,i. Each inner node of the tree is the hash value 
of the concatenation of its two children. 
So a1, 0 = H(a0,0||a0,1) and a2,0 = H(a1,0||a1,1) 
In this way, a tree with 2n leafs and 2n+1 − 1 nodes is 
build. The root of the tree an, 0 is the public key pub of the 
Merkle Signature Scheme. 

5.3 SIGNATURE GENERATION 

To sign a message M with the Merkle Signature Scheme, 
the message M is signed with a one-time signature scheme, 
resulting in a signature sig′, first. This is done, by using 
one of the public and private key pairs (Xi, Yi ). The 
corresponding leaf of the hash tree to a one-time public 
key Yi is a0,i = H(Yi). We call the path in the hash tree 

from a0,i to the root A. The path A consists of n + 1 nodes, 
A0, ...An, with A0 = a0,i being the leaf and An = an,0 = 
pub being the root of the tree. To compute this path A, we 
need every child of the nodes A1, ..., An. We know that Ai 
is a child of Ai+1. To calculate the next node Ai+1 of the 
path A, we need to know both children of Ai+1. So we 
need the brother node of Ai. We call this node authi, so 
that Ai+1 = H(Ai||authi). Hence, n nodes 
auth0, ..., authn−1 are needed, to compute every node of 
the path A. We now calculate and save these nodes 
auth0, ..., authn−1. These nodes, plus the one-time 
signature sig′ of M is the signature sig = 
(sig′||auth2||auth3||...||authn−1) of the Merkle Signature 
Scheme. 

5.4 SIGNATURE VERIFICATION 

The receiver knows the public key pub, the message M, 
and the signature sig = (sig′||auth0||auth1||...||authn−1).  At 
first, the receiver verifies the one-time signature sig′ of the 
message M. If sig′ is a valid signature of M, the receiver 
computes A0=H(Yi) by hashing the public key of the one-
time signature. For j =1, .., n−1, the nodes of Aj of the path 
A are computed with Aj = H(aj−1||bj−1). 

 
The desired security requirements and it guarantees 
efficiency as well. 

5.5 COST ANALYSIS 

The big advantage of the Merkle Signature Scheme is, that 
many signatures can be generated with using only one 
public key. However, this advantage comes with an 
increase of computation time and signature length. In the 
following we will examine the computation time of each 
part of the signature process. To generate the public key 
pub, 2n one-time signature keys must be generated. Then 
every node of the hash tree must be computed. The tree 
consists of 2n+1−1 nodes. One hash operation is needed to 
calculate a node, so that 2n+1 − 1 hash operations are 
needed to generate the public key. It is obvious, that the 
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size of such a tree is limited. To compute 240 nodes is 
very costly, to compute 280 nodes is impossible. 
To generate a signature the nodes auth0, ..., authn−1 are 
needed. If you do not store the nodes of the tree, the nodes 
must be generated again for every signature. Generating 
the tree is very expensive, so that generating the entire tree 
for every signature is impracticable for bigger trees. But 
saving all 2n+1−1 nodes would result in huge storage 
requirements. Hence, a good strategy is needed, to 
generate the signature without saving too many nodes, at a 
still efficient time. 
This problem is called The Merkle tree traversal problem. 
The verification time is quite fast, compared to the 
signature time. At first, the one-time signature must be 
verified. After that, the path A = A1, ..., An must be 
computed. To do this, only n hash operations are needed, 
one for every node. The signature of the Merkle Signature 
Scheme consists of the one-time signature sig′ and n nodes 
auth0, ..., authn−1. If a 160 bit hash function is used, the 
signature size would be |sig| = |sig′| + n ∗ 160 bits. 

5.6 MERKLE TREE TRAVERSAL TECHNIQUES 

For the traversal techniques, we need an algorithm, that 
computes efficiently the nodes of the tree. Assume a 
binary tree with 2n leafs. The height H of a node, is 
defined by the distance of the node to a leaf. So the root 
has the height H = n, while the leafs have the height H = 0. 
We define the node ai,j as the jth node from the left 
(starting with j = 0) of the height i. So a0,0 is the leftmost 
leaf of the tree, and an,0 the root. To compute a node of 
the height H = h, 2h − 1 nodes must be computed. The tree 
hash algorithm needs 2h −1 operations, to calculate a node 
of the height h, while saving as few nodes at once as 
possible. The main idea of the tree hash algorithm is to 
calculate the needed subtree from left to right and only 
saving the nodes, that are still needed. This is done by 
using a stack. At first the stack only consists of the 
leftmost leaf. Then the next leaf is added. The algorithm 
now checks whether the last two nodes on the stack are of 
the same height or not. If they are of the same height, the 
two nodes are removed from the stack, and their parent is 
built and pushed on the stack. If 
the last two nodes on the stack are of different height, then 
a new leaf is pushed on the stack. This step is repeated, 
until the node of the wanted height has been generated. 
 
ALGORITHM: TREEHASH (start, maxheight) 

1. Set leaf = start and create empty stack. 
2. Consolidate: If top 2 nodes on the stack are equal 

height: 
• Pop node value P(nright) from stack. 
• Pop node value P(nleft) from stack. 

              • Compute P(nparent) = f(P(nleft||P(nright)). 
              • If height of P(nparent) = maxheight, output 

                 P(nparent). 
              • Push P(nparent) onto the stack. 
       3. New Leaf: Otherwise: 
              • Compute P(nl) = LEAFCALC(leaf). 
              • Push P(nl) onto the stack. 
              • Increment leaf. 

4. Loop to step 2. 
To be able to run multiple instances of tree hash, we define 
an object stackh with two methods, 
stackh.initialize(startnode, h) and stackh.update(t). 
Withthe initialize method we simply define the start leaf 
and the height of the resulting node. The method update 
runs the steps 2 or 3 of the treehash algorithm t times. For 
example stack2.initialize (0, 2) means, that in stack2 we 
compute nodes up to the height h = 2, beginning with the 
0th node. stack2.update (3) will now perform 3 operations 
of tree hash on stack2. The first operation will be to push 
node a0,0 on the stack. The second operation will be to 
push the node a0,1 on the stack. Now the last two nodes on 
the stack are of equal height. So in the third operation 
these two nodes are removed and a1, 0 gets computed and 
push on the stack. Because the tree hash should only 
perform three operations, the algorithm stops at this point. 
Whenstack2.update(t) is called again, the algorithm will 
continue at this point, by pushing the node a0, 2 on the 
stack. 

5.7 THE CLASSIC TRAVERSAL 

In the first step of the Merkle Signature Scheme, the public 
key, which is the root of the tree, gets computed. This is 
done, by using the treehash algorithm. During this 
computation, every node of the tree is generated, so that 
we can easily save 
the first authentication path auth. We do this, by saving all 
nodes auth I with authi = ai,1 for i = 1, ..., n − 1. These 
nodes auth = {auth1, ..., authn−1} are the right brothers of 
the nodes of the leftmost path. In addition to the authi 
nodes we also store the nodes of the leftmost path in the 
objects stacki, with 
stacki = ai,0 for i = 1, ..., n−1. We will need these objects, 
to efficiently generate the next authentication path. The 
next phase is the output and update phase. In this phase, 
we output the leaf value together with the authentication 
path. After that, we generate the next authentication path. 
Generating the output is quite simple. We use the function 
LEAFCALC to calculate the value of the leaf (The leaf 
values is the hash value of the public key of the one-time 
signature. So LEAFCALC builds the hash value of the 
one-time signature public key). The authentication path 
auth = auth1, ..., authn−1 has been already computed. So 
the important part is to calculate the next authentication 
path.  
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To do this, we need a counter leaf, which points to the 
current leaf to be calculated, and we need the old 
authentication path auth. In addition to that, we also have 
the objects stacki for i =0, ..., n−1. We can modify these by 
the functions stacki.initialize(startnode, h) and 
stacki.update(t). We now have to determine which 
authentication nodes authh have to be changed, so that 
auth = autho, ..., authH−1 is the authentication path for the 
next leafleaf + 1. The authentication node of the height h 
only needs an update, if 2h 
divides leaf + 1 without remainder. The new 
authentication node authh has already been generated and 
is saved in the stack stackh. So if 2h divides leaf +1, authh 
= POP(stackh). Then stackh is empty and we use this stack 
to precalculate the next authentication node. In 2h steps, 
when leaf = leaf +1+2h, authh needs an update again. So 
we search for the leftmost leaf, startnode, of the next 
authentication node, of the height h. This is startnode = 
leaf + 1 + 2h + 2h if the current authh is a left-node and 
startnode = leaf + 1 if the current authh is a right-node. So 
startnode = leaf + 1 + 2h ⊕ 2h. Hence we set 
stackh.initialize(startnode, h).  The next change of auth1 
will be when leaf = leaf+1+21. Hence, we need the 
authentication node of level 1 for the leaf +1+21. This 
node is sack1. The leftmost leaf of this node stack1 is 
leaf+1+21+21 = startnode. SO 
stack1.initialize(leaf+1+21+21, 1).We could now use the 
treehash algorithm to compute stackh at once. But this 
would take 2h+1 − 1 steps. In the worst case, H − 1 nodes 
authh can change at once, so that we would needH−1 Ph=0 
2h+1 − 1 operations to compute one signature.We know, 
that we do not need to change authh for the next 2h 
signatures. Hence, we have 2h signatures time, to make the 
2h+1 − 1 operations which generate thenext node. 
Therefore, we only do two operations of updating for h = 
0, ...,H −1 per signature, by calling stackh.update(2) for h 
= 0, ...,H − 1. In this way, we only perform (H − 1) ∗ 2 
 Operations per signature in the worst case.  

 
ALGORITHM: CLASSIC MERKLE TREE 
TRAVERSAL 
1. Set leaf = 0. 
2. Output: 
 • Compute and output leaf with LEAFCALC(leaf) 
 • For each h ∈ [0,H − 1] output {authh}. 
3. Refresh Auth Nodes: 
For h such that 2h divides leaf + 1: 
 • Set authh be the sole node value in stackh. 
 • Set startnode = (leaf + 1 + 2h) ⊕ 2h. 
 • stackh.initialize(startnode, h). 
4. Build Stacks: 
For all h ∈ [0,H − 1]: 
 • stackh.update(2). 

5. Loop 
 • Set leaf = leaf + 1. 
 • If leaf < 2H go to Step 2. 

6. CONCLUSION  

In this paper developed an Innovative approach for secure 
multi-owner data sharing for dynamic groups in an 
untrusted cloud. In this scheme a user is able to share data 
with others in the group without revealing identity privacy 
to the cloud. Efficient user revocation can be achieved 
through a public revocation list without updating the 
private keys of the remaining users, and new users can 
directly decrypt files stored in the cloud before their 
participation. The storage overhead and the encryption 
computation cost are varied. Extensive analyses show that 
the proposed scheme satisfies 
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