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Summary 
Software Defined Network (SDN) has shown substantial benefits 
over the legacy network and fueled the implementation of a 
variety of innovative and intelligent applications on SDN 
Controller. However, these applications put the performance of 
SDN controller under question; since most of these applications 
excessively demand computing resources of SDN controller 
resulting in increased flow processing delay, and consequently 
performance of the controller reduces. Accordingly, in this paper, 
we investigate the potential of Graphics Processing Unit (GPU) 
to address this performance issue by accelerating the 
computationally/memory intensive tasks of SDN applications on 
GPU. More specifically, in this paper, we are considering SDN 
based traffic load balancing application in a large scale Data 
Center Network (DCN) as a case study to see how GPU based 
approach can improve performance of SDN controller. We 
offload computations of traffic load balancing application on 
GPU and analyze the performance gains in terms of throughput, 
latency and speedup. The preliminary performance evaluation 
results show that GPU has an impressive capability to improve 
performance of SDN controller. 
Key words: 
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1. Introduction 

In legacy networking paradigm, data plane and control 
plane are tightly coupled and physically located in packet 
forwarding devices such as routers and switches, posing 
many challenges regarding utilization, reliability, security, 
cost etc, of the networks [1]. To address these challenges, 
a novel paradigm “Software Defined Network” (SDN) has 
emerged in recent years [2]. In this paradigm, the entire 
control plane functionalities are pulled out from 
forwarding devices and shifted to a centralized machine 
called SDN controller. SDN controller maintains global 
view of entire network and provides its abstract view to 
the applications running on the controller. Furthermore, 
SDN controller facilitates programmability for forwarding 
devices through an open standard interface– Openflow [2]. 
The vision of unified control plane with global network 
view and network programmability provide an opportunity 
to gain fine-grained centralized control and visibility over 
both the traffic flows and network resources. 
Consequently, SDN has gained a considerable attention 

from both the research community and industry [3]; that 
have been spending earth-shattering efforts for the 
development of sophisticated and intelligent applications 
around SDN. Examples are QoS Aware routing [4-7], 
Traffic Load Balancing [8-21], Attacks Detection and 
Mitigation [22, 23] and many others [3]. The results 
presented in the above referred papers have shown that 
SDN has a great potential to improve security, reliability, 
energy efficiency, resource utilization etc, of the networks.  
However, most of these applications employ compute or 
memory intensive algorithms which overload the 
controller and drag down its performance. For instance, 
SDN based traffic load balancing application, which is one 
of the main SDN applications gaining considerable 
attention in challenging environments such as Data Center 
Networks (DCNs), typically employs algorithms which 
consider current status of the network and regulate traffic 
flows to optimize certain network performance criterion 
such as maximum link utilization, power consumption, 
delay, congestion etc [8-12]. These algorithms excessively 
demand computing resources and create sever processing 
bottlenecks resulting in lessening the performance of 
controller. This, in turn, raises an urgent call for high 
processing power at SDN controller.  
Contemporary approaches— coarse-grained centralized 
flow control [8, 11, 12, 21, 24], multi-core controllers [25-
29] and distributed controllers [30-33], do not address this 
issue adequately. One of the promising directions in this 
regard is to use GPU as a co-processor in SDN controller 
to accelerate execution of the compute/memory intensive 
algorithms of SDN applications, and thus improve 
performance of the controller. The motivation comes from 
the fact that GPUs have recently evolved into  massively 
multithreaded parallel architectures which have an 
immense number of high clock-rate cores along with 
tremendous memory resources [34]. In addition, GPUs are 
becoming progressively more programmable [35] and 
showing impressive speedups for a variety of non-visual, 
General Purpose computations known as GPGPU 
Computing [36, 37].  
Considering the growing demand of high processing 
power at SDN controller and inspired by the momentous 
computing power of GPUs, we study the use of GPU as an 
alternative computing resource in SDN controller. For this 
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purpose, we have considered SDN based traffic load 
balancing application, hereafter Adaptive flow scheduling 
application, as a case study and elaborated the potential of 
GPU to accelerate the adaptive flow scheduling process. 
Note that this paper is not about adaptive flow scheduling, 
but the novelty of this paper is on the concept of 
exploitation of GPU computing power to accelerate flow 
processing at SDN controller and consequently, to 
improve controller’s performance. We have designed a 
GPU based adaptive flow scheduling application by 
parallelization of the main tasks of flow scheduling 
process and implement it on a machine equipped with 
NIDIA’s GPU. We have compared the results of our GPU 
based adaptive flow scheduling application (named GPU 
based Controller) with that of the CPU based version 
(named CPU based controller). Our results showed that 
GPU based controller outperforms CPU based controller. 
GPU based controller showed five to ten times reduction 
in execution time of adaptive flow scheduling process on 
large scale DCNs. The results validate the efficacy of the 
use of GPU to address the performance challenges of SDN 
controller.  
In the rest of this paper, we explain background 
information and related work, our strategies to parallelize 
adaptive flow scheduling process at SDN controller, 
performance evaluation methodology and results. Lastly 
we conclude the paper along with future directions. 

2. Background and Related Work 

In this section, we first demonstrate the performance 
challenges of an SDN controller in the context of adaptive 
flow scheduling process by providing a high-level 
overview of adaptive flow scheduling application. We 
then describe shortcoming of current approaches proposed 
to address these challenges and discuss about GPGPU 
computing briefly.  

2.1 Traffic Load Balancing using SDN (Adaptive 
Flow Scheduling) 

Traffic load balancing plays an indispensable role to 
optimize performance of an operational network at both 
the traffic and resource level. Recently, for that reason, a 
flurry of SDN based traffic load balancing applications 
(Adaptive flow scheduling) have been developed which 
optimize performance of network from different aspects 
[6-19] such as minimization of maximum link utilization, 
minimization of power consumption etc. For our 
discussion, we use the most popular optimization goal, 
minimization of maximum link utilization [9-11, 15, 17, 
20, 21]. In this context, SDN controller periodically 
regulate traffic load on network links by dispersing traffic 
flows away from vastly utilized links towards less utilized 

links to accommodate demands of the traffic flows and  
minimize the maximum link utilization in the network. 
Demand of a flow is the bandwidth required by the flow to 
carry its data. 
Typically, an SDN controller that performs adaptive flow 
scheduling comprises of three applications — Topology, 
Monitoring and Adaptive flow scheduling. Topology 
application periodically sends queries to network switches 
to maintain network topology graph up-to-date. 
Monitoring application periodically gathers link counters 
from network switches and then consolidates the received 
counters to maintain up-to-date Residual Capacities (RCs) 
on all links in the network.  
Adaptive flow scheduling application, which is the focus 
of this paper, optimizes traffic load in the network after a 
specific time period (termed as flow scheduling period). In 
every flow scheduling period, adaptive flow scheduling 
application takes up-to-date topology graph from topology 
application, most recent RCs on network links from 
monitoring application and demands of the flows to be 
scheduled ( Scheduling flows) which are communicated 
by the flow’s sources or some other servers in the network 
[9, 11], and then computes an optimal path for each of the 
scheduling flows.  An optimal path of a scheduling flow is 
the path which can carry demand of the flow while not 
exceeding capacity of the links along the path and 
minimizes the maximum link utilization. In general, 
computing optimal paths of scheduling flows is proven to 
be NP-complete in a large scale network [17], leading to 
the proposal of many heuristics [9-13, 15, 17, 18, 20, 21]. 
Among the proposed heuristics, Worst-Fit heuristic [10, 
17, 20] is widely used as it distributes traffic load more 
evenly in the network than the other heuristics such as 
First-Fit and Best-Fit [17]. In Worst-Fit heuristic approach, 
for each of the flows to be scheduled within a scheduling 
period, adaptive flow scheduling application first takes its 
set of equal hop paths, which are typically pre-computed, 
and then computes RCs on each path in the path set. RC of 
a path is the minimum of RCs on all links along the path. 
After that, flow scheduling application selects a path 
which has maximum RC and fulfills the flow’s demand as 
its optimal path called Worst Fit Path. Finally, demand of 
the scheduling flow is subtracted from RCs of all links 
along the Worst Fit Path and flow entries are inserted in 
all switches along the Worst Fit Path. Algorithm 1 
describes adaptive flow scheduling process with Worst-Fit 
heuristic approach whereas table 1summarizes the 
symbols used in algorithm 1.  

Table 1: Symbols 
Symbols Meaning 

Ѵ Set of Switches in the Network 
Ł Set of Links in the Network 
RCℓ Residual Capacity on the Link ℓ 
RCƥ Residual Capacity on the path ƥ 
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MaxRCpath Path which has Maximum RC 
ƒ.src Source switch of the flow ƒ  
ƒ.dst Destination switch of the flow ƒ 
fd Demand of the flow ƒ 
Ɠ (Ѵ, Ł) Network Topology Graph. 
Φƒ = {ƥ1, ƥ2,…, ƥP} Set of paths of the flow ƒ 
φƥ = { ℓ1, ℓ2,…, ℓQ }  Set of links along the path ƥ 
WFPath Worst Fit Path. A MaxRCPath which can carry 

flow demand 
Ƒ={ ƒ1, ƒ2,….., ƒN } Set of Flows to be scheduled (referred as 

scheduling flows) 
 

 

Algorithm 1: Adaptive Flow Scheduling process with Worst-Fit heuristic 
Approach 

2.2 Controller’s Performance challenges 

In algorithm 1, the worst case complexity of scheduling a 
flow on its WFpath is O (Q*P+P). Since SDN controller 
has to schedule N flows, hence the overall time 
complexity of adaptive flow scheduling process within a 
scheduling period is O(N(Q*P+P)) indicating that SDN 
based adaptive flow scheduling becomes problematic in 
large scale dynamic networks where each flow has vast 
number of paths and SDN controller is supposed to 
schedule large number of flows in the network. One 
example of such networks is Data Center Network (DCN) 
whose numbers and sizes are growing exponentially[38]. 
For example, DCNs of Yahoo, Microsoft, and Google host 
hundreds of thousands of servers [39-41] in their DCNs. 
In DCN, a large number of servers are densely packed in a 
well-defined hierarchy to provide an ample number of 
paths between any pair of servers in the network [42]. 
Additionally, inter-flow arrival time in DCNs varies from 
1 flow per 15 ms and 100 flows per ms at servers and Top-
of-Rack switches, respectively. More importantly, DCN 
traffic is bursty in nature and follows a heavy-tailed 
distribution [43, 44] requiring frequent execution of flow 
scheduling process at SDN controller. These facts indicate 
that adaptive flow scheduling process in such networks 
consumes a great deal of computing resources of SDN 

controller resulting in increased processing delay and 
creates a computational bottleneck at the controller. 

2.3 Related Work 

Current approaches proposed in the literature to address 
the controller’s performance challenges can be classified 
into three categories. 

Coarse-grained centralized flow control [8,11, 12, 21, 24]: 
These approaches reduce processing load of SDN 
controller by scheduling only some specific flows such as 
elephant flows (whose size exceeds some pre-defined 
threshold value (for example 100 MB [8]). Pre-defined 
threshold value is a critical parameter in these approaches. 
When threshold value is kept large, number of scheduling 
flows reduces and consequently, the processing load of 
SDN controller reduces. However, network performance 
gain also reduces as reported in [45]. On the other hand, 
small threshold value puts the performance of controller 
under question, since the controller has to process a large 
number of flows. 
 
Multi-core Controller approaches [25-29]: 
These approaches use multi-core parallel architecture to 
increase the processing power of SDN controller. NOX-
MT [28], Beacon [26], Maestro[27] and Macnett[29], are 
some examples of state of the art multi-core controllers. 
The reported performance of these controllers are  high 
but simple L2 learning switch application is used for the 
performance evaluation of these controllers which is itself 
a question mark on recording performance as the CPU 
cores or memory bandwidth becomes bottleneck with 
compute or memory intensive algorithms as reported in 
[37]. Besides this, locking mechanism used for exclusive 
write in shared data structure reduces the performance of  
multi-core controller as the number of cores and/or writing 
workload of the cores increases [28, 29]. 
 
Distributed controller Approaches [30-33]: 
In these approaches, multiple controllers are distributed 
across the network, each managing the flows initiated 
from a subset of switches, while global view of the entire 
network is kept consistent and synchronized across all the 
controllers by means of some distributed file systems. 
However, keeping the global network view consistent and 
synchronized causes high communication overheads and 
add additional latency in  processing of the flows [46]. 
From the above discussion, we can conclude that current 
approaches either lose network performance gains and/or 
add additional overheads (e.g. communication, contention, 
synchronization etc), which itself can be a performance 
bottleneck as the number of cores in multi-core controller 
and/or number of distributed controllers increases. Thus, 
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there is a need of an alternative computing resource at 
SDN controller for the rapid processing of traffic flows. 
As GPUs have become powerful computing resource and 
are adopted increasingly for General-Purpose 
computations (GPGPU computing) [34-37] so they can be 
good candidates for this purpose. In next subsection, we 
briefly shed light on the hardware and software aspects of 
GPGPU computing considering the NVIDIA’s GPUs.  

2.4 GPGPU computing 

Born as Graphics Processors, recently GPUs have evolved 
into massively multithreaded many-core architecture. 
Today’s GPUs are comprised of hundreds or thousands of 
Streaming Processors (SPs) organized in a number of 
Streaming Multiprocessor (SMs). In addition, GPU have 
several types of off chip and on chip memories (e.g. global 
memory, constant memory, shared memory, registers) 
which differ with each other in terms of size, access 
latency, access type and scope [34].  
GPUs are typically connected to the host by PCI Express 
bus (PCIe) and works as a co-processor or accelerator of 
the CPU. CUDA (Compute Unified Device Architecture) 
[35] is a parallel programming framework resealed by 
NVIDIA  to simplify the use of GPU as an accelerator and 
to offload General Purpose computations on their GPUs. 
Applications developed in CUDA are comprised of at least 
one kernel function which defines the segment of CUDA 
code to be executed on GPU by a large number of threads. 
These threads are organized in 1D, 2D or 3D arrays of 
threads called thread blocks. Thread blocks are organized 
into 1D or 2D array of blocks called grid. To identify a 
thread within the grid, CUDA assigns a unique Id to each 
thread of a thread block in the form of three dimensional 
coordinates— (threadIdx.x, threadIdx.y, threadIdx.z), and 
assigns a unique two dimensional Id— (blockIdx.x, 
blockIdx.y) to each thread block in the grid. Number of 
threads in a block and number of thread blocks in a grid 
are defined when kernel is invoked. 
At the hardware level, thread blocks are assigned to SMs 
which employ SIMT (Single Instruction Multiple Thread) 
execution model in which a group of coordinated threads 
called warp execute the same instruction in parallel to 
process different data (data level parallelism). If the 
instruction of any warp requires excessive cycles to 
complete, the SMs suspended its execution and select 
another active warp to execute its instructions.  

3. Methodology  

In this section, we explain our methodology used to 
improve the performance of SDN controller using GPU in 
the context of adaptive flow scheduling application 
described in section 2.1. We first describe Fat-tree DCN 

architecture to provide a foundation for latter discussion 
and then explain the data structure and parallelization 
strategies we have used to design the GPU based adaptive 
flow scheduling application. Finally, we explain workflow 
of flow scheduling process of GPU based adaptive flow 
scheduling application.  

3.1 Fat-tree Data Center Network Architecture 

Fat-tree DCN architecture is a prevailing architecture used 
to build a cost effective large scale DCN. An m-ary Fat-
tree [42] is a multi-rooted tree like topology comprised of 
5m2/4 identical switches, each of which has m numbers of 
bidirectional ports. These switches are structured into 
three tiers i.e. Core Tier, Aggregate Tier and Edge Tier as 
illustrated in Fig 1. The Core Tier is in the root of the tree 
and comprised of  m2/4 switches called Core switches. 
The Aggregate Tier is in the middle of the tree and 
comprised of m2/2 switches called Aggregator switches. 
The Edge tier is at the leaves of the tree and comprised of 
m2/2 switches called Edge switches. 
Edge and Aggregator switches are further organized into 
m Pods, each containing m/2 number of Edge switches as 
well as m/2 number of Aggregator switches. Each Edge 
switch in a Pod is connected to m/2 Servers through its 
m/2 ports and the remaining m/2 ports are connected to 
m/2 Aggregator switches in the Pod. Each Core switch has 
one port connected to one of the m Pods. The ith port of 
any Core switch is connected to Pod i such that 
Aggregator switches of each Pod are connected to Core 
switches on m/2 strides. There are m2/4 equal hop paths 
between any two servers in m-ary Fat-tree. Each of the 
paths between two servers belonging to two different Pods, 
called inter-Pod path, passes through a Core switch. 
Architecture of a 4-ary Fat-tree DCN is shown in Fig 1. 
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Fig 1: 4-ary Fat-Tree DCN Architecture 
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3.2 GPU based Adaptive Flow Scheduling 
Application 

3.2.1 Data Structure 

Let all Core switches, Pod, Edge and Aggregator switches 
of each Pod, are indexed with non-negative integers from 
left to right as shown in Fig 1. Core switches are indexed 
from 0 to  m2/4 – 1 and Pods are indexed from 0 to m. 
Both of the Edge switches and Aggregator switches of a 
Pod are indexed from 0 to m/2 - 1. Let the scheduling 
flows are also indexed from 0 to N and each flow f is 
identified by its source Edge switch srcE, source Pod srcP, 
destination Edge switch dstE, destination Pod dstP. We 
also index all the inter-Pod paths of a scheduling flow 
from 0 to m2/4 - 1 such that the ith path of a flow passes 
through ith Core switch. 
Based on the above indexing scheme, we used four 3D 
matrices— ULEA, ULAC, DLAC, DLEA, to stores RCs on the 
links in m-ary Fat-tree topology. We referred these 
matrices as Link RC Matrices. In addition, we also used 
three vectors— VƑd, VWFpathIds, VPRC   and a 2D matrix— 
MƑA to store the data of the scheduling flows. Definition 
and description of used matrices & vectors are 
summarized in table 2. 

Table 2: Notations and Data Structures 
Symbols Explanation 
m Number of ports in a switch 
srcE source Edge switch 
srcP source Pod 
dstE destination Edge switch 
dstP destination Pod 
fd demand of the flow f 
VƑd [f ]1 x N Flow demand vector. VƑd [f ] stores  

demand of the flow f. 
VWFpathIds [f ] 1 x N Worst Fit Path Ids Vector. VWFpathIds[f] 

stores Worst Fit Path Id  of the flow f  
VPRC[i ] 1 x m2

/4
 Path Residual Capacity Vector. VPRC[i] 

stores RC of i th path.  
MƑA[i][j]N x 4 Flow Address Matrix. MfA[i][0], 

MfA[i][1], MfA[i][2], MfA[i][3] store 
srcE, srcP, dstE, dstP of i th flow. 

ULEA[k][i][j] m x m/2 x m/2 store RC of the UpLink connecting 
Edge switch i with Aggregator switch j 
in  Pod k. 

ULAC[k][i][j] m x m/2 x 

m/2 
store RC of the UpLink connecting 
Aggregator switch i of Pod k with Core 
switch i * m/2 + j  

 DLAC[k][i][j]m x m/2 x 

m/2 
store RC of the DownLink connecting 
Aggregator switch i of Pod k with Core 
switch i  * m/2 + j. 

 DLEA[k][i][j]m x m/2 x m/2 store RC of the DownLink connecting 
Edge switch i with Aggregator switch j 
in Pod k. 

 3.2.2 Parallelization Strategies  

GPU application encompasses multiple segments that are 
executed on either the CPU or the GPU. All segments that 

exhibit little or no data parallelism are executed on the 
CPU and if there is much data level parallelism in the 
segments, they are parallelized and executed on GPU as a 
kernel functions. Scheduling of each flow f described in 
algorithm 1(section 2.1) can be divided into two segments. 
The first segment is composed of line 3-5 where RC on 
each path of a scheduling flow is computed, we termed 
this segment as ComputePRC task. While the second 
segment is line 6-10 where Worst Fit Path (WFpath) of a 
scheduling flow is selected and links along the path are 
updated. We termed this segment as WFPathSelection task. 
Both of these tasks are analyzed in next subsections to 
achieve data parallelism in the tasks. 

3.2.2.1 Parallelization of ComputePRC task 

As stated earlier, there are m2/4 paths between any two 
servers in m-ary Fat-tree DCN. This implies that the 
sequential process of computing RCs of all paths of a 
scheduling flow in m-ary Fat-tree involves m2/4 iterations. 
These iterations are independent of each other’s as the 
computation of a path RC in algorithm 1 (line- 4) does not 
involve RC of any other path. So these iterations exhibit 
high level of data parallelism, which makes ComputePRC 
task a good candidate to be implemented on GPU. RCs of 
all paths of a scheduling flow can be computed in parallel 
by executing the ComputePRC task with m2/4 threads and 
assigning computation of RC of a path to one of the m2/4 
threads. The simplified version of ComputePRC kernel is 
explained in Fig 2. 

Input: ULEA, ULAC, DLAC, DLEA, MƑA , m, f 
Output: VPRC, 
     // Id of the path to be processed  
1:  ƥ  threadIdx.x + blockIdx.x * blockDim.x  
     // Id of Aggregator switch through which the  path “ƥ” 
passes 
2:  x  ƥ div (m/2)  
     //Column index of the ULAC ,  DLAC  
3:  y  ƥ mod (m/2)  
     // source Edge switch & source Pod of the  flow f 
4: srcE MƑA [ f  * 4]; srcP  MƑA [f  * 4 + 1]; 
     // destination Edge Switch & destination Pod of  the flow 
f 
5: dstE MƑA [ f  * 4 + 2]; dstP  MƑA [f  * 4 + 3]; 
     //RC of the path ƥ  
6: ULRC  MIN (ULEA[srcP * m2/4 + srcE * m/2 + x ] ,                        
ULAC [ srcP * m2/4 + x * m/2 + y ] ) 
7: DLRC  MIN ( DLAC[dstP * m2/4 + x * m/2 + y ] , DLEA 

[  dstP * m2/4 + dstE * m/2 + x ] ) 
8: VPRC [ƥ]  MIN (ULRC , DLRC) 

Fig 2: Simplified version of ComputePRC kernel. MIN (a, b) returns 
minimum of a and b. 

In this kernel, each thread first computes Id of the path 
assigned to it for computing RC of the path and finds 
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index of the Aggregator switch through which its assigned 
path passes. The key insight here is that in m-ary Fat-tree 
architecture, Aggregator switches in a Pod are connected 
with m2/4 Core switches on a stride of m/2 [42]. In other 
word, ith Aggregator switch in all Pods is connected with 
the m/2 Core switches which have Ids from  i * m/2 to i * 
m/2 + 1.For example, in 4-ary Fat-tree architecture shown 
in Fig 1, Aggregator switch 1of all Pods are connected 
with Core switches 2 and 3. Since we have assigned an Id 
“i’” to a path passing through Core switch i, thus, the 
paths which have Ids from i * m/2 to i * m/2 + 1 pass 
through an ith Aggregator switch. Hence, given the path Id 
“ƥ”, the Id of the corresponding Aggregator switch can be 
determined by dividing ƥ with m/2.  
At line 3, each thread computes column indices of ULAC 
and DLAC. Since ULAC[k][i][j] and DLAC[k][i][j] store RCs 
of the links connecting Aggregator switch i of Pod k with 
core switch i * m/2 + j  in upward and downward direction 
respectively, so given the path Id “ƥ”, which is the Core 
switch Id as well, the column index (value of j) of these 
matrices can be computed by taking the modulus of ƥ with 
m/2. After determining the indices of the elements 
required to compute RC of the path, each thread reads RCs 
of the links along the assigned path of the flow f from Link 
RC Matrices, compared them and finally store minimum 
of them in VPRC at index “ƥ” (line 4-8).  

3.2.2.2 Parallelization of WFPathSelection task 

In WFPathSelection task, RCs of all paths of a scheduling 
flow f are sequentially explored to search maximum of 
RCs of the paths, which is intrinsically a reduction process. 
The only difference is that instead of only searching the 
maximum of the path RCs, Id of the respective path is also 
found. This process can be performed in  log(m2/4) steps 
using parallel reduction algorithm [47].  Various strategies 
for the implementation of parallel reduction on GPU are 
presented in [48] showing significant performance gain 
with millions of data elements. However, the numbers of 
paths in a network are not so huge resulting in low 
performance gain on GPU. For that matter, a possible 
approach is to compute path RCs on GPU and execute 
WFPathSelection task on CPU for effective utilization of 
computing resources. However, this strategy entails two 
expensive time consuming data transfers over PCIe; path 
RCs computed on GPU must be transferred to CPU and Id 
of Worst Fit Path selected by CPU must be transferred to 
GPU. To avoid these data transfers, we implemented the 
WFPathSelection task on GPU. Due to Space limitation, 
we did not present our WFPathSelection kernel. We used 
the same kernel 7 given in [48] with some modification. 
First, instead of using addition operator, we used 
maximum operator (>) for reduction process. Second, we 
used two shared memory arrays, one of the arrays is used 

to store RCs of the paths and the other is used to store Ids 
of the paths. Finally, one thread block is used to search 
maximum of path RCs and its index, (MaxRC, MaxRCpath),  
from VPRC vector. After searching MaxRC and MaxRCpath, 
first thread of the thread block reads flow demand fd from 
flow demand vector Vd and compares it with MaxRC. If 
MaxRC is found to be greater than fd, it updates RCs of 
links along the MaxRCpath and writes the value of 
MaxRCpath in VWFpathIds vector at index f otherwise it writes 
-1 to communicate the CPU that Worst Fit Path is not 
found for the flow f. 

3.3 Work flow 

Having described the parallelization of ComputePRC task 
and WFPathSelection task, we now present the work flow 
of adaptive flow scheduling process on GPU  
Processing of adaptive flow scheduling on GPU takes 
three steps:  
In the first step, input data which includes Link RC 
Matrices, Flow Address Matrix and Flow demand vector 
(described in table 2), is copied on global memory of the 
GPU. In second step, ComputePRC and WFPathSelection 
kernels are invoked for each of RBS (Result Batched Size) 
number of flows, and their Worst Fit Paths are computed 
on GPU. In third step, the computed Worst Fit Path Ids 
are copied from GPU to CPU. 
This process continues until all flows have been processed. 
Workflow of adaptive flow scheduling process on GPU is 
depicted in Fig 3. 

 

Fig 3: Adaptive Flow Scheduling process at SDN controller using GPU 

 
The value of RBS plays an important role to achieve high 
performance gain from GPU, since Worst Fit Path Ids are 
copied to CPU after complete processing of RBS number 
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of flows on GPU. Higher value of RBS leads to lower 
number of data transfers over PCIe bus, but the cost is 
extra delay resulted by waiting for the GPU to complete 
processing of a higher number of flows. This delay can be 
reduced by decreasing the value of RBS however, in this 
case a momentous time is spent in carrying out a higher 
number of data transfers (Worst Fit Path Ids) over low 
bandwidth PCIe bus. This issue can be solved by choosing 
an appropriate value of RBS which leads to an acceptable 
level of delay and number of data transfers over PCIe. 

4. Performance Evaluation 

4.1 Experimental Methodology  

Experiments setup: We implemented GPU based Adaptive 
flow scheduling application (named GPU based controller) 
and its CPU based version (named CPU based controller) 
on a commodity machine equipped with Intel Core i5 CPU 
(4 physical Cores operating with 2.8 GHz clock 
frequency), 4GB RAM and one GPU (NVIDIA GeForce 
GT 640). The machine run an Ubuntu Desktop 15.04 (64 
bits) OS. The entire GPU based adaptive flow scheduling 
application was developed using CUDA SDK 7.5. 
Input Data sets: We consider a set of 10K flows to be 
scheduled on 64-ary Fat-tree DCN, 128-ary Fat-tree DCN, 
and 256-ary Fat-tree DCN. For brevity, we referred 64-ary 
Fat-tree DCN, 128-ary Fat-tree DCN, and 256-ary Fat-tree 
DCN as “DCN64, DCN128, and DCN256” respectively. 
Input data sets are generated by following the randomized 
traffic pattern used in [45]: Residual Capacities (RC) of all 
links of a Fat-tree DCN under study are randomly selected 
between 0 and 1. Source Pods and destination Pods of the 
scheduling flows are randomly selected between 0 and m/2 
- 1, and between m/2 and m – 1, respectively. Source and 
destination Edge switches are randomly selected between 
0 and m/2 - 1. Flow demands are chosen randomly 
between 0 and 1. 
Performance metrics: We considered Flow Scheduling 
Throughput, Flow Scheduling Latency and SpeedUp as 
performance evaluation metrics. Brief description of these 
metrics is given below, 
Flow Scheduling Throughput (FST): It measure number of 
flows processed by SDN controller per second. 
Flow Scheduling Latency (FSL): It is the time taken by 
SDN controller to process one flow.  
SpeedUp (SU): It measures reduction of overall processing 
time when we offload flow scheduling process on GPU.  
 
Experiment Scenarios: We conducted two sets of 
experiments for performance evaluation of GPU based 
controller. In each experiment, we generated input data set 
and copied it to global memory of the GPU. In first set of 

experiment, we measured FST without considering the 
data transfer overhead. We did not copy Worst Fit Path 
Ids of the flows from GPU to CPU in these experiments.  
In second set of experiments, we copied Worst Fit Path 
Ids from GPU to CPU as described in section 
3.3(explained in Fig 3) and measured FST, FSL and SU. 
The values of RBS (Result Batch Size) are varied from 20 
to 220.  
For performance comparison, we also measured the 
performance of CPU based SDN controller as the base 
reference using the same input data sets used to evaluate 
performance of the GPU based controller. 
Each experiment was repeated 100 times and the average 
is used to measure the performance metrics.   

4.2 Results 

Fig 4 depicts FST of GPU based controller and CPU based 
controller on DCNs under study.  Results are generated 
through experiment set 1 i.e. (without copying Worst Fit 
Path Ids to CPU) 
Fig 4 shows that GPU based controller outperforms CPU 
based controller. GPU leads to 34.21%, 79.56% and 
90.19% increase in FST on DCN64, DCN128 and 
DCN256, respectively. As the GPU based controller 
computes RCs of all paths of a flow in parallel, and the 
CPU based controller does this work sequentially, so 
higher FST is seen for the GPU based controller compared 
to the CPU based controller. 

 

Fig 4: Flow Scheduling Throughput measured through experiment set 1  

Fig 5 and 6 illustrate FST and FSL of GPU based 
controller on the DCNs under study for different values of 
RBS. Results are generated through experiment set 2 (i.e. 
time consumed in transferring Worst Fit Path Ids to CPU 
is also included). 
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Fig 5: Flow Scheduling Throughput for different values of RBS (Result 
Batch Size). It is measured through experiment set 2. 

 

Fig 6: Flow Scheduling Latency for different values of RBS (Result 
Batch Size). The graph is ploted on a log scale with base 10. It is 

measured through experiment set 2. 

The results reveal that performance gain of introducing 
GPU in SDN controller significantly depends on the value 
of RBS.  
Fig 5 shows that for small values of RBS, the GPU based 
controller exhibits worse and slightly higher FST 
compared to the CPU based controller on DCN64 and 
DCN128, DCN256, respectively. On the other hand, for 
large values of RBS, the FST of GPU based controller is 
much higher than that of the CPU based controller. For 
RBS = 1, GPU leads to a 46 % decrease, 48% increase and 
82% increase in FST of the controller on DCN64, 
DCN128, and DCN256, respectively. While the increase 
in FST for RBS = 1024 are 34%, 79.39% and 89.35% on 
DCN64, DCN128 and DCN256, respectively. The primary 
reason of low FST for small values of RBS is appeared to 
be due to a large number of time-consuming data transfers 
(Worst Fit Path Ids) over PCIe bus, as the increase in FST 
for RBS = 1024 is very close to the increase in FST 
observed in experiment set 1 (Fig 4).Thus, a large value of 
RBS is most appealing to use for achieving high FST of 
GPU based controller. 

Unfortunately, large values of RBS lead to substantial 
increase in FSL of the GPU based controller as illustrated 
in Fig 6. For RBS = 1024, GPU leads to 99.85 % , 99.52% 
and 98.98% increase in FSL of the controller on DCN64 
and DCN128, DCN256 respectively. The reason of this 
too much increase in FSL is the long waiting time of CPU 
to get Worst Fit Path Id of a flow from GPU; since the 
Worst Fit Path Ids are copied after complete processing of 
RBS number of flows on GPU. This indicates that small 
values of RBS are better to use instead of the large RBS 
values. But small values of RBS reduce FST significantly 
as illustrate in Fig 5. 
Therefore, to get the better acceleration results from GPU, 
it is necessary to choose a suitable value of RBS that 
adapts to minimum reduction of FST with an acceptable 
level of FSL needs. From Fig 5, it can be observed that 
FST of GPU based controller increases slightly when the 
value of RBS goes beyond 64, 64 and 32 for DCN64, 
DCN128, and DCN256 respectively. Assuming additional 
latency of 1ms added by the batching mechanism is 
tolerable, FST achieved by the GPU based controller 
reaches about 112K fps, 91K fps, 50Kfps on DCN64, 
DCN128 and DCN256 for  RBS = 64, 64 and 32 
respectively.  
Fig 7 shows acceleration results of GPU based controller 
for RBS= 64, 64, 32 on DC64, DCN128, and DCN256 
respectively.   
 

 

Fig 7 Speedup achieved by the GPU based controller for RBS =64, 64 
and 32  on DCN64, DCN128 and DCN256 respectively. 

Fig 7 shows that the execution time of flow scheduling 
process reduces when flow scheduling process is 
offloaded to GPU. GPU demonstrates 1.5X, 5X and 
10.12X speed on DCN64, DCN128 and DCN256 
respectively, compared to the CPU. The same speed ups 
on CPU based controller entails 2, 5 and 11 cores 
respectively. Furthermore, Fig 7 shows that an increase in 
DCN size yield higher speed up on GPU compared to the 
CPU which means a single GPU can perform work of 
more CPU cores. The results confirm our insight that the 
use of GPU in SDN controller leads to better acceleration 
of processing of flows and consequently improve its 
performance. 
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5. Conclusion  

This paper strives to analyze the potential of GPUs to 
address the performance challenges of SDN controller by 
accelerating the compute/ memory intensive algorithms of 
SDN applications. We considered SDN based traffic load 
balancing (Adaptive flow scheduling) application in a 
large scale Fat-Tree Data Center Network and parallelized 
its two tasks: Computation of residual capacities on all 
path of a flow and selection of the path which has 
maximum RC. We offloaded these tasks on NVIDIA’s 
GPU and analyze the performance gain through detailed 
Experimentation.  
The experimental results show that GPU bring significant 
increase in flow scheduling throughput of SDN controller, 
confirming the efficacy of the use of GPU for improving 
the performance of SDN controller. In future work, the 
memory hierarchy of GPU will be exploited to improve 
controller performance further. 
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