
IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.5, May 2016

67

Manuscript received May 5, 2016
Manuscript revised May 20, 2016

Harnessing GPU Computing Power to Improve Performance of
SDN Controller

Muhammad Imran† and Muhammad Shamim Baig††,

Department of ECE, Center for Advance Studies in Engineering, Islamabad, Pakistan

Summary
Software Defined Network (SDN) has shown substantial benefits
over the legacy network and fueled the implementation of a
variety of innovative and intelligent applications on SDN
Controller. However, these applications put the performance of
SDN controller under question; since most of these applications
excessively demand computing resources of SDN controller
resulting in increased flow processing delay, and consequently
performance of the controller reduces. Accordingly, in this paper,
we investigate the potential of Graphics Processing Unit (GPU)
to address this performance issue by accelerating the
computationally/memory intensive tasks of SDN applications on
GPU. More specifically, in this paper, we are considering SDN
based traffic load balancing application in a large scale Data
Center Network (DCN) as a case study to see how GPU based
approach can improve performance of SDN controller. We
offload computations of traffic load balancing application on
GPU and analyze the performance gains in terms of throughput,
latency and speedup. The preliminary performance evaluation
results show that GPU has an impressive capability to improve
performance of SDN controller.
Key words:
SDN, OpenFlow, Controller, GPU, GPGPU Computing, CUDA

1. Introduction

In legacy networking paradigm, data plane and control
plane are tightly coupled and physically located in packet
forwarding devices such as routers and switches, posing
many challenges regarding utilization, reliability, security,
cost etc, of the networks [1]. To address these challenges,
a novel paradigm “Software Defined Network” (SDN) has
emerged in recent years [2]. In this paradigm, the entire
control plane functionalities are pulled out from
forwarding devices and shifted to a centralized machine
called SDN controller. SDN controller maintains global
view of entire network and provides its abstract view to
the applications running on the controller. Furthermore,
SDN controller facilitates programmability for forwarding
devices through an open standard interface– Openflow [2].
The vision of unified control plane with global network
view and network programmability provide an opportunity
to gain fine-grained centralized control and visibility over
both the traffic flows and network resources.
Consequently, SDN has gained a considerable attention

from both the research community and industry [3]; that
have been spending earth-shattering efforts for the
development of sophisticated and intelligent applications
around SDN. Examples are QoS Aware routing [4-7],
Traffic Load Balancing [8-21], Attacks Detection and
Mitigation [22, 23] and many others [3]. The results
presented in the above referred papers have shown that
SDN has a great potential to improve security, reliability,
energy efficiency, resource utilization etc, of the networks.
However, most of these applications employ compute or
memory intensive algorithms which overload the
controller and drag down its performance. For instance,
SDN based traffic load balancing application, which is one
of the main SDN applications gaining considerable
attention in challenging environments such as Data Center
Networks (DCNs), typically employs algorithms which
consider current status of the network and regulate traffic
flows to optimize certain network performance criterion
such as maximum link utilization, power consumption,
delay, congestion etc [8-12]. These algorithms excessively
demand computing resources and create sever processing
bottlenecks resulting in lessening the performance of
controller. This, in turn, raises an urgent call for high
processing power at SDN controller.
Contemporary approaches— coarse-grained centralized
flow control [8, 11, 12, 21, 24], multi-core controllers [25-
29] and distributed controllers [30-33], do not address this
issue adequately. One of the promising directions in this
regard is to use GPU as a co-processor in SDN controller
to accelerate execution of the compute/memory intensive
algorithms of SDN applications, and thus improve
performance of the controller. The motivation comes from
the fact that GPUs have recently evolved into massively
multithreaded parallel architectures which have an
immense number of high clock-rate cores along with
tremendous memory resources [34]. In addition, GPUs are
becoming progressively more programmable [35] and
showing impressive speedups for a variety of non-visual,
General Purpose computations known as GPGPU
Computing [36, 37].
Considering the growing demand of high processing
power at SDN controller and inspired by the momentous
computing power of GPUs, we study the use of GPU as an
alternative computing resource in SDN controller. For this

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.5, May 2016

68

purpose, we have considered SDN based traffic load
balancing application, hereafter Adaptive flow scheduling
application, as a case study and elaborated the potential of
GPU to accelerate the adaptive flow scheduling process.
Note that this paper is not about adaptive flow scheduling,
but the novelty of this paper is on the concept of
exploitation of GPU computing power to accelerate flow
processing at SDN controller and consequently, to
improve controller’s performance. We have designed a
GPU based adaptive flow scheduling application by
parallelization of the main tasks of flow scheduling
process and implement it on a machine equipped with
NIDIA’s GPU. We have compared the results of our GPU
based adaptive flow scheduling application (named GPU
based Controller) with that of the CPU based version
(named CPU based controller). Our results showed that
GPU based controller outperforms CPU based controller.
GPU based controller showed five to ten times reduction
in execution time of adaptive flow scheduling process on
large scale DCNs. The results validate the efficacy of the
use of GPU to address the performance challenges of SDN
controller.
In the rest of this paper, we explain background
information and related work, our strategies to parallelize
adaptive flow scheduling process at SDN controller,
performance evaluation methodology and results. Lastly
we conclude the paper along with future directions.

2. Background and Related Work

In this section, we first demonstrate the performance
challenges of an SDN controller in the context of adaptive
flow scheduling process by providing a high-level
overview of adaptive flow scheduling application. We
then describe shortcoming of current approaches proposed
to address these challenges and discuss about GPGPU
computing briefly.

2.1 Traffic Load Balancing using SDN (Adaptive
Flow Scheduling)

Traffic load balancing plays an indispensable role to
optimize performance of an operational network at both
the traffic and resource level. Recently, for that reason, a
flurry of SDN based traffic load balancing applications
(Adaptive flow scheduling) have been developed which
optimize performance of network from different aspects
[6-19] such as minimization of maximum link utilization,
minimization of power consumption etc. For our
discussion, we use the most popular optimization goal,
minimization of maximum link utilization [9-11, 15, 17,
20, 21]. In this context, SDN controller periodically
regulate traffic load on network links by dispersing traffic
flows away from vastly utilized links towards less utilized

links to accommodate demands of the traffic flows and
minimize the maximum link utilization in the network.
Demand of a flow is the bandwidth required by the flow to
carry its data.
Typically, an SDN controller that performs adaptive flow
scheduling comprises of three applications — Topology,
Monitoring and Adaptive flow scheduling. Topology
application periodically sends queries to network switches
to maintain network topology graph up-to-date.
Monitoring application periodically gathers link counters
from network switches and then consolidates the received
counters to maintain up-to-date Residual Capacities (RCs)
on all links in the network.
Adaptive flow scheduling application, which is the focus
of this paper, optimizes traffic load in the network after a
specific time period (termed as flow scheduling period). In
every flow scheduling period, adaptive flow scheduling
application takes up-to-date topology graph from topology
application, most recent RCs on network links from
monitoring application and demands of the flows to be
scheduled (Scheduling flows) which are communicated
by the flow’s sources or some other servers in the network
[9, 11], and then computes an optimal path for each of the
scheduling flows. An optimal path of a scheduling flow is
the path which can carry demand of the flow while not
exceeding capacity of the links along the path and
minimizes the maximum link utilization. In general,
computing optimal paths of scheduling flows is proven to
be NP-complete in a large scale network [17], leading to
the proposal of many heuristics [9-13, 15, 17, 18, 20, 21].
Among the proposed heuristics, Worst-Fit heuristic [10,
17, 20] is widely used as it distributes traffic load more
evenly in the network than the other heuristics such as
First-Fit and Best-Fit [17]. In Worst-Fit heuristic approach,
for each of the flows to be scheduled within a scheduling
period, adaptive flow scheduling application first takes its
set of equal hop paths, which are typically pre-computed,
and then computes RCs on each path in the path set. RC of
a path is the minimum of RCs on all links along the path.
After that, flow scheduling application selects a path
which has maximum RC and fulfills the flow’s demand as
its optimal path called Worst Fit Path. Finally, demand of
the scheduling flow is subtracted from RCs of all links
along the Worst Fit Path and flow entries are inserted in
all switches along the Worst Fit Path. Algorithm 1
describes adaptive flow scheduling process with Worst-Fit
heuristic approach whereas table 1summarizes the
symbols used in algorithm 1.

Table 1: Symbols
Symbols Meaning

Ѵ Set of Switches in the Network
Ł Set of Links in the Network
RCℓ Residual Capacity on the Link ℓ
RCƥ Residual Capacity on the path ƥ

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.5, May 2016

69

MaxRCpath Path which has Maximum RC
ƒ.src Source switch of the flow ƒ
ƒ.dst Destination switch of the flow ƒ
fd Demand of the flow ƒ
Ɠ (Ѵ, Ł) Network Topology Graph.
Φƒ = {ƥ1, ƥ2,…, ƥP} Set of paths of the flow ƒ
φƥ = { ℓ1, ℓ2,…, ℓQ } Set of links along the path ƥ
WFPath Worst Fit Path. A MaxRCPath which can carry

flow demand
Ƒ={ ƒ1, ƒ2,….., ƒN } Set of Flows to be scheduled (referred as

scheduling flows)

Algorithm 1: Adaptive Flow Scheduling process with Worst-Fit heuristic
Approach

2.2 Controller’s Performance challenges

In algorithm 1, the worst case complexity of scheduling a
flow on its WFpath is O (Q*P+P). Since SDN controller
has to schedule N flows, hence the overall time
complexity of adaptive flow scheduling process within a
scheduling period is O(N(Q*P+P)) indicating that SDN
based adaptive flow scheduling becomes problematic in
large scale dynamic networks where each flow has vast
number of paths and SDN controller is supposed to
schedule large number of flows in the network. One
example of such networks is Data Center Network (DCN)
whose numbers and sizes are growing exponentially[38].
For example, DCNs of Yahoo, Microsoft, and Google host
hundreds of thousands of servers [39-41] in their DCNs.
In DCN, a large number of servers are densely packed in a
well-defined hierarchy to provide an ample number of
paths between any pair of servers in the network [42].
Additionally, inter-flow arrival time in DCNs varies from
1 flow per 15 ms and 100 flows per ms at servers and Top-
of-Rack switches, respectively. More importantly, DCN
traffic is bursty in nature and follows a heavy-tailed
distribution [43, 44] requiring frequent execution of flow
scheduling process at SDN controller. These facts indicate
that adaptive flow scheduling process in such networks
consumes a great deal of computing resources of SDN

controller resulting in increased processing delay and
creates a computational bottleneck at the controller.

2.3 Related Work

Current approaches proposed in the literature to address
the controller’s performance challenges can be classified
into three categories.

Coarse-grained centralized flow control [8,11, 12, 21, 24]:
These approaches reduce processing load of SDN
controller by scheduling only some specific flows such as
elephant flows (whose size exceeds some pre-defined
threshold value (for example 100 MB [8]). Pre-defined
threshold value is a critical parameter in these approaches.
When threshold value is kept large, number of scheduling
flows reduces and consequently, the processing load of
SDN controller reduces. However, network performance
gain also reduces as reported in [45]. On the other hand,
small threshold value puts the performance of controller
under question, since the controller has to process a large
number of flows.

Multi-core Controller approaches [25-29]:
These approaches use multi-core parallel architecture to
increase the processing power of SDN controller. NOX-
MT [28], Beacon [26], Maestro[27] and Macnett[29], are
some examples of state of the art multi-core controllers.
The reported performance of these controllers are high
but simple L2 learning switch application is used for the
performance evaluation of these controllers which is itself
a question mark on recording performance as the CPU
cores or memory bandwidth becomes bottleneck with
compute or memory intensive algorithms as reported in
[37]. Besides this, locking mechanism used for exclusive
write in shared data structure reduces the performance of
multi-core controller as the number of cores and/or writing
workload of the cores increases [28, 29].

Distributed controller Approaches [30-33]:
In these approaches, multiple controllers are distributed
across the network, each managing the flows initiated
from a subset of switches, while global view of the entire
network is kept consistent and synchronized across all the
controllers by means of some distributed file systems.
However, keeping the global network view consistent and
synchronized causes high communication overheads and
add additional latency in processing of the flows [46].
From the above discussion, we can conclude that current
approaches either lose network performance gains and/or
add additional overheads (e.g. communication, contention,
synchronization etc), which itself can be a performance
bottleneck as the number of cores in multi-core controller
and/or number of distributed controllers increases. Thus,

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.5, May 2016

70

there is a need of an alternative computing resource at
SDN controller for the rapid processing of traffic flows.
As GPUs have become powerful computing resource and
are adopted increasingly for General-Purpose
computations (GPGPU computing) [34-37] so they can be
good candidates for this purpose. In next subsection, we
briefly shed light on the hardware and software aspects of
GPGPU computing considering the NVIDIA’s GPUs.

2.4 GPGPU computing

Born as Graphics Processors, recently GPUs have evolved
into massively multithreaded many-core architecture.
Today’s GPUs are comprised of hundreds or thousands of
Streaming Processors (SPs) organized in a number of
Streaming Multiprocessor (SMs). In addition, GPU have
several types of off chip and on chip memories (e.g. global
memory, constant memory, shared memory, registers)
which differ with each other in terms of size, access
latency, access type and scope [34].
GPUs are typically connected to the host by PCI Express
bus (PCIe) and works as a co-processor or accelerator of
the CPU. CUDA (Compute Unified Device Architecture)
[35] is a parallel programming framework resealed by
NVIDIA to simplify the use of GPU as an accelerator and
to offload General Purpose computations on their GPUs.
Applications developed in CUDA are comprised of at least
one kernel function which defines the segment of CUDA
code to be executed on GPU by a large number of threads.
These threads are organized in 1D, 2D or 3D arrays of
threads called thread blocks. Thread blocks are organized
into 1D or 2D array of blocks called grid. To identify a
thread within the grid, CUDA assigns a unique Id to each
thread of a thread block in the form of three dimensional
coordinates— (threadIdx.x, threadIdx.y, threadIdx.z), and
assigns a unique two dimensional Id— (blockIdx.x,
blockIdx.y) to each thread block in the grid. Number of
threads in a block and number of thread blocks in a grid
are defined when kernel is invoked.
At the hardware level, thread blocks are assigned to SMs
which employ SIMT (Single Instruction Multiple Thread)
execution model in which a group of coordinated threads
called warp execute the same instruction in parallel to
process different data (data level parallelism). If the
instruction of any warp requires excessive cycles to
complete, the SMs suspended its execution and select
another active warp to execute its instructions.

3. Methodology

In this section, we explain our methodology used to
improve the performance of SDN controller using GPU in
the context of adaptive flow scheduling application
described in section 2.1. We first describe Fat-tree DCN

architecture to provide a foundation for latter discussion
and then explain the data structure and parallelization
strategies we have used to design the GPU based adaptive
flow scheduling application. Finally, we explain workflow
of flow scheduling process of GPU based adaptive flow
scheduling application.

3.1 Fat-tree Data Center Network Architecture

Fat-tree DCN architecture is a prevailing architecture used
to build a cost effective large scale DCN. An m-ary Fat-
tree [42] is a multi-rooted tree like topology comprised of
5m2/4 identical switches, each of which has m numbers of
bidirectional ports. These switches are structured into
three tiers i.e. Core Tier, Aggregate Tier and Edge Tier as
illustrated in Fig 1. The Core Tier is in the root of the tree
and comprised of m2/4 switches called Core switches.
The Aggregate Tier is in the middle of the tree and
comprised of m2/2 switches called Aggregator switches.
The Edge tier is at the leaves of the tree and comprised of
m2/2 switches called Edge switches.
Edge and Aggregator switches are further organized into
m Pods, each containing m/2 number of Edge switches as
well as m/2 number of Aggregator switches. Each Edge
switch in a Pod is connected to m/2 Servers through its
m/2 ports and the remaining m/2 ports are connected to
m/2 Aggregator switches in the Pod. Each Core switch has
one port connected to one of the m Pods. The ith port of
any Core switch is connected to Pod i such that
Aggregator switches of each Pod are connected to Core
switches on m/2 strides. There are m2/4 equal hop paths
between any two servers in m-ary Fat-tree. Each of the
paths between two servers belonging to two different Pods,
called inter-Pod path, passes through a Core switch.
Architecture of a 4-ary Fat-tree DCN is shown in Fig 1.

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1 2 3Core
Tier

Aggregate
Tier

Edge
Tier

Core
Switch

Edge SwitchAggregator
Switch Server

Pod 0 Pod 1 Pod 2 Pod 3

Fig 1: 4-ary Fat-Tree DCN Architecture

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.5, May 2016

71

3.2 GPU based Adaptive Flow Scheduling
Application

3.2.1 Data Structure

Let all Core switches, Pod, Edge and Aggregator switches
of each Pod, are indexed with non-negative integers from
left to right as shown in Fig 1. Core switches are indexed
from 0 to m2/4 – 1 and Pods are indexed from 0 to m.
Both of the Edge switches and Aggregator switches of a
Pod are indexed from 0 to m/2 - 1. Let the scheduling
flows are also indexed from 0 to N and each flow f is
identified by its source Edge switch srcE, source Pod srcP,
destination Edge switch dstE, destination Pod dstP. We
also index all the inter-Pod paths of a scheduling flow
from 0 to m2/4 - 1 such that the ith path of a flow passes
through ith Core switch.
Based on the above indexing scheme, we used four 3D
matrices— ULEA, ULAC, DLAC, DLEA, to stores RCs on the
links in m-ary Fat-tree topology. We referred these
matrices as Link RC Matrices. In addition, we also used
three vectors— VƑd, VWFpathIds, VPRC and a 2D matrix—
MƑA to store the data of the scheduling flows. Definition
and description of used matrices & vectors are
summarized in table 2.

Table 2: Notations and Data Structures
Symbols Explanation
m Number of ports in a switch
srcE source Edge switch
srcP source Pod
dstE destination Edge switch
dstP destination Pod
fd demand of the flow f
VƑd [f]1 x N Flow demand vector. VƑd [f] stores

demand of the flow f.
VWFpathIds [f] 1 x N Worst Fit Path Ids Vector. VWFpathIds[f]

stores Worst Fit Path Id of the flow f
VPRC[i] 1 x m2

/4
 Path Residual Capacity Vector. VPRC[i]

stores RC of i th path.
MƑA[i][j]N x 4 Flow Address Matrix. MfA[i][0],

MfA[i][1], MfA[i][2], MfA[i][3] store
srcE, srcP, dstE, dstP of i th flow.

ULEA[k][i][j] m x m/2 x m/2 store RC of the UpLink connecting
Edge switch i with Aggregator switch j
in Pod k.

ULAC[k][i][j] m x m/2 x

m/2
store RC of the UpLink connecting
Aggregator switch i of Pod k with Core
switch i * m/2 + j

 DLAC[k][i][j]m x m/2 x

m/2
store RC of the DownLink connecting
Aggregator switch i of Pod k with Core
switch i * m/2 + j.

 DLEA[k][i][j]m x m/2 x m/2 store RC of the DownLink connecting
Edge switch i with Aggregator switch j
in Pod k.

 3.2.2 Parallelization Strategies

GPU application encompasses multiple segments that are
executed on either the CPU or the GPU. All segments that

exhibit little or no data parallelism are executed on the
CPU and if there is much data level parallelism in the
segments, they are parallelized and executed on GPU as a
kernel functions. Scheduling of each flow f described in
algorithm 1(section 2.1) can be divided into two segments.
The first segment is composed of line 3-5 where RC on
each path of a scheduling flow is computed, we termed
this segment as ComputePRC task. While the second
segment is line 6-10 where Worst Fit Path (WFpath) of a
scheduling flow is selected and links along the path are
updated. We termed this segment as WFPathSelection task.
Both of these tasks are analyzed in next subsections to
achieve data parallelism in the tasks.

3.2.2.1 Parallelization of ComputePRC task

As stated earlier, there are m2/4 paths between any two
servers in m-ary Fat-tree DCN. This implies that the
sequential process of computing RCs of all paths of a
scheduling flow in m-ary Fat-tree involves m2/4 iterations.
These iterations are independent of each other’s as the
computation of a path RC in algorithm 1 (line- 4) does not
involve RC of any other path. So these iterations exhibit
high level of data parallelism, which makes ComputePRC
task a good candidate to be implemented on GPU. RCs of
all paths of a scheduling flow can be computed in parallel
by executing the ComputePRC task with m2/4 threads and
assigning computation of RC of a path to one of the m2/4
threads. The simplified version of ComputePRC kernel is
explained in Fig 2.

Input: ULEA, ULAC, DLAC, DLEA, MƑA , m, f
Output: VPRC,
 // Id of the path to be processed
1: ƥ  threadIdx.x + blockIdx.x * blockDim.x
 // Id of Aggregator switch through which the path “ƥ”
passes
2: x  ƥ div (m/2)
 //Column index of the ULAC , DLAC
3: y  ƥ mod (m/2)
 // source Edge switch & source Pod of the flow f
4: srcE MƑA [f * 4]; srcP  MƑA [f * 4 + 1];
 // destination Edge Switch & destination Pod of the flow
f
5: dstE MƑA [f * 4 + 2]; dstP  MƑA [f * 4 + 3];
 //RC of the path ƥ
6: ULRC  MIN (ULEA[srcP * m2/4 + srcE * m/2 + x] ,
ULAC [srcP * m2/4 + x * m/2 + y])
7: DLRC  MIN (DLAC[dstP * m2/4 + x * m/2 + y] , DLEA

[dstP * m2/4 + dstE * m/2 + x])
8: VPRC [ƥ]  MIN (ULRC , DLRC)

Fig 2: Simplified version of ComputePRC kernel. MIN (a, b) returns
minimum of a and b.

In this kernel, each thread first computes Id of the path
assigned to it for computing RC of the path and finds

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.5, May 2016

72

index of the Aggregator switch through which its assigned
path passes. The key insight here is that in m-ary Fat-tree
architecture, Aggregator switches in a Pod are connected
with m2/4 Core switches on a stride of m/2 [42]. In other
word, ith Aggregator switch in all Pods is connected with
the m/2 Core switches which have Ids from i * m/2 to i *
m/2 + 1.For example, in 4-ary Fat-tree architecture shown
in Fig 1, Aggregator switch 1of all Pods are connected
with Core switches 2 and 3. Since we have assigned an Id
“i’” to a path passing through Core switch i, thus, the
paths which have Ids from i * m/2 to i * m/2 + 1 pass
through an ith Aggregator switch. Hence, given the path Id
“ƥ”, the Id of the corresponding Aggregator switch can be
determined by dividing ƥ with m/2.
At line 3, each thread computes column indices of ULAC
and DLAC. Since ULAC[k][i][j] and DLAC[k][i][j] store RCs
of the links connecting Aggregator switch i of Pod k with
core switch i * m/2 + j in upward and downward direction
respectively, so given the path Id “ƥ”, which is the Core
switch Id as well, the column index (value of j) of these
matrices can be computed by taking the modulus of ƥ with
m/2. After determining the indices of the elements
required to compute RC of the path, each thread reads RCs
of the links along the assigned path of the flow f from Link
RC Matrices, compared them and finally store minimum
of them in VPRC at index “ƥ” (line 4-8).

3.2.2.2 Parallelization of WFPathSelection task

In WFPathSelection task, RCs of all paths of a scheduling
flow f are sequentially explored to search maximum of
RCs of the paths, which is intrinsically a reduction process.
The only difference is that instead of only searching the
maximum of the path RCs, Id of the respective path is also
found. This process can be performed in log(m2/4) steps
using parallel reduction algorithm [47]. Various strategies
for the implementation of parallel reduction on GPU are
presented in [48] showing significant performance gain
with millions of data elements. However, the numbers of
paths in a network are not so huge resulting in low
performance gain on GPU. For that matter, a possible
approach is to compute path RCs on GPU and execute
WFPathSelection task on CPU for effective utilization of
computing resources. However, this strategy entails two
expensive time consuming data transfers over PCIe; path
RCs computed on GPU must be transferred to CPU and Id
of Worst Fit Path selected by CPU must be transferred to
GPU. To avoid these data transfers, we implemented the
WFPathSelection task on GPU. Due to Space limitation,
we did not present our WFPathSelection kernel. We used
the same kernel 7 given in [48] with some modification.
First, instead of using addition operator, we used
maximum operator (>) for reduction process. Second, we
used two shared memory arrays, one of the arrays is used

to store RCs of the paths and the other is used to store Ids
of the paths. Finally, one thread block is used to search
maximum of path RCs and its index, (MaxRC, MaxRCpath),
from VPRC vector. After searching MaxRC and MaxRCpath,
first thread of the thread block reads flow demand fd from
flow demand vector Vd and compares it with MaxRC. If
MaxRC is found to be greater than fd, it updates RCs of
links along the MaxRCpath and writes the value of
MaxRCpath in VWFpathIds vector at index f otherwise it writes
-1 to communicate the CPU that Worst Fit Path is not
found for the flow f.

3.3 Work flow

Having described the parallelization of ComputePRC task
and WFPathSelection task, we now present the work flow
of adaptive flow scheduling process on GPU
Processing of adaptive flow scheduling on GPU takes
three steps:
In the first step, input data which includes Link RC
Matrices, Flow Address Matrix and Flow demand vector
(described in table 2), is copied on global memory of the
GPU. In second step, ComputePRC and WFPathSelection
kernels are invoked for each of RBS (Result Batched Size)
number of flows, and their Worst Fit Paths are computed
on GPU. In third step, the computed Worst Fit Path Ids
are copied from GPU to CPU.
This process continues until all flows have been processed.
Workflow of adaptive flow scheduling process on GPU is
depicted in Fig 3.

Fig 3: Adaptive Flow Scheduling process at SDN controller using GPU

The value of RBS plays an important role to achieve high
performance gain from GPU, since Worst Fit Path Ids are
copied to CPU after complete processing of RBS number

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.5, May 2016

73

of flows on GPU. Higher value of RBS leads to lower
number of data transfers over PCIe bus, but the cost is
extra delay resulted by waiting for the GPU to complete
processing of a higher number of flows. This delay can be
reduced by decreasing the value of RBS however, in this
case a momentous time is spent in carrying out a higher
number of data transfers (Worst Fit Path Ids) over low
bandwidth PCIe bus. This issue can be solved by choosing
an appropriate value of RBS which leads to an acceptable
level of delay and number of data transfers over PCIe.

4. Performance Evaluation

4.1 Experimental Methodology

Experiments setup: We implemented GPU based Adaptive
flow scheduling application (named GPU based controller)
and its CPU based version (named CPU based controller)
on a commodity machine equipped with Intel Core i5 CPU
(4 physical Cores operating with 2.8 GHz clock
frequency), 4GB RAM and one GPU (NVIDIA GeForce
GT 640). The machine run an Ubuntu Desktop 15.04 (64
bits) OS. The entire GPU based adaptive flow scheduling
application was developed using CUDA SDK 7.5.
Input Data sets: We consider a set of 10K flows to be
scheduled on 64-ary Fat-tree DCN, 128-ary Fat-tree DCN,
and 256-ary Fat-tree DCN. For brevity, we referred 64-ary
Fat-tree DCN, 128-ary Fat-tree DCN, and 256-ary Fat-tree
DCN as “DCN64, DCN128, and DCN256” respectively.
Input data sets are generated by following the randomized
traffic pattern used in [45]: Residual Capacities (RC) of all
links of a Fat-tree DCN under study are randomly selected
between 0 and 1. Source Pods and destination Pods of the
scheduling flows are randomly selected between 0 and m/2
- 1, and between m/2 and m – 1, respectively. Source and
destination Edge switches are randomly selected between
0 and m/2 - 1. Flow demands are chosen randomly
between 0 and 1.
Performance metrics: We considered Flow Scheduling
Throughput, Flow Scheduling Latency and SpeedUp as
performance evaluation metrics. Brief description of these
metrics is given below,
Flow Scheduling Throughput (FST): It measure number of
flows processed by SDN controller per second.
Flow Scheduling Latency (FSL): It is the time taken by
SDN controller to process one flow.
SpeedUp (SU): It measures reduction of overall processing
time when we offload flow scheduling process on GPU.

Experiment Scenarios: We conducted two sets of
experiments for performance evaluation of GPU based
controller. In each experiment, we generated input data set
and copied it to global memory of the GPU. In first set of

experiment, we measured FST without considering the
data transfer overhead. We did not copy Worst Fit Path
Ids of the flows from GPU to CPU in these experiments.
In second set of experiments, we copied Worst Fit Path
Ids from GPU to CPU as described in section
3.3(explained in Fig 3) and measured FST, FSL and SU.
The values of RBS (Result Batch Size) are varied from 20
to 220.
For performance comparison, we also measured the
performance of CPU based SDN controller as the base
reference using the same input data sets used to evaluate
performance of the GPU based controller.
Each experiment was repeated 100 times and the average
is used to measure the performance metrics.

4.2 Results

Fig 4 depicts FST of GPU based controller and CPU based
controller on DCNs under study. Results are generated
through experiment set 1 i.e. (without copying Worst Fit
Path Ids to CPU)
Fig 4 shows that GPU based controller outperforms CPU
based controller. GPU leads to 34.21%, 79.56% and
90.19% increase in FST on DCN64, DCN128 and
DCN256, respectively. As the GPU based controller
computes RCs of all paths of a flow in parallel, and the
CPU based controller does this work sequentially, so
higher FST is seen for the GPU based controller compared
to the CPU based controller.

Fig 4: Flow Scheduling Throughput measured through experiment set 1

Fig 5 and 6 illustrate FST and FSL of GPU based
controller on the DCNs under study for different values of
RBS. Results are generated through experiment set 2 (i.e.
time consumed in transferring Worst Fit Path Ids to CPU
is also included).

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.5, May 2016

74

Fig 5: Flow Scheduling Throughput for different values of RBS (Result
Batch Size). It is measured through experiment set 2.

Fig 6: Flow Scheduling Latency for different values of RBS (Result
Batch Size). The graph is ploted on a log scale with base 10. It is

measured through experiment set 2.

The results reveal that performance gain of introducing
GPU in SDN controller significantly depends on the value
of RBS.
Fig 5 shows that for small values of RBS, the GPU based
controller exhibits worse and slightly higher FST
compared to the CPU based controller on DCN64 and
DCN128, DCN256, respectively. On the other hand, for
large values of RBS, the FST of GPU based controller is
much higher than that of the CPU based controller. For
RBS = 1, GPU leads to a 46 % decrease, 48% increase and
82% increase in FST of the controller on DCN64,
DCN128, and DCN256, respectively. While the increase
in FST for RBS = 1024 are 34%, 79.39% and 89.35% on
DCN64, DCN128 and DCN256, respectively. The primary
reason of low FST for small values of RBS is appeared to
be due to a large number of time-consuming data transfers
(Worst Fit Path Ids) over PCIe bus, as the increase in FST
for RBS = 1024 is very close to the increase in FST
observed in experiment set 1 (Fig 4).Thus, a large value of
RBS is most appealing to use for achieving high FST of
GPU based controller.

Unfortunately, large values of RBS lead to substantial
increase in FSL of the GPU based controller as illustrated
in Fig 6. For RBS = 1024, GPU leads to 99.85 % , 99.52%
and 98.98% increase in FSL of the controller on DCN64
and DCN128, DCN256 respectively. The reason of this
too much increase in FSL is the long waiting time of CPU
to get Worst Fit Path Id of a flow from GPU; since the
Worst Fit Path Ids are copied after complete processing of
RBS number of flows on GPU. This indicates that small
values of RBS are better to use instead of the large RBS
values. But small values of RBS reduce FST significantly
as illustrate in Fig 5.
Therefore, to get the better acceleration results from GPU,
it is necessary to choose a suitable value of RBS that
adapts to minimum reduction of FST with an acceptable
level of FSL needs. From Fig 5, it can be observed that
FST of GPU based controller increases slightly when the
value of RBS goes beyond 64, 64 and 32 for DCN64,
DCN128, and DCN256 respectively. Assuming additional
latency of 1ms added by the batching mechanism is
tolerable, FST achieved by the GPU based controller
reaches about 112K fps, 91K fps, 50Kfps on DCN64,
DCN128 and DCN256 for RBS = 64, 64 and 32
respectively.
Fig 7 shows acceleration results of GPU based controller
for RBS= 64, 64, 32 on DC64, DCN128, and DCN256
respectively.

Fig 7 Speedup achieved by the GPU based controller for RBS =64, 64
and 32 on DCN64, DCN128 and DCN256 respectively.

Fig 7 shows that the execution time of flow scheduling
process reduces when flow scheduling process is
offloaded to GPU. GPU demonstrates 1.5X, 5X and
10.12X speed on DCN64, DCN128 and DCN256
respectively, compared to the CPU. The same speed ups
on CPU based controller entails 2, 5 and 11 cores
respectively. Furthermore, Fig 7 shows that an increase in
DCN size yield higher speed up on GPU compared to the
CPU which means a single GPU can perform work of
more CPU cores. The results confirm our insight that the
use of GPU in SDN controller leads to better acceleration
of processing of flows and consequently improve its
performance.

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.5, May 2016

75

5. Conclusion

This paper strives to analyze the potential of GPUs to
address the performance challenges of SDN controller by
accelerating the compute/ memory intensive algorithms of
SDN applications. We considered SDN based traffic load
balancing (Adaptive flow scheduling) application in a
large scale Fat-Tree Data Center Network and parallelized
its two tasks: Computation of residual capacities on all
path of a flow and selection of the path which has
maximum RC. We offloaded these tasks on NVIDIA’s
GPU and analyze the performance gain through detailed
Experimentation.
The experimental results show that GPU bring significant
increase in flow scheduling throughput of SDN controller,
confirming the efficacy of the use of GPU for improving
the performance of SDN controller. In future work, the
memory hierarchy of GPU will be exploited to improve
controller performance further.

Acknowledgments

The author acknowledges the enabling role of the Higher
Education Commission Islamabad, Pakistan for research
fellowship under HEC indigenous scholarship program.

References
[1] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. Gude, N.

McKeown, et al., "Rethinking enterprise network control,"
IEEE/ACM Transactions on Networking (TON), vol. 17, pp.
1270-1283, 2009.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L.
Peterson, J. Rexford, et al., "OpenFlow: enabling innovation
in campus networks," ACM SIGCOMM Computer
Communication Review, vol. 38, pp. 69-74, 2008.

[3] A. Lara, A. Kolasani, and B. Ramamurthy, "Network
innovation using openflow: A survey," Communications
Surveys & Tutorials, IEEE, vol. 16, pp. 493-512, 2014.

[4] F. Pop, C. Dobre, D. Comaneci, and J. Kolodziej, "Adaptive
scheduling algorithm for media-optimized traffic
management in software defined networks," Computing, vol.
98, pp. 147-168, 2016.

[5] M. S. Seddiki, M. Shahbaz, S. Donovan, S. Grover, M. Park,
N. Feamster, et al., "FlowQoS: QoS for the rest of us," in
Proceedings of the third workshop on Hot topics in software
defined networking, 2014, pp. 207-208.

[6] A. Ghosh, S. Ha, E. Crabbe, and J. Rexford, "Scalable
multi-class traffic management in data center backbone
networks," Selected Areas in Communications, IEEE
Journal on, vol. 31, pp. 2673-2684, 2013.

[7] A. Ishimori, F. Farias, E. Cerqueira, and A. Abelém,
"Control of multiple packet schedulers for improving QoS
on OpenFlow/SDN networking," in Software Defined
Networks (EWSDN), 2013 Second European Workshop on,
2013, pp. 81-86.

[8] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang,
and A. Vahdat, "Hedera: Dynamic Flow Scheduling for
Data Center Networks," in NSDI, 2010, pp. 19-19.

[9] T. Benson, A. Anand, A. Akella, and M. Zhang, "MicroTE:
Fine grained traffic engineering for data centers," in
Proceedings of the Seventh COnference on emerging
Networking EXperiments and Technologies, 2011, p. 8.

[10] T. Cheocherngngarn, H. Jin, J. Andrian, D. Pan, and J. Liu,
"Depth-First Worst-Fit Search based multipath routing for
data center networks," in Global Communications
Conference (GLOBECOM), 2012 IEEE, 2012, pp. 2821-
2826.

[11] A. R. Curtis, W. Kim, and P. Yalagandula, "Mahout: Low-
overhead datacenter traffic management using end-host-
based elephant detection," in INFOCOM, 2011 Proceedings
IEEE, 2011, pp. 1629-1637.

[12] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P.
Sharma, and S. Banerjee, "DevoFlow: scaling flow
management for high-performance networks," in ACM
SIGCOMM Computer Communication Review, 2011, pp.
254-265.

[13] E. d. B. e Silva, G. Pantuza, F. Sampaio, B. P. Santos, L. F.
Vieira, M. A. Vieira, et al., "Enforcing Link Utilization with
Traffic Engineering on SDN."

[14] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P.
Sharma, S. Banerjee, et al., "ElasticTree: Saving Energy in
Data Center Networks," in NSDI, 2010, pp. 249-264.

[15] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M.
Nanduri, et al., "Achieving high utilization with software-
driven WAN," in ACM SIGCOMM Computer
Communication Review, 2013, pp. 15-26.

[16] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A.
Singh, et al., "B4: Experience with a globally-deployed
software defined WAN," in ACM SIGCOMM Computer
Communication Review, 2013, pp. 3-14.

[17] E. Jo, D. Pan, J. Liu, and L. Butler, "A simulation and
emulation study of SDN-based multipath routing for fat-tree
data center networks," in Proceedings of the 2014 Winter
Simulation Conference, 2014, pp. 3072-3083.

[18] A. Lester, Y. Tang, and T. Gyires, "Prioritized Adaptive
Max-Min Fair Residual Bandwidth Allocation for Software-
Defined Data Center Networks," ICN 2014, p. 209, 2014.

[19] R. Trestian, G.-M. Muntean, and K. Katrinis, "MiceTrap:
Scalable traffic engineering of datacenter mice flows using
OpenFlow," in Integrated Network Management (IM 2013),
2013 IFIP/IEEE International Symposium on, 2013, pp.
904-907.

[20] F. P. Tso and D. P. Pezaros, "Baatdaat: Measurement-based
flow scheduling for cloud data centers," in Computers and
Communications (ISCC), 2013 IEEE Symposium on, 2013,
pp. 000765-000770.

[21] P. Wette and H. Karl, "HybridTE: Traffic Engineering for
Very Low-Cost Software-Defined Data-Center Networks,"
in Software Defined Networks (EWSDN), 2015 Fourth
European Workshop on, 2015, pp. 31-36.

[22] S. A. Mehdi, J. Khalid, and S. A. Khayam, "Revisiting
traffic anomaly detection using software defined
networking," in Recent Advances in Intrusion Detection,
2011, pp. 161-180.

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.5, May 2016

76

[23] R. Braga, E. Mota, and A. Passito, "Lightweight DDoS
flooding attack detection using NOX/OpenFlow," in Local
Computer Networks (LCN), 2010 IEEE 35th Conference on,
2010, pp. 408-415.

[24] J. Liu, J. Li, G. Shou, Y. Hu, Z. Guo, and W. Dai, "SDN
based load balancing mechanism for elephant flow in data
center networks," in Wireless Personal Multimedia
Communications (WPMC), 2014 International Symposium
on, 2014, pp. 486-490.

[25] "Floodlight Available: http://www.projectfloodlight.org/."
[26] D. Erickson, "The beacon openflow controller," in

Proceedings of the second ACM SIGCOMM workshop on
Hot topics in software defined networking, 2013, pp. 13-18.

[27] Z. A. C. T. EugeneNg, "Maestro: Balancing fairness,
latency and throughput in the openflow control plane," Tech.
rep., Rice University2011.

[28] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and
R. Sherwood, "On Controller Performance in Software-
Defined Networks," Hot-ICE, vol. 12, pp. 1-6, 2012.

[29] A. Voellmy and J. Wang, "Scalable software defined
network controllers," in Proceedings of the ACM
SIGCOMM 2012 conference on Applications, technologies,
architectures, and protocols for computer communication,
2012, pp. 289-290.

[30] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, et al., "Onix: A Distributed Control Platform for
Large-scale Production Networks," in OSDI, 2010, pp. 1-6.

[31] S. Hassas Yeganeh and Y. Ganjali, "Kandoo: a framework
for efficient and scalable offloading of control applications,"
in Proceedings of the first workshop on Hot topics in
software defined networks, 2012, pp. 19-24.

[32] A. Tootoonchian and Y. Ganjali, "HyperFlow: A distributed
control plane for OpenFlow," in Proceedings of the 2010
internet network management conference on Research on
enterprise networking, 2010, pp. 3-3.

[33] A. S.-W. Tam, K. Xi, and H. J. Chao, "Use of devolved
controllers in data center networks," in Computer
Communications Workshops (INFOCOM WKSHPS), 2011
IEEE Conference on, 2011, pp. 596-601.

[34] http://www.nvidia.com/content/tesla/pdf/NVIDIA-Tesla-
Kepler-Family-Datasheet.pdf, "NVIDIA Tesla Kepler-
Family-Datasheet."

[35] J. Nickolls, I. Buck, M. Garland, and K. Skadron, "Scalable
parallel programming with CUDA," Queue, vol. 6, pp. 40-
53, 2008.

[36] S. Han, K. Jang, K. Park, and S. Moon, "PacketShader: a
GPU-accelerated software router," ACM SIGCOMM
Computer Communication Review, vol. 41, pp. 195-206,
2011.

[37] K. Jang, S. Han, S. Han, S. B. Moon, and K. Park,
"SSLShader: Cheap SSL Acceleration with Commodity
Processors," in NSDI, 2011.

[38] A. Carter, "Do it green: Media interview with Michael
Manos," Dec. 2007 [Online]. Available: htt p://edge. technet.
com/Media/Doing-ITGreen, 2007.

[39] L. Rabbe, "Powering the Yahoo! network," Nov, 2006.
[40] J. Snyder, "Microsoft: datacenter growth defies Moore’s

law," PC-World, 2007.
[41] S. E. Arnold, Google Version 2.0: The Calculating Predator:

Infonortics, 2007.

[42] M. Al-Fares, A. Loukissas, and A. Vahdat, "A scalable,
commodity data center network architecture," ACM
SIGCOMM Computer Communication Review, vol. 38, pp.
63-74, 2008.

[43] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, et al., "VL2: a scalable and flexible data center
network," in ACM SIGCOMM computer communication
review, 2009, pp. 51-62.

[44] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R.
Chaiken, "The nature of data center traffic: measurements &
analysis," in Proceedings of the 9th ACM SIGCOMM
conference on Internet measurement conference, 2009, pp.
202-208.

[45] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik,
and M. Handley, "Improving datacenter performance and
robustness with multipath tcp," ACM SIGCOMM Computer
Communication Review, vol. 41, pp. 266-277, 2011.

[46] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A.
Feldmann, "Logically centralized?: state distribution trade-
offs in software defined networks," in Proceedings of the
first workshop on Hot topics in software defined networks,
2012, pp. 1-6.

[47] D. B. Kirk and W. H. Wen-mei, Programming massively
parallel processors: a hands-on approach: Newnes, 2012.

[48] M. Harris, "Optimizing parallel reduction in CUDA,"
NVIDIA Developer Technology, vol. 2, 2007.

Muhammad Imran received the B.S.
degrees in Computer Science from
Bahauddine Zakariya University Multan,
Pakistan in 2005, M.Sc. degree in
Computer Engineering form Center of
Advance Studies in Engineering,
Islamabad, Pakistan in 2008. He is
currently Ph.D. scholar at Center for
Advance Studies in Engineering with

research in the field of Software Defined Networks.

	Table 2: Notations and Data Structures
	Explanation
	Symbols
	Flow Scheduling Throughput (FST): It measure number of flows processed by SDN controller per second.
	Flow Scheduling Latency (FSL): It is the time taken by SDN controller to process one flow.
	SpeedUp (SU): It measures reduction of overall processing time when we offload flow scheduling process on GPU.
	Experiment Scenarios: We conducted two sets of experiments for performance evaluation of GPU based controller. In each experiment, we generated input data set and copied it to global memory of the GPU. In first set of experiment, we measured FST witho...
	In second set of experiments, we copied Worst Fit Path Ids from GPU to CPU as described in section 3.3(explained in Fig 3) and measured FST, FSL and SU. The values of RBS (Result Batch Size) are varied from 20 to 220.
	For performance comparison, we also measured the performance of CPU based SDN controller as the base reference using the same input data sets used to evaluate performance of the GPU based controller.
	Each experiment was repeated 100 times and the average is used to measure the performance metrics.

