
IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.5, May 2016

109

Manuscript received May 5, 2016
Manuscript revised May 20, 2016

Novel Approach for Frequent Pattern Algorithm for Maximizing
Frequent Patterns in Effective Time

Akhilesh Dubey Aayush Mehta Akriti Saxena
Department of Computer Science Mandsaur Institute of Technology, India

ABSTRACT:
The essential aspect of mining association rules is to mine the
frequent patterns. Due to native difficulty it is impossible to mine
complete frequent patterns from a dense database. FP-growth
algorithm has been implemented using a Array-based structure,
known as a FP-tree, for storing compressed frequency
information. Numerous experimental results have demonstrated
that the algorithm performs extremely well. But In FP-growth
algorithm, two traversals of FP-tree are needed for constructing
the new conditional FP-tree. In this paper we present a novel Q-
baesd FP tree technique that greatly reduces the need to traverse
FP-trees and Q based FP tree, thus obtaining significantly
improved performance for FP-tree based algorithms. The
technique works especially well for sparse datasets. We then
present a new algorithm which use the Q FP-tree data structure
in combination with the FP- Experimental results show that the
new algorithm outperform other algorithm in not only the speed
of algorithms, but also their CPU consumption and their
scalability.
Keyword:
FP-Tree, WSFP –Tree, Frequent Patterns, Array Technique

1. Introduction

The problem for association rules mining from a data stream has
been addressed by many authors but there are several issues (as
highlighted in previous sections) that hang about to be addressed.
In this part we address the literature review of data stream
mining. The work in this domain can be effectively classified
into three different domains namely, exact methods for Frequent
Item set Mining, Approximate Methods and Memory
Management techniques adopted for data stream mining [1,2].
Let I= {i1, i2, in} be a set of items, we call x and I an item set,
and we call X a k-item set if the cardinality of item set X is k.
Let database T be a multi set of subsets of I, and let support(X)
be the percentage of item set Y in T such that X U Y .Informally,
the support of an item set procedures how often X occurs in the
database. If support(X) + minus , we say that X is a frequent item
set , and we denote the set of all frequent item sets by FI.A
closed frequent item set is a frequent item set X such that there
exists no superset of X with the same support count as X. If X is
frequent and no superset of X is frequent, we Say that X is a
maximal frequent item set, and we denote the set of all maximal
frequent item sets by MFI. [7]
This is the inherent cost of candidate generation, no matter what
implementation technique is applied. It is tedious to repeatedly
scan the database and check a large set of candidates by pattern

matching, which is especially true for mining long patterns. Can
one develop a method that may avoid candidate generation-and-
test and utilize some novel data structures to reduce the cost in
frequent-pattern mining? This is the motivation of this study [6].

2. Related Work

In the aforementioned FP-growth method [2], a novel data
structure, the FP-tree (Frequent Pattern tree) is used. The FP-tree
is a compact data structure for storing all necessary information
about frequent item sets in a database. Every branch of the FP-
tree represents a frequent item set, and the nodes along the
branch are ordered decreasingly by the frequency of the
corresponding item, with leaves representing the least frequent
items. Each node in the FP-tree has three fields: item-name,
count and node-link, when item-name registers which item this
node represents, count registers the number of transactions
represented by the portion for the path reaching this node, and
node-link links to the next node in the FP-tree carrying the same
item-name, or null if there is none. The FP-tree has a header
table associated with it. Single items are stored in the header
table in decreasing order of frequency. Each entry in the header
table consists of two fields, item-name and head of node-link (a
pointer pointing to the first node in the FP-tree carrying the item-
name). Compared with Apriority [1] and its variants which need
several database scans, the FP-growth method only needs two
database scans when mining all frequent item sets. In the first
scan, all frequent items are found. The second scan constructs
the first FPtree which contains all frequency information of the
original dataset. Mining the database then becomes mining the
FP-tree. Figure 1(a) shows a database example. After the first
scan, all frequent items are inserted in the header table of an
initial FP-tree. Figure 1(b) shows the first FP-tree constructed
from the second scan. The FP-growth method relies on the
following principle: if X and Y are two item sets, the support of
item set X UY in the database is exactly that of Y in the
restriction of the database to those transactions containing X.
This restriction of the database is called the conditional pattern
base of X. Given an item in the header table, the growth method
constructs a new FP-tree corresponding to the frequency
information in the sub-dataset of only those transactions that
contain the given item. Figure 2(a) shows the conditional pattern
base and the FP-tree for item {p}, this step is applied recursively,
and it stops when the resulting smaller FP tree contains only one
single path. The complete set of frequent item sets is generated
from all single path FP-trees [5]. When adding an item i to the
existing item set head, we denote the item set head i by Z, the
path from the parent node of this node (node’s item-name is i) to

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.5, May 2016 110

the root node in the head’s FP-tree is called Z’s prefix path.
Figure 2(b) shows the prefix paths for item {p}.

Figure 1: FP-Tree

Figure 2: Prefix paths for Item

Figure 3: Frequency of Sample Database

3. Proposed Work

Algorithm of WS with Array based technique: Improved FP-tree
(IFP-tree) is similar with FP-tree and each node in IFP-tree
consists of four fields: item, count, ahead and next. Where item
registers which item this node represents, count registers the
number of transactions represented by the portion of the path
reaching this node, ahead links to the left child or the parent of
the node, and next links to the right brother of the node or the
next node in IFP-tree carrying the same item, or null if there is
none. We also define two arrays: nodecnt and link, and link
[item] registers a pointer which points to the first node in the
IFP-tree carrying this item, nodecnt [item] registers the support
count sum of those nodes in IFP-tree which carry the same item.
In comparison with FP-tree, IFP-tree doesn’t contain the path
from root to leaf-node, contains fewer pointers than FP-tree in
mining process, and so may greatly save cost in memory. The
construction method of IFP-tree is similar with that of FP-tree,
the difference from FP-tree exits in the process of Inserting
frequent item sets in each transaction into IFP-tree. In this paper,
we don’t adopt the method of recursively performing the
procedure, insert tree ([p|P], t), but employ a dynamic pointer to
complete it.

3.1 The algorithm constructing IFP-tree as follows:

Procedure FP-tree constructs (T, min_sup)
1) Scan T and count the support of each item, derive a frequent
item set (F) and a list (L) of frequent items,
in which items are ordered in frequency-descending order;
2) The root of IFP-tree is created and labeled with “root”;
3) For each transaction t UT do
{
Frequent item set It= t UF, in which items are listed to St
according to the order of L, defines a dynamic
pointer (p_current) which points to root.
Procedure WSFP-tree constructs (T, min_sup)
1) Scan T and count the support of each item, derive a frequent
item set (F) and a list (L) of frequent items,
in which items are in sequence of occurrence form;
2) The root of IFP-tree is created and labeled with “root”;
3) For each transaction t UT do
{
Frequent item set It= t UF, in which items are listed to St
according to the order of occurrence L, defines a dynamic
pointer (p_current) which points to root.
4}Traverse IFP-tree in a root-first order and transfer the pointers
of ahead and next, count the sum of nodes’ support carrying the
same item and then list together. For example, let transaction
database T be illustrated by TABLE I, and the minimum support
(min_sup) be 4, then we can get the list (L) of frequent items

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.5, May 2016 111

Table 1
A G D C B
B D E A M
C E F A N
A B N O I
A C Q R G
A C H I G
A F M N O
A D B H I
J E B A D
A K E F C
C D L B A

Figure 4: constructed all frequent item set.

A B C D
A B D E
A C E F
A B _ _
A C _ _
A C _ _
A F _ _
A B D _
A B D E
A C E F
A B C D

Table 2: Transaction database t with ascending order

Figure: 5 FP Tree constructions

A G D C B
B D E A M
C E F A N
A B N O I
A C Q R G
A C H I G
A F M N O
A D B H I
J E B A D
A K E F C
C D L B A

Table 3: Transactional Dataset:

Figure: 6 WSFP Tree construction

6. Experimental Evaluation

The experiments were conducted on 2.4 GHz Pentium with 512
MB of memory running Microsoft Windows XP. All codes were
compiled using Matlab 7.10. We used Connect-4 downloaded
form a website to test and compared FP tree with WSFP tree,
which is a real and dense dataset. Fig 8 and Fig 9 shows the
experimental results. Here we can see that ABWSFP
outperforms WSFP for high levels of minimum support, but it is
slow for very low levels.

Figure8: Graphical Representation of Calculated Result

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.5, May 2016 112

Figure9: CPU Utilization

7. Conclusions

In this paper, an efficient algorithm, called ABWSFP-max, for
mining maximal frequent patterns based on improved FP-tree
and array technique is proposed, the algorithm improves the
conventional FP-tree and by introducing the concept of the array
sub-tree, avoids generating the maximal frequent candidate
patterns in mining process and therefore greatly reduces the
memory consume, it also uses an array-based technique to
reduce the traverse time to the improved FP-tree. Therefore it
greatly improves the mining efficiency in time and space
scalability. Experimental results show that it possesses high
mining efficiency and scalability.

REFERENCES
[1] Karun Verma,” a better approach to mine frequent item sets

using apriori and fp-tree approach”2011.
[2] Implementation of array based technique to improvise

representation of fp-tree using iafp-max algorithm”, Journal
of Global Research in Computer Science (JGRCS) 2011.

[3] Dr.S.S Mantha,”Maximal Frequent Item set”, International
Journal of Computer Applications (0975 – 8887) Volume
10– No.3, November 2010.

[4] Sumathi k“an array based approach for mining maximal
frequent itemsets “computational intelligence and
computing research (iccic), 2010 ieee international
conference on ICCIC.

[5] R.Divya Survey on AIS, Apriori and FP-Tree algorithms
International Journal of Computer Science and Management
Research Vol 1 Issue 2 September 2012

[6] Huanglin Zeng An Improved Algorithm of FP - tree Growth
Based on Mapping Modeling (ICCASM 2010) V4-463

[7] Vaibhav Kant Singh and Vinay Kumar Singh “Minimizing
Space Time Complexity by RSTDB a new method for
Frequent Pattern Mining” To be appeared in Proceeding of
the First International Conference on Intelligent Human
Computer Interaction ,Allahabad,2009.

[8] Christie I. Ezeife and Min Chen Lecture Notes in Computer
Science, , Volume 3129, Advances in Web-Age Information
Management. 2004

[9] Han, J., J, Pei, Y, Yin and R, Mao, 2004, Mining frequent
patterns without candidate generations.

[10] Han, J., J, Pei, Y, Yin and R, Mao, 2004, Mining frequent
patterns without n improved frequent pattern growth
method for mining association rule.

[11] Burdick Doug, Calimlim Manuel, and Gehrke Johannes, “A
Maximal Frequent Item set Algorithm for Transactional
Database”, Proceedings of the 17th International
Conference on Data Engineering, Heidelberg,Germany, pp .
443-452, April 2001.

[12] J Han, J Pei and Y Yin, “Mining frequent patterns without
candidate generation”, Proceedings of Special Interest
Group on Management of Data, Dallas, pp. 1-12, May 2000.

[13] Agrawal R, Srikant S, Fast algorithms for mining
association rules. In VLDB', 487-499, 1994 .

http://dl.acm.org/citation.cfm?id=1930552.1930870
http://dl.acm.org/citation.cfm?id=1930552.1930870

