
IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.4, April 2016

102

Manuscript received April 5, 2016
Manuscript revised April 20, 2016

Performance Analysis of TCP Variants

Abhishek Sawarkar Himanshu Saraswat
Northeastern University, MA – 02115 PES MCOE,Pune-411005

Abstract
The widely used TCP protocol was developed to provide reliable
end-to-end delivery of packets under varying degrees of
congestion in the network. This paper presents with in-depth
study of performance characteristics of different TCP variants
viz. Tahoe, Reno, New Reno and Vegas under congestion. We
carry out simulations in NS-2 environment on these TCP variants
and analyze the results with respect to throughput, packet drop
rate and latency to determine if there is an overall efficient TCP
variant. We also study the performance of Reno and SACK for
different queuing algorithms viz. Droptail and RED.
Keywords
 throughput; latency; drop rate; NS-2;

1. Introduction

The possibility of congestion occurance is growing rapidly
with growth of networks. Initially, the size of sending
window of TCP was determined by the available buffer
size (advertised window) at the receiver. But this resulted
in providing with only flow control and no congestion
control. To cope with the growing congestion in networks,
many TCP variants were researched and developed
thereafter.
Few of these TCP variants are discussed below:
A. TCP TAHOE
TCP Tahoe was introduced with 3 congestion control
algorithms, namely:

a) Slow Start
b) Congestion Avoidance
c) Fast Retransmit

New parameters for congestion control were introduced
like congestion window (cwnd) and slow start threshold
window (ssthresh). The size of congestion window varies
as per the reception of acknowledgements for the sent
packets. Failure to receive an acknowledgement before the
expiry of the defined RTT period is interpreted as packet
loss due to congestion by TCP. The next for TCP is to
implement fast retransmit where-in if the sender receives
three duplicate acknowledgements for the same packet,
then it retransmits the packet without waiting for the
timeout. Entering fast retransmit, it sets the ssthresh to half
of the current cwnd and decrements the cwnd to 1. This
leads to TCP entering the slow start stage and the cwnd
increments exponentially for every ACK it receives for
sent packet until the ssthresh is reached. Thereafter, TCP
enters congestion avoidance where cwnd increments

linearly for every received ACK. The window size is
taken as minimum of (congestion wnd, advertised wnd) .

B. RENO
Reno has same congestion control algorithms as Tahoe
with an addition of fast recovery. In fast recovery, ssthresh
and new cwnd is set to half of the current cwnd instead of
setting the cwnd to 1. Thus Reno skips slow start and
directly enters congestion avoidance.

C. NEW RENO
New Reno was introduced as Reno does not perform well
when there are multiple packet drops in the same window.
Unlike Reno, New Reno does not come out of the fast
recovery unless and until it receives ACKs for all the
packets that were present in the window while entering
fast recovery.

D. VEGAS
Vegas implements congestion avoidance rather than first
detecting the congestion and then taking steps to decrease
congestion on the channel. Vegas basically calculates a
base RTT and compares it with RTT of packet with
recently received ACK. If compared RTT is much smaller
than base RTT it increases its sending window and if RTT
is greater than the base RTT, it decreases its sending
window.

E. SACK
SACK is an extension of Reno. In SACK, selective ACKs
are done rather than cumulative ACKs. Each ACK has a
section which contains the sequence number of packets
that have been acknowledged. When TCP enters fast
recovery,
SACK implements a parameter named “pipe” which
represents the estimate of the number of unacknowledged
packets in network. The congestion window is reduced to
half of the current window. For every ACK received pipe
is decremented by 1 and for every packet retransmitted
pipe is incremented by 1. If there are no un-ACKed
packets in the network a new packet is transmitted. Thus,
using SACK multiple packets can be retransmitted in just
one RTT.

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.4, April 2016 103

2. Methodology

Figure 1. Network topology

Topology in Fig. 1 have nodes connected using full-
duplex links with a bandwidth of 10 Mbps. An
Unresponsive UDP flow i.e CBR is implemented with its
source at node 2 and sink at node 3.
Under various conditions, this topology is run in NS-2 to
generate trace files. These trace files are parsed and
studied to analyze the behaviour of above mentioned TCP
variants with respect to delay, throughput, packet drop rate,
fairness and different queueing algorithms.

A. Experiment 1
In this experiment we analyze the performance of TCP
variants under varying load conditions. Only one TCP
flow is set from node 1 to node 4, linearly varying the rate
of CBR flow from 1 Mbps to 10 Mbps. This is performed
for different variants: Tahoe, Reno, New Reno and Vegas
under following test conditions to create randomness:

a) Start and end CBR and TCP flows at once
b) Vary start and end times of both flows
c) Start CBR flow once TCP is stable
d) Start CBR flow when TCP in slow start

1. Throughput is analyzed over these paramters:
a) T- test: It is relative comparison of mean and variance

of two different sets of values. It tells us about how
stable a set of observations are with respect to the
other.

b) Variance: It describes the stability in its own set of
observations. Thus it helps to determine the variant
with most stable throughput, the one with the least
variance.

c) Mean: Mean was calculated to describe the average
throughput of a specific variant. Higher the calculated
mean, Higher is its average throughput for entire
range of CBR bandwidth.

2. Latency
Average latencies are calculated for each variant and
compared. This helps us to understand the variant with
least overall latency as well as for a specific bandwidth.
3. Packet Drop Rate
Number of dropped packets are calculated over the total
number of packets. It is considered to find variant with
minimum drop rate.

B. Experiment 2
This experiment is performed to see if one TCP variant is
fair to another TCP variant or not. One TCP flow is set
from node 1 to node 4 and the other flow from node 5 to
node 6. The rate of CBR flow is varied linearly from
1Mbps to 10 Mbps.
The fairness of variants to one another is analyzed by
plotting graphs for throughput, latency and drop rate for
each flow with respect to CBR flow rate.

C. Experiment 3
In this experiment we will study the effect of queuing
algorithm like DropTail and Random Early Detection on
the throughput and delay of TCP Reno and TCP SACK.
The same topology as in experiment 1 is used to carry out
the experiment.

3. Analysis

A. Experiment 1
Graphs of throughput, latency and drop rate are plotted
over rate of CBR flow in order to analyze the performance
of each TCP variant.
1. Throughput
T-test was done for all possibe combinations of variants.
T-values were caluculated to determine the stability of one
variant over another.
T-values were calcultaed using the formula:

T-values for all conditions and every combination were
studied and hence we concluded that T-values of Vegas
are almost always greater than zero when compared with
any other variant.
Thus, Vegas gives more stable throughput over any other
variant under same conditions.
T-test values for Vegas uner test condition:
1. CBR flow starts TCP gets stable

Vegas over Tahoe: 0.350
Vegas over Reno: 0.821
Vegas over New Reno: 0.2496

Formula used for variance:

Standard Deviation = (Variance) 0.5
Vegas also gave the best mean and the least value of
variance and standard deviation for almost every
experiment. Thus concluding that Vegas has the least
deviations of throughtput over the entire experiment run.

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.4, April 2016 104

Figure 2. Throughput of variants over CBR rate

As seen from the Figure TCP Vegas initially starts with
smaller throughput value than other variants since at first
it calculates the base RTT which helps it figure out how
much bandwidth is available to it. TCP Tahoe, Reno and
New Reno are in slow start.
As bandwidth of CBR increases, the throughput of Tahoe
decreases since when packet drop occurs, TCP enters slow
start stage and reduces the congestion window to 1. Its
congestion window will not grow unless it receives ACKs
for sent packets and hence remain in slow start for longer
duration of time.
The overall throughput of Reno decreases because it
enters and exists the fast recovery mode for each packet in
case of multiple drops in one window.
The New Reno throughput decreases a little but shows
better performance under high congestion since it stays in
the fast recovery stage unless and until it receives ACKs
for all the packets that were present when New Reno
entered the slow start stage.
Thus, we conclude that Vegas gives the best average
throughput giving the better mean, lowest variance and
relevant T-values over any variant.
2. Latency

Figure 3. Latency of variants over CBR rate

As Vegas detects congestion[4], it will queue very small
number of packets when the estimated RTT of recently
received packet is greater than the base RTT. Thus, Vegas
has the least latency.
In Tahoe, packet loss is detected only when the
retransmission timer expires. Tahoe uses GO-BACK_N

windowing technique. Thus if a packet drop occurs, then
the number of packets retransmitted during congestion
increases leading to larger queuing delays.
New Reno takes one RTT to detect each loss if multiple
packets are lost in on window. This leads to increase in
queuing delays and thus high latency.
The cwnd of Reno is decremented multiple times for
multiple losses in the same window[1]. Since the window
size becomes small, it slides over the queue very slowly
unless it finally comes out of fast recovery leading to
increased queuing delays.
3. Drop Rate

Figure 4. Drop rate of variants over CBR rate

Vegas detects congestion in its initial stage by calculating
the base RTT and comparing it with RTT of every packet
it sends. Hence, Vegas has the least drop rate as compared
to all other variants.
Analyzing all parameters in the experiment, we conclude
that Vegas has the highest average throughput, lowest
average latency and minimum drop rate for almost every
test condition. Though for low CBR rate and bottleneck
CBR rate, the throughput of all variants becomes same but
still the relative latency and number of packets drop is still
very small for TCP Vegas.

B. Experiment 2
The fairness of variants to one another is analyzed by
plotting graphs for throughput, latency and drop rate for
each flow with respect to CBR flow rate.

Figure 5. Fairness of Reno with Reno

Fig 5. shows that both the TCP Reno flows are fair to each

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.4, April 2016 105

other in terms of bandwidth. This is because both the
flows follow the same algorithm of congestion control.
The throughput of both the TCP Reno flows decreases in a
similar fashion under congestion.

Figure 6. Throughput of Reno, New Reno

But, TCP New Reno is unfair to TCP Reno. This is
because New Reno can handle multiple packet drops when
congestion increases in the network. New reno does not
come out of the fast recovery phase unless all packets
present at the time when it entered fast recovery phase are
acknowledged.

Figure 7. Fairness of New Reno and Vegas

Figure 7. shows that New Reno is unfair to Vegas. This is
because as the New Reno traffic in the network increases,
TCP Vegas detects congestion and reduces the number of
packets it sends into the network, thus giving the network
bandwidth to the other flow. But as the cbr traffic in the
network increases the throughput of New Reno reduces as
the number of packet drops increases. But at the same time
the throughput of Vegas improves as it’s a congestion
detection mechanism.
It can be seen that both Vegas flows are fair to each other.
When one of the TCP Vegas flow say Vegas_1 detects the
occurance of congestion in the network it immediately
backs-off by reducing the number of packets being sent on
the network. Thus, the other TCP Vegas flow say Vegas_2
utilizes the bandwidth of the network and vice-versa.
Therefore, we can see throughput of both the flows
growing and then falling down. But the overall throughput
of both the flows are almost the same.

C. Experiment 3
The throughput of TCP SACK and Reno are plotted in the

same graph with CBR flows so as to better analyze their
responses with RED and Droptail queuing algorithms.

Figure 8. Thoughput of SACK with RED, Droptail

Figure 9. Thoughput of Reno with RED, Droptail

As seen from Fig. 8 and Fig. 9, the throughput of SACK
(RED) and Reno (RED) is smaller than the throughput of
SACK (Droptail) and Reno (Droptail). The reason is that
in the RED algorithm packets are dropped on the basis of
statistical algorithms. Three parameters are set as min,
max and burst[3]. The packets dropped from a particular
flow is proportional to the amount of network bandwidth
utilized by that flow[3]. On the contrary, Droptail
algorithm starts to drop packets irrespective of the flow
type when its queue gets completely filled. Thus it shows
that RED is more fair than Droptail to a respective
network flow.

Figure 10. Delay of SACK with RED, Droptail

As seen from the fig. 10, the delay when Droptail
algorithm is used is greater than when RED is used. This
is because RED defines a limit over how much bursty
traffic is to be allowed in the queue unlike droptail.
Thus, it can be seen from the Fig. 8 and Fig. 9 that TCP
has very high throughput when there is no CBR (UDP)

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.4, April 2016 106

flow in the network. The CBR flow does not take
congestion into account as it just bursts the packets
irrespective of congestion in the network. Therefore when
there are TCP flows along with CBR flows (UDP), then
the TCP flow backs-off and reduces its window size. Thus,
TCP reduces its sending rate with an occurance of
congestion.
In fig. 8, SACK when used with RED yields a much lower
throughput than when SACK is used with Droptail. Also,
SACK throughput is not stable at any point when RED
queuing algorithm is used for a test condition. Thus, it is
not a good idea to use SACK with RED queuing algorithm.

4. Conclusion

Different TCP variants have different performance
characteristics in terms of throughput, latency and packet
drop ratio under varying degree of congestion in the
network.
In Experiment 1, depending upon the T-test, mean,
variance and simulation analysis, we can conclude that
TCP Vegas performs the best in terms of throughput,
latency and packet drop rate for most of the times,
specially under high congestion conditions in the network.
In Experiment 2, we can conclude from the simulation
analysis that when two flows use the same TCP variant
they are fair to each other. But when two different TCP
flows are running at once, they are not fair to each other in
terms of bandwidth utilization.
In Experiment 3, we observed from the simulation
analysis that the TCP variants perform better in terms of
throughput when DropTail queuing algorithm is used but
gives small latency periods when RED queuing algorithm
is used. Thus use of Droptail and RED is a trade-off
between throughput and latency.

References
[1] A Comparative Analysis of TCP Tahoe, Reno, New-Reno,

SACK and Vegas
http://inst.eecs.berkeley.edu/~ee122/fa05/projec
ts/Project2/SACKRENEVEGAS.pdf

[2] Fair comparisons of different TCP variants for future
deployment of Networks
http://www.academia.edu/183250/Fair_compari
sons_of_different_TCP_variants_for_future_de
ployment_of_Networks

[3] Random Early Detection http://tldp.org/HOWTO/Adv-
Routing-HOWTO/lartc.adv-qdisc.red.html

[4] TCP Vegas http://en.wikipedia.org/wiki/TCP_Vegas
[5] Ahsan Habib, Bharat Bhargava
[6] Unresponsive Flow Detection and Control
[7] using the Differentiated Services Framework

https://www.cs.purdue.edu/homes/bb/unresp.pdf
[8] Steven H. Low, Fernando Paganini, Jiantao Wang, Sachin

Adlakha, John C. Doyle,
[9] Dynamics of TCP/RED and a Scalable Control

