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Abstract 
The widely used TCP protocol was developed to provide reliable 
end-to-end delivery of packets under varying degrees of 
congestion in the network. This paper presents with in-depth 
study of performance characteristics of different TCP variants 
viz. Tahoe, Reno, New Reno and Vegas under congestion. We 
carry out simulations in NS-2 environment on these TCP variants 
and analyze the results with respect to throughput, packet drop 
rate and latency to determine if there is an overall efficient TCP 
variant. We also study the performance of Reno and SACK for 
different queuing algorithms viz. Droptail and RED. 
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1. Introduction 

The possibility of congestion occurance is growing rapidly 
with growth of networks. Initially, the size of sending 
window of TCP was determined by the available buffer 
size (advertised window) at the receiver. But this resulted 
in providing with only flow control and no congestion 
control. To cope with the growing congestion in networks, 
many TCP variants were researched and developed 
thereafter. 
Few of these TCP variants are discussed below: 
A. TCP TAHOE 
TCP Tahoe was introduced with 3 congestion control 
algorithms, namely: 

a) Slow Start  
b) Congestion Avoidance  
c) Fast Retransmit  

New parameters for congestion control were introduced 
like congestion window (cwnd) and slow start threshold 
window (ssthresh). The size of congestion window varies 
as per the reception of acknowledgements for the sent 
packets. Failure to receive an acknowledgement before the 
expiry of the defined RTT period is interpreted as packet 
loss due to congestion by TCP. The next for TCP is to 
implement fast retransmit where-in if the sender receives 
three duplicate acknowledgements for the same packet, 
then it retransmits the packet without waiting for the 
timeout. Entering fast retransmit, it sets the ssthresh to half 
of the current cwnd and decrements the cwnd to 1. This 
leads to TCP entering the slow start stage and the cwnd 
increments exponentially for every ACK it receives for 
sent packet until the ssthresh is reached. Thereafter, TCP 
enters congestion avoidance where cwnd increments 

linearly for every received ACK. The window size is 
taken as minimum of (congestion wnd, advertised wnd) . 
 
B. RENO 
Reno has same congestion control algorithms as Tahoe 
with an addition of fast recovery. In fast recovery, ssthresh 
and new cwnd is set to half of the current cwnd instead of 
setting the cwnd to 1. Thus Reno skips slow start and 
directly enters congestion avoidance. 
 
C. NEW RENO 
New Reno was introduced as Reno does not perform well 
when there are multiple packet drops in the same window. 
Unlike Reno, New Reno does not come out of the fast 
recovery unless and until it receives ACKs for all the 
packets that were present in the window while entering 
fast recovery. 
 
D. VEGAS 
Vegas implements congestion avoidance rather than first 
detecting the congestion and then taking steps to decrease 
congestion on the channel. Vegas basically calculates a 
base RTT and compares it with RTT of packet with 
recently received ACK. If compared RTT is much smaller 
than base RTT it increases its sending window and if RTT 
is greater than the base RTT, it decreases its sending 
window. 
 
E. SACK 
SACK is an extension of Reno. In SACK, selective ACKs 
are done rather than cumulative ACKs. Each ACK has a 
section which contains the sequence number of packets 
that have been acknowledged. When TCP enters fast 
recovery, 
SACK implements a parameter named “pipe” which 
represents the estimate of the number of unacknowledged 
packets in network. The congestion window is reduced to 
half of the current window. For every ACK received pipe 
is decremented by 1 and for every packet retransmitted 
pipe is incremented by 1. If there are no un-ACKed 
packets in the network a new packet is transmitted. Thus, 
using SACK multiple packets can be retransmitted in just 
one RTT. 
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2. Methodology 

 
Figure 1. Network topology 

Topology in Fig. 1 have nodes connected using full-
duplex links with a bandwidth of 10 Mbps. An 
Unresponsive UDP flow i.e CBR is implemented with its 
source at node 2 and sink at node 3. 
Under various conditions, this topology is run in NS-2 to 
generate trace files. These trace files are parsed and 
studied to analyze the behaviour of above mentioned TCP 
variants with respect to delay, throughput, packet drop rate, 
fairness and different queueing algorithms. 
 
A. Experiment 1 
In this experiment we analyze the performance of TCP 
variants under varying load conditions. Only one TCP 
flow is set from node 1 to node 4, linearly varying the rate 
of CBR flow from 1 Mbps to 10 Mbps. This is performed 
for different variants: Tahoe, Reno, New Reno and Vegas 
under following test conditions to create randomness: 

a) Start and end CBR and TCP flows at once  
b) Vary start and end times of both flows  
c) Start CBR flow once TCP is stable  
d) Start CBR flow when TCP in slow start  

1. Throughput is analyzed over these paramters:  
a) T- test: It is relative comparison of mean and variance 

of two different sets of values. It tells us about how 
stable a set of observations are with respect to the 
other.  

b) Variance: It describes the stability in its own set of 
observations. Thus it helps to determine the variant 
with most stable throughput, the one with the least 
variance.  

c) Mean: Mean was calculated to describe the average 
throughput of a specific variant. Higher the calculated 
mean, Higher is its average throughput for entire 
range of CBR bandwidth.  

2. Latency  
Average latencies are calculated for each variant and 
compared. This helps us to understand the variant with 
least overall latency as well as for a specific bandwidth. 
3. Packet Drop Rate 
Number of dropped packets are calculated over the total 
number of packets. It is considered to find variant with 
minimum drop rate. 
 

B. Experiment 2 
This experiment is performed to see if one TCP variant is 
fair to another TCP variant or not. One TCP flow is set 
from node 1 to node 4 and the other flow from node 5 to 
node 6. The rate of CBR flow is varied linearly from 
1Mbps to 10 Mbps. 
The fairness of variants to one another is analyzed by 
plotting graphs for throughput, latency and drop rate for 
each flow with respect to CBR flow rate. 
 
C. Experiment 3 
In this experiment we will study the effect of queuing 
algorithm like DropTail and Random Early Detection on 
the throughput and delay of TCP Reno and TCP SACK. 
The same topology as in experiment 1 is used to carry out 
the experiment. 

3. Analysis 

A. Experiment 1 
Graphs of throughput, latency and drop rate are plotted 
over rate of CBR flow in order to analyze the performance 
of each TCP variant. 
1. Throughput 
T-test was done for all possibe combinations of variants. 
T-values were caluculated to determine the stability of one 
variant over another. 
T-values were calcultaed using the formula: 

 
T-values for all conditions and every combination were 
studied and hence we concluded that T-values of Vegas 
are almost always greater than zero when compared with 
any other variant. 
Thus, Vegas gives more stable throughput over any other 
variant under same conditions. 
T-test values for Vegas uner test condition: 
1. CBR flow starts TCP gets stable 

Vegas over Tahoe: 0.350 
Vegas over Reno: 0.821 
Vegas over New Reno: 0.2496 

Formula used for variance: 

 
Standard Deviation = (Variance) 0.5 
Vegas also gave the best mean and the least value of 
variance and standard deviation for almost every 
experiment. Thus concluding that Vegas has the least 
deviations of throughtput over the entire experiment run. 
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Figure 2. Throughput of variants over CBR rate 

As seen from the Figure TCP Vegas initially starts with 
smaller throughput value than other variants since at first 
it calculates the base RTT which helps it figure out how 
much bandwidth is available to it. TCP Tahoe, Reno and 
New Reno are in slow start. 
As bandwidth of CBR increases, the throughput of Tahoe 
decreases since when packet drop occurs, TCP enters slow 
start stage and reduces the congestion window to 1. Its 
congestion window will not grow unless it receives ACKs 
for sent packets and hence remain in slow start for longer 
duration of time. 
The overall throughput of Reno decreases because it 
enters and exists the fast recovery mode for each packet in 
case of multiple drops in one window. 
The New Reno throughput decreases a little but shows 
better performance under high congestion since it stays in 
the fast recovery stage unless and until it receives ACKs 
for all the packets that were present when New Reno 
entered the slow start stage. 
Thus, we conclude that Vegas gives the best average 
throughput giving the better mean, lowest variance and 
relevant T-values over any variant. 
2. Latency 

 
Figure 3. Latency of variants over CBR rate 

As Vegas detects congestion[4], it will queue very small 
number of packets when the estimated RTT of recently 
received packet is greater than the base RTT. Thus, Vegas 
has the least latency. 
In Tahoe, packet loss is detected only when the 
retransmission timer expires. Tahoe uses GO-BACK_N 

windowing technique. Thus if a packet drop occurs, then 
the number of packets retransmitted during congestion 
increases leading to larger queuing delays. 
New Reno takes one RTT to detect each loss if multiple 
packets are lost in on window. This leads to increase in 
queuing delays and thus high latency. 
The cwnd of Reno is decremented multiple times for 
multiple losses in the same window[1]. Since the window 
size becomes small, it slides over the queue very slowly 
unless it finally comes out of fast recovery leading to 
increased queuing delays. 
3. Drop Rate 

 
Figure 4. Drop rate of variants over CBR rate 

Vegas detects congestion in its initial stage by calculating 
the base RTT and comparing it with RTT of every packet 
it sends. Hence, Vegas has the least drop rate as compared 
to all other variants. 
Analyzing all parameters in the experiment, we conclude 
that Vegas has the highest average throughput, lowest 
average latency and minimum drop rate for almost every 
test condition. Though for low CBR rate and bottleneck 
CBR rate, the throughput of all variants becomes same but 
still the relative latency and number of packets drop is still 
very small for TCP Vegas. 
 
B. Experiment 2 
The fairness of variants to one another is analyzed by 
plotting graphs for throughput, latency and drop rate for 
each flow with respect to CBR flow rate. 

 
Figure 5. Fairness of Reno with Reno 

Fig 5. shows that both the TCP Reno flows are fair to each 
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other in terms of bandwidth. This is because both the 
flows follow the same algorithm of congestion control. 
The throughput of both the TCP Reno flows decreases in a 
similar fashion under congestion. 

 
Figure 6. Throughput of Reno, New Reno 

But, TCP New Reno is unfair to TCP Reno. This is 
because New Reno can handle multiple packet drops when 
congestion increases in the network. New reno does not 
come out of the fast recovery phase unless all packets 
present at the time when it entered fast recovery phase are 
acknowledged. 

 
Figure 7.  Fairness of New Reno and Vegas 

Figure 7. shows that New Reno is unfair to Vegas. This is 
because as the New Reno traffic in the network increases, 
TCP Vegas detects congestion and reduces the number of 
packets it sends into the network, thus giving the network 
bandwidth to the other flow. But as the cbr traffic in the 
network increases the throughput of New Reno reduces as 
the number of packet drops increases. But at the same time 
the throughput of Vegas improves as it’s a congestion 
detection mechanism. 
It can be seen that both Vegas flows are fair to each other. 
When one of the TCP Vegas flow say Vegas_1 detects the 
occurance of congestion in the network it immediately 
backs-off by reducing the number of packets being sent on 
the network. Thus, the other TCP Vegas flow say Vegas_2 
utilizes the bandwidth of the network and vice-versa. 
Therefore, we can see throughput of both the flows 
growing and then falling down. But the overall throughput 
of both the flows are almost the same. 
 
C. Experiment 3 
The throughput of TCP SACK and Reno are plotted in the 

same graph with CBR flows so as to better analyze their 
responses with RED and Droptail queuing algorithms. 

 
Figure 8. Thoughput of SACK with RED, Droptail 

 
Figure 9. Thoughput of Reno with RED, Droptail 

As seen from Fig. 8 and Fig. 9, the throughput of SACK 
(RED) and Reno (RED) is smaller than the throughput of 
SACK (Droptail) and Reno (Droptail). The reason is that 
in the RED algorithm packets are dropped on the basis of 
statistical algorithms. Three parameters are set as min, 
max and burst[3]. The packets dropped from a particular 
flow is proportional to the amount of network bandwidth 
utilized by that flow[3]. On the contrary, Droptail 
algorithm starts to drop packets irrespective of the flow 
type when its queue gets completely filled. Thus it shows 
that RED is more fair than Droptail to a respective 
network flow. 

 
Figure 10. Delay of SACK with RED, Droptail 

As seen from the fig. 10, the delay when Droptail 
algorithm is used is greater than when RED is used. This 
is because RED defines a limit over how much bursty 
traffic is to be allowed in the queue unlike droptail. 
Thus, it can be seen from the Fig. 8 and Fig. 9 that TCP 
has very high throughput when there is no CBR (UDP) 
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flow in the network. The CBR flow does not take 
congestion into account as it just bursts the packets 
irrespective of congestion in the network. Therefore when 
there are TCP flows along with CBR flows (UDP), then 
the TCP flow backs-off and reduces its window size. Thus, 
TCP reduces its sending rate with an occurance of 
congestion. 
In fig. 8, SACK when used with RED yields a much lower 
throughput than when SACK is used with Droptail. Also, 
SACK throughput is not stable at any point when RED 
queuing algorithm is used for a test condition. Thus, it is 
not a good idea to use SACK with RED queuing algorithm. 

4. Conclusion 

Different TCP variants have different performance 
characteristics in terms of throughput, latency and packet 
drop ratio under varying degree of congestion in the 
network. 
In Experiment 1, depending upon the T-test, mean, 
variance and simulation analysis, we can conclude that 
TCP Vegas performs the best in terms of throughput, 
latency and packet drop rate for most of the times, 
specially under high congestion conditions in the network. 
In Experiment 2, we can conclude from the simulation 
analysis that when two flows use the same TCP variant 
they are fair to each other. But when two different TCP 
flows are running at once, they are not fair to each other in 
terms of bandwidth utilization. 
In Experiment 3, we observed from the simulation 
analysis that the TCP variants perform better in terms of 
throughput when DropTail queuing algorithm is used but 
gives small latency periods when RED queuing algorithm 
is used. Thus use of Droptail and RED is a trade-off 
between throughput and latency. 
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