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ABSTRACT: 
The essential aspect of mining association rules is to mine the 
frequent patterns. Due to native difficulty it is impossible to mine 
complete frequent patterns from a dense database. FP-growth 
algorithm has been implemented using a Array-based structure, 
known as a FP-tree, for storing compressed frequency 
information. Numerous experimental results have demonstrated 
that the algorithm performs extremely well. But In FP-growth 
algorithm, two traversals of FP-tree are needed for constructing 
the new conditional FP-tree. In this paper we present a novel Q-
baesd FP tree technique that greatly reduces the need to traverse 
FP-trees and Q based FP tree, thus obtaining significantly 
improved performance for FP-tree based algorithms. The 
technique works especially well for sparse datasets. We then 
present a new algorithm which use the Q FP-tree data structure 
in combination with the FP- Experimental results show that the 
new algorithm outperform other algorithm in not only the speed 
of algorithms, but also their CPU consumption and their 
scalability. 
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1. Introduction 

The problem for association rules mining from a data stream has 
been addressed by many authors but there are several issues (as 
highlighted in previous sections) that hang about to be addressed. 
In this part we address the literature review of data stream 
mining. The work in this domain can be effectively classified 
into three different domains namely, exact methods for Frequent 
Item set Mining, Approximate Methods and Memory 
Management techniques adopted for data stream mining [1,2].  
Let I= {i1, i2, in} be a set of items, we call x and   I an item set, 
and we call X a k-item set if the cardinality of item set X is k. 
Let database T be a multi set of subsets of I, and let support(X) 
be the percentage of item set Y in T such that X U Y .Informally, 
the support of an item set procedures how often X occurs in the 
database. If support(X) + minus , we say that X is a frequent item 
set , and we denote the set of all frequent item sets by FI.A 
closed frequent item set is a frequent item set X such that there 
exists no superset of X with the same support count as X. If X is 
frequent and no superset of X is frequent, we Say that X is a 
maximal frequent item set, and we denote the set of all maximal 
frequent item sets by MFI. [7] 
This is the inherent cost of candidate generation, no matter what 
implementation technique is applied. It is tedious to repeatedly 
scan the database and check a large set of candidates by pattern 

matching, which is especially true for mining long patterns. Can 
one develop a method that may avoid candidate generation-and-
test and utilize some novel data structures to reduce the cost in 
frequent-pattern mining? This is the motivation of this study [6]. 

2. Related Work 

In the aforementioned FP-growth method [2], a novel data 
structure, the FP-tree (Frequent Pattern tree) is used. The FP-tree 
is a compact data structure for storing all necessary information 
about frequent item sets in a database. Every branch of the FP-
tree represents a frequent item set, and the nodes along the 
branch are ordered decreasingly by the frequency of the 
corresponding item, with leaves representing the least frequent 
items. Each node in the FP-tree has three fields: item-name, 
count and node-link, when item-name registers which item this 
node represents, count registers the number of transactions 
represented by the portion for the path reaching this node, and 
node-link links to the next node in the FP-tree carrying the same 
item-name, or null if there is none. The FP-tree has a header 
table associated with it. Single items are stored in the header 
table in decreasing order of frequency. Each entry in the header 
table consists of two fields, item-name and head of node-link (a 
pointer pointing to the first node in the FP-tree carrying the item-
name). Compared with Apriority [1] and its variants which need 
several database scans, the FP-growth method only needs two 
database scans when mining all frequent item sets. In the first 
scan, all frequent items are found. The second scan constructs 
the first FPtree which contains all frequency information of the 
original dataset. Mining the database then becomes mining the 
FP-tree. Figure 1(a) shows a database example. After the first 
scan, all frequent items are inserted in the header table of an 
initial FP-tree. Figure 1(b) shows the first FP-tree constructed 
from the second scan. The FP-growth method relies on the 
following principle: if X and Y are two item sets, the support of 
item set X UY in the database is exactly that of Y in the 
restriction of the database to those transactions containing X. 
This restriction of the database is called the conditional pattern 
base of X. Given an item in the header table, the growth method 
constructs a new FP-tree corresponding to the frequency 
information in the sub-dataset of only those transactions that 
contain the given item. Figure 2(a) shows the conditional pattern 
base and the FP-tree for item {p}, this step is applied recursively, 
and it stops when the resulting smaller FP tree contains only one 
single path. The complete set of frequent item sets is generated 
from all single path FP-trees [5]. When adding an item i to the 
existing item set head, we denote the item set head i by Z, the 
path from the parent node of this node (node’s item-name is i) to 
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the root node in the head’s FP-tree is called Z’s prefix path. 
Figure 2(b) shows the prefix paths for item {p}. 

 

Figure 1: FP-Tree 

 

Figure 2: Prefix paths for Item 

 

Figure 3: Frequency of Sample Database 

3. Proposed Work 

Algorithm of WS with Array based technique: Improved FP-tree 
(IFP-tree) is similar with FP-tree and each node in IFP-tree 
consists of four fields: item, count, ahead and next. Where item 
registers which item this node represents, count registers the 
number of transactions represented by the portion of the path 
reaching this node, ahead links to the left child or the parent of 
the node, and next links to the right brother of the node or the 
next node in IFP-tree carrying the same item, or null if there is 
none. We also define two arrays: nodecnt and link, and link 
[item] registers a pointer which points to the first node in the 
IFP-tree carrying this item, nodecnt [item] registers the support 
count sum of those nodes in IFP-tree which carry the same item. 
In comparison with FP-tree, IFP-tree doesn’t contain the path 
from root to leaf-node, contains fewer pointers than FP-tree in 
mining process, and so may greatly save cost in memory. The 
construction method of IFP-tree is similar with that of FP-tree, 
the difference from FP-tree exits in the process of Inserting 
frequent item sets in each transaction into IFP-tree. In this paper, 
we don’t adopt the method of recursively performing the 
procedure, insert tree ([p|P], t), but employ a dynamic pointer to 
complete it. 

3.1 The algorithm constructing IFP-tree as follows: 

Procedure FP-tree constructs (T, min_sup) 
1) Scan T and count the support of each item, derive a frequent 
item set (F) and a list (L) of frequent items, 
in which items are ordered in frequency-descending order; 
2) The root of IFP-tree is created and labeled with “root”; 
3) For each transaction t UT do 
{ 
Frequent item set It= t UF, in which items are listed to St 
according to the order of L, defines a dynamic 
pointer (p_current) which points to root. 
Procedure WSFP-tree constructs (T, min_sup) 
1) Scan T and count the support of each item, derive a frequent 
item set (F) and a list (L) of frequent items, 
in which items are in sequence of occurrence form; 
2) The root of IFP-tree is created and labeled with “root”; 
3) For each transaction t UT do 
{ 
Frequent item set It= t UF, in which items are listed to St 
according to the order of occurrence  L, defines a dynamic 
pointer (p_current) which points to root. 
4}Traverse IFP-tree in a root-first order and transfer the pointers 
of ahead and next, count the sum of nodes’ support carrying the 
same item and then list  together. For example, let transaction 
database T be illustrated by TABLE I, and the minimum support 
(min_sup) be 4, then we can get the list (L) of frequent items  
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Table 1 
A G D C B
B D E A M
C E F A N
A B N O I
A C Q R G
A C H I G
A F M N O
A D B H I
J E B A D
A K E F C
C D L B A  

 

Figure 4:  constructed all frequent item set. 

A B C D
A B D E
A C E F
A B _ _
A C _ _
A C _ _
A F _ _
A B D _
A B D E
A C E F
A B C D  

Table 2: Transaction database t with ascending order 

 

Figure: 5 FP Tree constructions 

A G D C B
B D E A M
C E F A N
A B N O I
A C Q R G
A C H I G
A F M N O
A D B H I
J E B A D
A K E F C
C D L B A  

Table 3: Transactional Dataset: 

 

Figure: 6 WSFP Tree construction 

6. Experimental Evaluation 

The experiments were conducted on 2.4 GHz Pentium with 512 
MB of memory running Microsoft Windows XP. All codes were 
compiled using Matlab 7.10. We used Connect-4 downloaded 
form a website to test and compared FP tree with WSFP tree, 
which is a real and dense dataset. Fig 8 and Fig 9 shows the 
experimental results. Here we can see that ABWSFP 
outperforms WSFP for high levels of minimum support, but it is 
slow for very low levels.  

 

Figure8: Graphical Representation of Calculated Result 
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Figure9: CPU Utilization 

7. Conclusions 

In this paper, an efficient algorithm, called ABWSFP-max, for 
mining maximal frequent patterns based on improved FP-tree 
and array technique is proposed, the algorithm improves the 
conventional FP-tree and by introducing the concept of the array 
sub-tree, avoids generating the maximal frequent candidate 
patterns in mining process and therefore greatly reduces the 
memory consume, it also uses an array-based technique to 
reduce the traverse time to the improved FP-tree. Therefore it 
greatly improves the mining efficiency in time and space 
scalability. Experimental results show that it possesses high 
mining efficiency and scalability. 
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