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Summary 
Blind channel estimation has been noticed in many applications. 
The important challenge in this field is convolutive mixtures in a 
reverberant environment. On the other hand, in WSN, distributed 
techniques are preferred because centralized techniques require a 
large communication bandwidth and power and it is not scalable. 
In this paper the goal is to obtain the same estimation 
performance in a centralized algorithm. For this purpose, a 
MIMO system with 2 input signals will be converted into 2 
SIMO systems and their spatial interference will be separated. 
For incoherence between the obtained equations, a tree structure 
is chosen and one virtual node is added to this network. The 
equations are merged and a linear equation is obtained from them. 
Then, the local channel estimations are coupled with those of 
their neighbors by means of consensus-constraints. The topology 
of network is unknown and nodes only have access to data of 
their direct neighbors. Simulation results show that the proposed 
distributed algorithm is flexible and robust to sensor failures and 
achieves the same performance as a centralized algorithm. 
Key words: 
Consensus based, blind channel estimation, wireless sensor 
network, distributed.  

1. Introduction 

Blind channel estimation techniques are used in signal 
processing and communication for example 
dereverberation, blind source separation, speech 
enhancement, wireless communication and so on. In 
almost all of these applications, a prior knowledge of the 
source signal is inaccessible or very expensive, so blind 
methods are necessary. 
Distributed solutions in the adaptive wireless networks [1, 
2, 3, 4], which consist of a collection of sensors with 
adaptation and learning abilities are studied in these papers.  
Simple computing and adaptive implementation are useful 
for blind channel estimation in real time applications. In 
[5] a channel identification algorithm is introduced which 
is based on the least square smoothing (LSS) algorithm. 
Least mean square (LMS) algorithm is presented in [6], 
which is based on the adaptive eigenvalue decomposition 
and multi-channel Newton (MCN) algorithm. However, 
when blind channel estimation algorithms are used in 
WSN, the properties of these networks must be considered. 

In an ad hoc wireless sensor network [7], usually all 
observation are gathered in a fusion center for estimation 
of common parameter or signal. However, this requires a 
large communication bandwidth and power and it is not 
scalable. In order to solve this problems, distributed 
algorithms [8,9,10,11,12] are used, where each node 
perform local processing and estimate the common object 
by using data received from neighbors. The distributed 
algorithms provide robust and scalable solutions for large 
networks. An important aspect in WSN is the efficient 
usage of the available bandwidth in the wireless links 
between nodes. Furthermore, since the nodes of the WSN 
are generally battery powered, it is important to use a 
scalable distributed algorithm, where each node 
contributes to the processing, rather than a centralized 
algorithm gathering all signals in one central place. 
In ad hoc wireless sensor networks, for blind 
dereverberation, each node accesses to a part of the whole 
signal and shares data with other nodes through wireless 
links for channel estimation. The goal is to implement a 
distributed estimator that is close to an optimal one which 
has access to all observations of all nodes in the network.  
Distributed estimation in a linear least square (LLS) has 
been studied in [13-19]. This algorithm is applied for 
solving Uw=d equation, which is a linear regression 
problem, where d is an M-dimensional data vector and U 
is an M×P data matrix with M≥P. The purpose of this 
algorithm is minimizing the squared error between left-
hand and right-hand of the above equation by finding 
proper w vector. However, in many practical problems, 
matrix U is also noisy. In these situations, in [20], it is 
shown that the LLS algorithm is biased. In [21] total least 
square (TLS) estimation is generalized from LLS 
estimation, where both U and d are assumed to be noisy.  
In this paper, we approach the problem by formulating a 
new function similar to Uw=d for the blind channel 
estimation. This equation could be solved by TLS 
algorithm in the central node using calculate eigenvector 
corresponding to the smallest eigenvalue of the whole U 
matrix. In this paper, we proposed consensus based 
distributed that each node instead of sending received data 
to the central node, transmit eigenvector corresponding to 
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the smallest eigenvalue of local U matrix to the neighbor 
nodes. 
 The important challenge in this application is convolutive 
mixtures in a reverberant acoustic environment. In this 
paper, we convert a 2×N MIMO system to 2 SIMO 
systems. Then by converting the problem to a linear 
equation and TLS estimation, the problem can be solved 
iteratively. 
The rest of this paper is organized as follows, in sections 2, 
we first introduce channel model and conversion of 2×N 
MIMO system to two SIMO systems. The proposed 
distributed consensus based method corresponding to 
channel model and convergence of this algorithm are 
introduced in section 3 and 4. Section 5 summarizes the 
experimental results. Finally, section 6 presents the 
concluding. 

2. Channel Model 

2.1 MIMO System and Conversion of 2×N MIMO 
System to two SIMO Systems 

For a 2×N FIR system as presented in Fig. 1, we have 2 
independent speech sources and N sensors. The ith 
observation 𝐱𝐱i(k) is the summation of linear convolution 
between the source signal 𝐬𝐬m(k)  and the corresponding 
channel response 𝐡𝐡nm, exposed to additive 𝐛𝐛n(k); 
 𝒙𝒙𝑛𝑛(𝑘𝑘) = ∑ 𝒉𝒉𝑛𝑛𝑛𝑛𝑇𝑇  𝒔𝒔𝑚𝑚(𝑘𝑘, 𝐿𝐿)2

𝑚𝑚=1 + 𝒃𝒃𝑛𝑛(𝑘𝑘),   𝑘𝑘 =
1,2, … ,𝐾𝐾,𝑛𝑛 = 1,2, … ,𝑁𝑁 ,𝑚𝑚 = 1,2                              (1) 
(. )𝑇𝑇 denotes the transpose of a matrix. 
Where, 
𝒉𝒉𝑛𝑛𝑛𝑛 = [ℎ𝑛𝑛𝑛𝑛,0, ℎ𝑛𝑛𝑛𝑛,1, … . , ℎ𝑛𝑛𝑛𝑛,𝐿𝐿−1]𝑇𝑇 
𝒔𝒔𝑚𝑚(𝑘𝑘, 𝐿𝐿) = [𝑠𝑠𝑚𝑚(𝑘𝑘) 𝑠𝑠𝑚𝑚(𝑘𝑘 − 1) … . 𝑠𝑠𝑚𝑚(k − L + 1)]𝑇𝑇   
In the above equations, L  is the length of the longest 
channel impulse response and 𝐛𝐛n(k)  is a zero mean 
additive white Gaussian noise.  
By applying z transform to (1), the model signal is 
expressed as: 
𝑿𝑿n(z) = ∑ 𝐇𝐇𝑛𝑛𝑛𝑛(z) 𝐬𝐬𝑚𝑚(z)2

𝑚𝑚=1 + 𝑩𝑩n(z), n = 1, … , N  (2)   
First, Where in the above equation, 𝐇𝐇nm(z) is z transform 
of 𝐡𝐡nm. 
In blind channel estimation, priori knowledge about source 
signals or channel coefficients is not assumed. Here, we 
are looking for converting the MIMO system to several 
SIMO systems. In the 2×N MIMO system that is shown in 
Fig. 1, we have 
      𝑿𝑿i(z) = 𝐇𝐇𝑖𝑖1(z)𝐬𝐬1(z) + 𝐇𝐇𝑖𝑖2(z)𝐬𝐬2(z) + 𝑩𝑩i(z) 
𝑿𝑿j(z) = 𝐇𝐇j1(z)𝐬𝐬1(z) + 𝐇𝐇j2(z)𝐬𝐬2(z) + 𝑩𝑩j(z)              (3)   
It is observed that we can remove the interference caused 
by 𝐬𝐬1(z) or 𝐬𝐬2(z) in node 1 and 2 as follows: 
𝑿𝑿1(z)𝐇𝐇22(z) − 𝑿𝑿2(z)𝐇𝐇12(z) = [𝐇𝐇11(z)𝐇𝐇22(𝑧𝑧) −
𝐇𝐇21(z) 𝐇𝐇12(z)]𝐬𝐬1(z) + [𝐇𝐇22(z)𝐵𝐵1(z) − 𝐇𝐇12(z)𝐵𝐵2(z)]              
(4) 

𝑿𝑿1(z)𝐇𝐇21(z) − 𝑿𝑿2(z)𝐇𝐇11(z) = [𝐇𝐇12(z)𝐇𝐇21(z) −
𝐇𝐇22(z)  𝐇𝐇11(z)]𝐬𝐬2(z) + [𝐇𝐇21(z)𝐵𝐵1(z) − 𝐇𝐇11(z)𝐵𝐵2(z)]            
(5)   

       

Fig.  1. Illustration of a MIMO system with M signal sources and N 
sensor nodes 

Therefore, by selecting two sensors, we can obtain 2 
SIMO systems. 
In time domain we have: 
  𝐱𝐱i(n) = 𝐇𝐇i1. 𝐬𝐬𝟏𝟏(n) + 𝐇𝐇i2. 𝐬𝐬𝟐𝟐(n) + 𝐛𝐛i(n)                       
(6)      
  𝐱𝐱i(n) = [𝑥𝑥𝑖𝑖(𝑛𝑛)  𝑥𝑥𝑖𝑖(𝑛𝑛 − 1) . . .  𝑥𝑥𝑖𝑖(𝑛𝑛 − 𝐿𝐿 + 1)]𝑇𝑇             (7)                           

𝐇𝐇ij =

⎣
⎢
⎢
⎡
hij,0 hij,1

0 hij,0
… hij,L−1 0
… hij,L−2 hij,L−1

    … 0
… 0

⋮ ⋱
0 …

⋱ ⋮ ⋱
0 hij,0 hij,1    

⋱ ⋮
… hij,L−1⎦

⎥
⎥
⎤

             

(8)     
 
𝐛𝐛i(n) = [bi(n)  bi(n − 1) . . .  bi(n − L + 1)]T          (9) 
𝐬𝐬j(n) = [sj(n)  sj(n − 1). … sj(n − 2L + 2) ]T         (10) 
In the above equations, the input signals 𝐬𝐬1(n) and 𝐬𝐬2(n) 
are 2L dimensional vectors and 𝐇𝐇i1  and 𝐇𝐇i2  are L× 2L 
dimensional matrixes. Now, assume that we trace to 
remove the interference caused by 𝐬𝐬1(n)  and 𝐬𝐬2(n), 
respectively. 
𝐱𝐱i(n) = 𝐇𝐇i1. 𝐬𝐬𝟏𝟏(n) + 𝐇𝐇i2. 𝐬𝐬𝟐𝟐(n) + 𝐛𝐛i(n)                    (11) 
𝐱𝐱j(n) = 𝐇𝐇j1. 𝐬𝐬𝟏𝟏(n) + 𝐇𝐇𝑗𝑗2. 𝐬𝐬𝟐𝟐(n) + 𝐛𝐛j(n)                   (12) 
By multiplying (11) and (12) in 𝐡𝐡j2 and 𝐡𝐡i2, respectively 
and subtract them from each other,  
We have, 
𝐲𝐲i,𝐬𝐬𝟏𝟏(n) = 𝐱𝐱i(n)𝐡𝐡𝑗𝑗2(𝑛𝑛) − 𝐱𝐱j(n)𝐡𝐡𝑖𝑖2(𝑛𝑛)                                                                                                                                                                                                                                                                              
= [𝐡𝐡j2(n)𝐇𝐇i1 − 𝐡𝐡i2(n)𝐇𝐇j1]𝐬𝐬1(n) + [𝐡𝐡𝑗𝑗2𝐛𝐛i(n) −
𝐡𝐡𝑖𝑖2(𝑛𝑛)𝐛𝐛j(n)]                                                                (13) 
And 

𝐲𝐲i,𝐬𝐬𝟐𝟐(n) = 𝐱𝐱i(n)𝐡𝐡𝑗𝑗1(𝑛𝑛) − 𝐱𝐱j(n)𝐡𝐡𝑖𝑖1(𝑛𝑛) 
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   = [𝐡𝐡j1(n)𝐇𝐇i2 − 𝐡𝐡i1(n)𝐇𝐇j2]𝐬𝐬2(n) + [𝐡𝐡𝑗𝑗1𝐛𝐛i(n) −
𝐡𝐡𝑖𝑖1(𝑛𝑛)𝐛𝐛j(n)]                                                                       
(14)    
Where 
               𝐡𝐡i2 = �hi2,0  hi2,1 … hi2,L−1 � 
               𝐡𝐡j2 = �hj2,0  hj2,1 … hj2,L−1 �           
In (13) and (14), 𝐲𝐲i,𝐬𝐬𝟏𝟏(n) and 𝐲𝐲i,𝐬𝐬𝟐𝟐(n) are one dimensional 
vectors, while the 𝐬𝐬1(n)  and 𝐬𝐬2(n)  are 2L dimensional 
vectors, respectively. In this manner for each node we 
have 2 SIMO systems and 2 vector equations. 

2.2 Channel model in SIMO system 

In a SIMO system, According to [22] as presented in Fig. 
2 by ignoring noise, we have: 
xi ∗ hj=s ∗ hi ∗ hj=xj ∗ hi , i,j=1,2,…,N, i≠j                (15)                                  
𝐱𝐱iT(n)𝐡𝐡j = 𝐱𝐱jT(n)𝐡𝐡i    i, j = 1,2, … , N, i ≠ j               (16)                             
Multiplying (16) by xi(n) and taking expectation yields, 
we have 
𝐑𝐑𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖𝐡𝐡j = 𝐑𝐑𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗  𝐡𝐡i ,    i, j = 1,2, … , N, i ≠ j                   (17)                              
 

 

Fig.  2. Illustration of the relationship between the input s(n) and the 
observation xi(n) in a single-input multi channel FIR system 

(17) specifies N(N-1) equations. By summation of N-1 
cross relations associated with each particular channel, we 
have 
∑ 𝐑𝐑𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖  𝐡𝐡j = ∑ 𝐑𝐑𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗  𝐡𝐡i     j = 1,2, … , NN

i=1,i≠j
N
i=1,i≠j  (18) 

Therefore, we have 
∑ 𝐑𝐑𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖  𝐡𝐡j = 𝐑𝐑𝑥𝑥1𝑥𝑥𝑗𝑗  𝐡𝐡1 + ⋯+ 𝐑𝐑𝑥𝑥𝑁𝑁𝑥𝑥𝑗𝑗  𝐡𝐡M   j =N
i=1,i≠j

⋯ , N, i ≠ j                                                                        
(19) 
In a matrix form, above equation is written as: 
              𝐔𝐔𝐔𝐔=0                                                            (20) 
Where 

𝐔𝐔 =

⎣
⎢
⎢
⎢
⎡
∑ 𝐑𝐑𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖≠1 −𝐑𝐑𝑥𝑥2𝑥𝑥1
−𝐑𝐑𝑥𝑥1𝑥𝑥2 ∑ 𝐑𝐑𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖≠2

… −𝐑𝐑𝑥𝑥𝑀𝑀𝑥𝑥1
… −𝐑𝐑𝑥𝑥𝑀𝑀𝑥𝑥2

⋮ ⋮
−𝐑𝐑𝑥𝑥1𝑥𝑥𝑀𝑀 −𝐑𝐑𝑥𝑥2𝑥𝑥𝑀𝑀

⋱ ⋮
… ∑ 𝐑𝐑𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖≠𝑀𝑀 ⎦

⎥
⎥
⎥
⎤
      (21) 

And 

  𝐡𝐡 = [𝐡𝐡1𝑇𝑇  𝐡𝐡2𝑇𝑇   …  𝐡𝐡𝑀𝑀𝑇𝑇 ]𝑇𝑇                                                 (22) 
In actual conditions, when observation noise is present, the 
right hand side of (20) is not zero and an error vector is 
produced.  
                 𝐄𝐄 = 𝐔𝐔𝐔𝐔                                                          (23) 
𝐄𝐄 and 𝐔𝐔 matrices are exposed to white noise. A popular 
solution for this equation is total least square algorithm. In 
this algorithm, to solve (23) the new matrixes have been 
defined as follows: 
       𝐔𝐔+ = [𝐔𝐔 𝐄𝐄]                                                         (24) 
        𝐑𝐑 = 𝐔𝐔+𝑇𝑇𝐔𝐔+                                              (25) 
Then, the eigenvector of R corresponding to the smallest 
eigenvalue is calculated. The relationship between the h 
vector, answer of (23), and the eigenvector of R 
corresponding to the smallest eigenvalue, x, is written as: 
        𝐱𝐱 = � 𝐡𝐡

∗

−1�                                                            (26) 
The above algorithm is centralized since in order to 
calculate the R matrix, each node transmits the received 
signal to the central node and calculation of eigenvector of 
R has been done in this node. 
In this paper, we have introduced the consensus based 
distributed algorithm for solving (23). In the proposed 
algorithm, each node calculates eigenvector corresponding 
to the smallest eigenvalue, based on its received signal and 
this eigenvector is broadcasted to the neighbor nodes. 
Then, the local channel estimations are coupled with those 
of their neighbors by means of consensus-constraints. 

3. Proposed Blind Channel Estimation 
Algorithm 

After The Consider an ad-hoc WSN with a random and 
connected topology where set of nodes are denoted as K =
 {1, 2, … , N} . The set of neighbor nodes of node k, i.e. 
Nk are the nodes which can share data with node k. In this 
scenario, the received signal by node i is shown below. 
 
xi(n) = [xi(n)  xi(n − 1) . . .  xi(n − L + 1)]T              (27) 
In this section, by using the equations in previous parts 
which converts the MIMO system to two SIMO systems 
for each of the nodes as shown in Fig. 3, we have: 
𝐲𝐲i,𝐬𝐬𝟏𝟏(n) = 𝐱𝐱i(n)𝐡𝐡𝑗𝑗2(𝑛𝑛) − 𝐱𝐱j(n)𝐡𝐡𝑖𝑖2(𝑛𝑛) = [𝐡𝐡j2(n)𝐇𝐇i1 −
𝐡𝐡i2(n)𝐇𝐇j1]𝐬𝐬1(n) + [𝐡𝐡𝑗𝑗2𝐛𝐛i(n) − 𝐡𝐡𝑖𝑖2(𝑛𝑛)𝐛𝐛j(n)] (28) And 
𝐲𝐲i,𝐬𝐬𝟐𝟐(n) = 𝐱𝐱i(n)𝐡𝐡𝑗𝑗1(𝑛𝑛) − 𝐱𝐱j(n)𝐡𝐡𝑖𝑖1(𝑛𝑛) = [𝐡𝐡j1(n)𝐇𝐇i2 −
𝐡𝐡i1(n)𝐇𝐇j2]𝐬𝐬2(n) + [𝐡𝐡𝑗𝑗1𝐛𝐛i(n) − 𝐡𝐡𝑖𝑖1(𝑛𝑛)𝐛𝐛j(n)] (29)  
By using (21) for each signal source, we have two 
equations in the form of 𝐔𝐔𝐬𝐬𝐢𝐢𝐡𝐡𝐬𝐬𝐢𝐢=0 where 𝐔𝐔𝐬𝐬𝐢𝐢  is a square 
matrix and its dimensions are equal to the number of 
sensors and 𝐡𝐡𝐬𝐬𝐢𝐢  is a matrix of N×2L-1 dimension. Now, by 
writing first L columns of matrix 𝐡𝐡𝐬𝐬𝐢𝐢  under the previous 
one, matrix 𝐡𝐡𝐬𝐬𝐢𝐢  is converted to an NL dimensional vector. 
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We must convert matrix 𝐔𝐔𝐬𝐬𝐢𝐢  to the NL dimension square 
matrix as follows. 

𝐔𝐔new,𝐬𝐬𝐢𝐢 =

⎣
⎢
⎢
⎡
𝐔𝐔𝐬𝐬𝐢𝐢 0
0 𝐔𝐔𝐬𝐬𝐢𝐢

… 0
… 0

⋮ ⋮
0 0

⋱ ⋮
… 𝐔𝐔𝐬𝐬𝐢𝐢⎦

⎥
⎥
⎤

,     𝑖𝑖 = 1,2                (30)  

 

Fig.  3. Converting the MIMO system to two SIMO systems 

Now, we have 2 equations similar to (23), that 𝐔𝐔new,𝐬𝐬𝟏𝟏  and 
𝐔𝐔new,𝐬𝐬𝟐𝟐  are NL dimensional square matrixes and 𝐡𝐡𝒏𝒏𝒏𝒏𝒏𝒏,𝐬𝐬𝟏𝟏 
and 𝐡𝐡𝒏𝒏𝒏𝒏𝒏𝒏,𝐬𝐬𝟐𝟐  are NL dimensional vectors. 
Where, 

⎣
⎢
⎢
⎡
𝐔𝐔𝐬𝐬𝟏𝟏 0

0 𝐔𝐔𝐬𝐬𝟏𝟏
… 0
… 0

⋮ ⋮
0 0

⋱ ⋮
… 𝐔𝐔𝐬𝐬𝟏𝟏⎦

⎥
⎥
⎤
𝐡𝐡𝒏𝒏𝒏𝒏𝒏𝒏,𝐬𝐬𝟏𝟏 = 𝟎𝟎                         (31)                

 

⎣
⎢
⎢
⎡
𝐔𝐔𝐬𝐬𝟐𝟐 0

0 𝐔𝐔𝐬𝐬𝟐𝟐
… 0
… 0

⋮ ⋮
0 0

⋱ ⋮
… 𝐔𝐔𝐬𝐬𝟐𝟐⎦

⎥
⎥
⎤
𝐡𝐡𝒏𝒏𝒏𝒏𝒏𝒏,𝐬𝐬𝟐𝟐 = 𝟎𝟎                        (32)               

By combination of two 𝐔𝐔new,𝐬𝐬𝟏𝟏  and 𝐔𝐔new,𝐬𝐬𝟐𝟐  matrixes as 
follows, we can obtain a square matrix 𝐔𝐔new  where its 
dimensions are 2NL. 

�
𝐔𝐔new,𝐬𝐬𝟏𝟏 0

0 𝐔𝐔new,𝐬𝐬𝟐𝟐
� �
𝐡𝐡𝒏𝒏𝒏𝒏𝒏𝒏,𝐬𝐬𝟏𝟏
𝐡𝐡𝒏𝒏𝒏𝒏𝒏𝒏,𝐬𝐬𝟐𝟐

� = 𝟎𝟎                              (33)                          

Where 

 𝐔𝐔new = �
𝐔𝐔new,𝐬𝐬𝟏𝟏 0

0 𝐔𝐔new,𝐬𝐬𝟐𝟐
� 

  𝐡𝐡𝒏𝒏𝒏𝒏𝒏𝒏 = �
𝐡𝐡𝒏𝒏𝒏𝒏𝒏𝒏,𝐬𝐬𝟏𝟏
𝐡𝐡𝒏𝒏𝒏𝒏𝒏𝒏,𝐬𝐬𝟐𝟐

� 

However, if there is even one loop in this network, the 
equations in (33) are self-dependent. To avoid 
dependencies between them, a tree structure is selected 
from this network and nodes only transmit data to the 
neighbor nodes which are associated to this tree structure. 
By this solution, the number of equations is decreased to 
(N-1)  × L that is less than the number of unknown 
parameters. For solving this problem, we used a virtual 
node which is located in the center of one of the signal 
source. Other filter coefficients are calculated based on 
this virtual node. In this virtual node, the channel 
coefficients between the virtual node and the signal source 

which is located in the same location is one and other 
coefficients are zero. 
For solving equation Uh=E which U and h are noisy data 
as was mentioned, we propose the distributed consensus 
based TLS algorithm, but in the proposed algorithm U is 
unknown and we must calculate it iteratively. Results are 
compared to actual values and the coefficients which are 
obtained by solving (33) with TLS algorithm. In order to 
use TLS algorithm, all nodes in this network should 
transmit their data to the central node.  
In this scenario, by allocation of primary values to 𝐡𝐡i1(n) 
and 𝐡𝐡i2(n) , we use the random values, 𝐲𝐲i,s1(n)  and 
𝐲𝐲i,s2(n) are calculated with (28) and (29) in each node. In 
each node and transmitted to the neighbors. The primary 
entries of 𝐔𝐔𝐬𝐬𝐢𝐢  in each node, for example node 1, are as 
follows: 
Us1 =

�

Ry2,s1y2,s1
+ RyN,s1yN,s1

−Ry2,s1y1,s1
0  0

 … −RyN,s1y1,s1
… 0

          ⋮                              ⋮
0                              0

⋱      ⋮
…         0        

�        

(34)                  
 
Us2 =

�

Ry2,s2y2,s2
+ RyN,s2yN,s2

−Ry2,s2y1,s2
0  0

 … −RyN,s2y1,s2
… 0

          ⋮                              ⋮
0                              0

⋱      ⋮
…         0        

�       

(35) 
In (34) and (35), we assumed that node 1 is neighbored to 
node 2 and N. However, when the network is very large, 
the benefits of the proposed algorithm are more significant. 
In this algorithm, each node broadcasts the eigenvector 
corresponding to the smallest eigenvalue to the neighbor 
nodes. The relationship between eigenvalues and 
eigenvectors of 𝐑𝐑𝒌𝒌 = 𝐔𝐔+𝑇𝑇𝐔𝐔+ is as follows: 
𝐑𝐑𝑘𝑘 × 𝑽𝑽 = 𝑽𝑽 × 𝑫𝑫                                                          (36) 
Where the columns of V are the eigenvectors of U and D 
is a diagonal matrix with U's eigenvalues on the main 
diagonal. So, we have:  
𝐑𝐑𝑘𝑘 = 𝑽𝑽 × 𝑫𝑫 × 𝑽𝑽−1                                                      (37) 
We can observe that 𝐑𝐑𝑘𝑘 ≅ 𝑽𝑽 × 𝑽𝑽−1 , but we don’t have 
access to all of eigenvectors. We have received the 
eigenvectors corresponding to the smallest eigenvalues 
from the neighbor nodes. Thus, we must update 𝐑𝐑𝑘𝑘  by 
using that eigenvectors. 
 
   𝐑𝐑�𝐤𝐤

(𝐢𝐢) = 𝐑𝐑𝐤𝐤 + 𝐐𝐐𝐤𝐤
(𝐢𝐢)                                                     (38) 

Where,  
𝐐𝐐k

(i+1) = 𝐐𝐐k
(i) + µi �|Nk|𝐱𝐱𝑘𝑘

(𝑖𝑖)𝐱𝐱𝑘𝑘
(𝑖𝑖)𝑇𝑇 ∑ 𝐱𝐱𝑚𝑚

(𝑖𝑖)𝐱𝐱𝑚𝑚
(𝑖𝑖)𝑇𝑇

mϵNk �   (39) 
𝐗𝐗𝑘𝑘 is the eigenvector corresponding to smallest eigenvalue 
in node k and µi is the positive step-size. The main idea in 
(39) is to optimize and update 𝐐𝐐𝑘𝑘  until a consensus is 
reached among all neighbor nodes. If node q is neighbor of 
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node k, the constraint that 𝐗𝐗𝑘𝑘 = 𝐗𝐗𝑚𝑚  is denoted as 
consensus constraint [23]. 
The aim is to compute 𝐡𝐡 in a distributed manner. 
The solution of this problem according to (26) is: 
 
𝐡̂𝐡 = − 1

𝐧𝐧N 
T 𝐱𝐱∗

[𝐈𝐈N+1 |𝟎𝟎N+1]𝐱𝐱∗                                         (40) 

Where, 𝐧𝐧N  is an N-dimensional vector which its last entry 
is 1 and all others are zero, and it is used to normalize the 
last entry of X to one. 𝟎𝟎N+1 is an N+1 dimensional vector 
with all zero entries and 𝐈𝐈N+1 denotes the identity matrix. 
Assume an N × N  matrix 𝐑𝐑k = 𝐔𝐔k+T 𝐔𝐔k+  with 𝐔𝐔k+ =
 [𝐔𝐔k|𝐝𝐝k] and 𝐱𝐱∗ be the eigenvector related to the smallest 
eigenvalue of  𝐑𝐑 . The consensus based distributed 
algorithm for dereverberation is described in Table 1.  
According to the proposed algorithm, in each iteration by 
selecting appropriate µi,   𝐐𝐐k

(i)  is calculated and  𝐡̂𝐡new is 
derived from it. 

Table 1: proposed algorithm for dereverberation 
proposed algorithm for dereverberation  
1) ∀k∈K : Initialize Qk

(0)=0D×D,  with 
D=(N+1)L+1   

2) We defined a virtual node which is located in 
the center of one of the signal source. For 
example node number one. In this virtual 
node, the channel coefficients between the 
virtual node and the source number 1 are one 
and other coefficients are zero.  

3) Allocate primary random value to 𝐡𝐡i1(n) and 
𝐡𝐡i2(n). 

4) Each node receives signal only from neighbor 
nodes and according to the tree structures, 
𝐲𝐲i,s1(n) and 𝐲𝐲i,s2(n) are calculated in each 
node. Received signal in virtual node is equals 
to 𝐬𝐬1(n) and calculated according to 𝐲𝐲i,s1(n) 
and the values of 𝐡𝐡i1(n) and 𝐡𝐡i2(n). 

5) Initialize 𝐔𝐔s1   and 𝐔𝐔s2  according to (34) and 
(35), where, the entries in kth row could be 
opposite to zero and the other entries are zero.  

6) According to 𝐔𝐔s1   and 𝐔𝐔s2 ,  𝐔𝐔new  is 
calculated in each node.  

7) Each node k∈K  computes the 𝐑𝐑�k
(0)according 

to (25) 
8) i ← 0 
9) Each node k∈K  computes the eigenvector 

𝐱𝐱k
(i) corresponding to the smallest eigenvalue 

of 𝐑𝐑�k
(i) defined by  R�k

(i)=Rk+Qk
(i)  

 Where 𝐱𝐱k
(i)is scaled such that �xk

(i)�=1. 
10) Each node k∈K  transmit xk

(i) to the nodes in 
Nk 

11) Each node k∈K   updates 
Qk

(i+1)=Qk
(i)+μi �|Nk|xk

(i)xk
(i)T

-∑ xm
(i)xm

(i)T
q∈Nk �

 µi>0. 
12) Compute  the local TLS solution 𝐡̂𝐡=-

1
nN 

T x* [IN+1 |0N+1]x* 

13) i ← i + 1 
14) Return to step 8 until i=threshold 
15) From 𝐡̂𝐡new  the channel coefficients are 

computed. 
16) Return to step 4 until the difference between 

new channel coefficients and the old one 
smaller than desired threshold. 

4. Convergence of the Proposed Algorithm 

   Where Convergence of the network is accessed when 
Qk

(i+1)≅ Qk
(i). Thus, in this situation we have: 

|Nk|xk
(i)xk

(i)T
-∑ xq

(i)xq
(i)T

qϵNk < 𝜀𝜀        (41) 

∑ ∑ ||xk
(i)xk

(i)T
−𝑞𝑞𝑞𝑞𝑁𝑁𝑘𝑘𝑘𝑘∈𝐽𝐽 xq

(i)xq
(i)T

||2 < 𝜀𝜀    (42) 

�xk
(i)xk

(i)T
− 𝐱𝐱𝑞𝑞

(𝑖𝑖)𝐱𝐱𝑞𝑞
(𝑖𝑖)𝑇𝑇�

2
= 𝑡𝑡𝑡𝑡 ��xk

(i)xk
(i)T

− 𝐱𝐱𝑞𝑞
(𝑖𝑖)𝐱𝐱𝑞𝑞

(𝑖𝑖)𝑇𝑇�
2
� 

= 𝑡𝑡𝑡𝑡 �(xk
(i)xk

(i)T
)2� + 𝑡𝑡𝑡𝑡 �(xk

(i)xk
(i)T

)2� − 2𝑡𝑡𝑡𝑡 �xk
(i)T

xk
(i) ×

xk
(i)xk

(i)T
�=2-2(xk

(i)T
xk

(i))2                        (43) 
From the (23), maximum bound for the stepsize is: 

0 <μ< 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚�∑ 𝑹𝑹𝑘𝑘𝑘𝑘∈𝐽𝐽 �−∑ 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘𝑘𝑘 (R�k
(i))

|𝐿𝐿|−∑ ∑ (xk
(i)T

xk
(i))2𝑞𝑞𝑞𝑞𝑁𝑁𝑘𝑘𝑘𝑘∈𝐽𝐽

          (44)  

In (44), λmin(𝐐𝐐) denotes the smallest eigenvalue of Q and 
|ℒ| is the number of links. The numerator of (43) is equal 
to the difference between smallest eigenvalue of current 
value and its optimal one, which approaches to zero if 
current value gets closer to the optimal value. The 
dominator of (43) is the summation of squared consensus 
error over all links of the network. It should be mentioned 
that dominator depends on the number of links |ℒ|. i.e., 
networks that have large number of links require smaller 𝜇𝜇. 
Not only, does not this necessarily result in slower 
convergence, but also it will be shown that in a strongly 
connected network, information diffuses much faster over 
the network. It is observed that when |𝐽𝐽|  increases, 
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(∑ 𝐑𝐑𝑘𝑘 )𝑘𝑘∈𝐽𝐽  is increased, which means the numerator 
depends on the number of nodes. 

5. Simulation results 

In this section, we prove the convergence of consensus 
based distributed algorithm estimation to the desired 
channel impulse response of an identifiable multi-channel 
system by simulation results. To demonstrate the general 
behavior, we averaged the results over multiple Monte-
Carlo (MC) runs. In each MC run, the following process is 
used to generate the network and the sensor observation: 
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Construct an NL × 2 -dimensional vector h where entries 
are drawn from a zero-mean normal distribution with unit   
variance. 
Create a connected network with N nodes  
For each node k: 
Construct a 2L-dimensional vector input data, s, where 
entries are calculated from a zero mean normal distribution 
with unit variance. 
Compute 𝐇𝐇i.  
Compute the received signal in each node from  𝐱𝐱i(n) =
𝐇𝐇i1. 𝐬𝐬𝟏𝟏(n) + 𝐇𝐇i2. 𝐬𝐬𝟐𝟐(n) + 𝐛𝐛i(n) 
Assign initial value to 𝐡𝐡j2(n)  and 𝐡𝐡i2(n) , based on the 
selected tree structure and compute 𝐲𝐲i(n) = 𝐱𝐱i(n)hj2(n) −
𝐱𝐱j(n)hi2(n). 
Construct an 2(N+1)L×2(N+1)L data matrix Uk  
Compute Ek=Ukh=0. 
Add zero-mean white Gaussian noise with a standard 
deviation of 0.5 to the entries in Uk and Ek. 
   In each experiment, we chose L=2 and N=10, so D=23 
and we run this algorithm for 400 iterations.  
   To evaluate the convergence of the proposed algorithm, 
the error between the true solution and the local estimation, 
averaged over M nodes in the network is used. 
   To stimulate the use of proposed algorithm, results of 
this technique is compared to exact value one.  
Figure 4 shows exact entries of 8-dimensional vector h, for 
4 nodes, and the proposed algorithm after 400 iterations, 
averaged over 100 MC runs, where the step size is fixed to 
μ=0.1. 
This figure illustrates that the proposed distributed 
algorithm is very close to the exact values. 

 

Fig.  4. Comparison between blind channel estimation by proposed 
distributed algorithm with the exact value averaged over 100 Monte-

Carlo runs 

5.1 Influence of step size μ 

To demonstrate convergence properties of the proposed 
distributed algorithm, we used different values for fixed 
step size, and compared the results. Results are shown in 
Figure 5. This figure shows that µ = 0.01  gives better 
answer. Practically, the convergence of the proposed 

distributed algorithm strongly depends on the step size. For 
the step size larger than 0.5, convergence becomes a vague. 

5.2 Effect of connectivity in network 
In this section, the influence of the connectivity of the 

network is shown in the network with N=10 nodes. Results 
are shown for three networks: a network with a ring 
topology in which every node has two neighbors, a fully 
connected network in which every node has (N-1) 
neighbors and a network in between them in which every 
node neighbors with N/2 nodes. In this experiment, we 
used a fixed step size which depends on the number of 
links, i.e.,µ = 10/|ℒ|. Results are shown in Figure 6. It is 
observed that convergence speed increases by addition of 
the number of links, even though a smaller µ  is used. 
Figure 6 shows that increasing the convergence speed 
affects less for larger |ℒ|.   

5.3  Influence of network size  
In this part, network size is increased by addition of 

nodes. The average links per node is fixed to 3. We 
simulated 50 MC runs for a network with 4,10 and 15 
nodes and with the step size fixed to µ = 0.01. Also, length 
of the channel impulse response of each node is 3. Results 
are shown in Figure 7. It is observed that size of the 
network has no serious effect on the convergence speed. 

 

Fig.  5 Convergence properties of the proposed distributed algorithm for 
different step sizes averaged over 100 Monte-Carlo runs. 

 

Fig.  6. Convergence properties of the proposed distributed algorithm for 
different levels of connectivity averaged over 200 Monte-Carlo runs. 
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Fig.  7. Convergence properties of the proposed distributed algorithm for 
different size of the network averaged over 50 Monte-Carlo runs. 

5.4   Random graphs 

In this section, we show robustness of the proposed 
distributed algorithm against random link failures. In each 
iteration, the probability of failure of each link equals to 
p%, where p ∈ {0, 50, 90}. We simulated 100 MC runs for 
a fixed step size µ = 0.01. From Figure 8, it is observed 
that the proposed distributed algorithm is robust against 
random link failure. 

 

Fig.  8  Convergence properties of the proposed distributed algorithm for 
random network graph with different link failure probabilities, averaged 

over 100 Monte-Carlo runs. 

6. Conclusions 

The distributed blind channel estimation problem in ad-
hoc wireless sensor networks is studied in this paper. The 
important challenge in this application is convolutive 
mixtures in a reverberant acoustic environment. In this 
paper, a MIMO system that has 2 input signals is 
converted into 2 SIMO systems and their spatial 
interference is separated. A tree structure is chosen from 
fully connected network and one virtual node is added to 
this network at signal source 1. The equations of 2 SIMO 
systems are merged and a linear equation is obtained from 
them. This equation is solved by consensus based 
distributed algorithm and channel coefficients are obtained 
iteratively. The proposed algorithm is totally distributed 

and flexible, i.e., the network topology is unknown, and 
nodes only share data with their direct neighbors through 
local broadcasts. Simulation results show that the proposed 
distributed algorithm is flexible and robust to sensor 
failures. Because of these features there is no single point 
of failure. Provided MC simulation results illustrate the 
effectiveness of the algorithm. 
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