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Summary 
In traditional approach, extracting important features for the 
application to analyze the anomaly detection problem, introduce 
significant overhead on the way of switch handling. Furthermore, 
high volumes of network traffic introduce notable issues that 
affect the performance and anomaly detection accuracy. Taking 
advantage of centralized control plane of Software Defined 
Networking (SDN), the task to handle the flow information is 
much more simplified programmatically. The accuracy of the 
measured flow statistic plays important role in anomaly detection. 
While the use of sampling is capable to lessen the scalability 
problem of traffic monitoring, the insufficiency of sampled flow 
statistic may have led to inaccurate detection rate of anomaly. In 
this paper, we propose an adaptive sampling strategy that is able 
to provide essential traffic statistics for more accurate anomaly 
detection in SDN. Our sampling mechanism utilizes the 
clustering analysis, which is used to classify the attack in the 
network to determine the severity of monitored traffic. By 
manipulating the type of service of incoming packet together, 
these two important parameter formulate our sampling 
mechanism algorithm. We show experimentally that by putting 
higher polling frequency on detected anomalous flow, we able to 
detect network attacks much more accurate. 
Key words: 
adaptive poll, anomaly detection, network security, OpenFlow, 
SDN. 

1. Introduction 

Flow-based method lures the interest from researchers for 
the network analysis of high-speed networks. With ever 
increasing load and network usage, clearly scalability is 
paramount issue to be tackle. In order to perform analysis, 
statistic features need to be recorded and it expose to 
unrestraint processing capacity and network bandwidth. 
For this reason, the accuracy of anomaly detection as well 
as the need to balance the trade-off between the overhead 
and the accuracy is crucial. 
The emergence of SDN that promise the simplicity in 
managing networks seems to be the future of the current 
Internet architecture. In fact, several organizations have 
adopted SDN in place, most notably Google [1]. By 
separating the control plane that orchestrated by logical 
network controller platform and data plane as a forwarding 
drive, SDN, however, expose to network security threat 
that can be commence from outside as well as from inside 
attack of the network.   

Network traffic statistics data has been used as inputs for 
anomaly detection as security analysis is critical for 
organization or network providers. In this paper, we 
emphasize on the issues related with the effect of sampling 
on anomaly detection problem. Network anomaly detection 
techniques [2] is based on analysis on network traffic and 
the characteristic of the dynamic statistic features in order 
to detect network abnormalities quickly and accurately. It 
is paramount to balance the trade-off between accuracy of 
anomaly detection and overhead introduced from the flow 
traffic measurements (e.g.-scalability). Sampling decision 
should have some intelligent ability to address some of the 
requirement such as to reach low false alarm and low 
computation convolution objective. In this paper, we 
proposed adaptive sampling decision for the controller to 
capture the most dominant service type of DDoS attack in 
the network where we aim to provide accurate anomaly 
detection while at the same time lowering the number of 
false reported alarm. Our sampling decision method ensure 
malicious flows that come from commonly used attack 
service port is given higher priority than others, thereby 
addressing the accuracy parameter.  
The remainder of this paper is organizes as follows. 
Previous related work is discussed in Section 2 then the 
following Section 3 gives a brief detail of our adaptive 
anomaly detection architecture framework. Our flow 
collector method is presented in Section 3.1 followed by 
Section 3.2 where we explained important network features 
that are crucial for our anomaly detection. The 
methodology and algorithm of our proposed sampling 
decision technique is explained in Section 3.3. The 
performance evaluation results are shown in Section 4. 
Finally, we conclude our discussion in Section 5.  

2. Related Work 

Previously, many researchers started to give attention to 
the impact of sampling method on anomaly detection. [3], 
the author has signified that the packet sampling degrades 
the effectiveness of anomaly detection and dramatically 
increase the false positives. In [4], the author compares 
two type of sampling which is random flow sampling [5] 
and sample-and-hold technique [6]. The result shows that 
random flow sampling performs best for anomaly detection. 
In [7] the authors used flow-based metrics such as the 
number of source IP addresses for the detection and 
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proved that the accuracy and performance of the anomaly 
detection depends mainly on the sampling rate applied and 
the author also proved it is less dependent on the sampling 
technique used. 
Intrusion detection problem has not drawn so much 
intention from researcher despite substantial amount of 
work in Openflow. The eminent work regarding anomaly 
detection in SDN is reported in [8], [9] and [10]. In [8], the 
author utilizes the Openflow architecture for detecting the 
Distributed Denial of Service (DDoS) on the data plane. 
Periodic sampling is used for flow statistics collection 
retrieval and Self-Organized Map has been exploited for 
the intrusion detection classification. In [9], the author uses 
multiple type of anomaly detection algorithm in their 
research test where the author validates their algorithm in 
Small Office/Home Office (SOHO) environment. The 
author utilized Openflow for detecting network security 
problem close to the source of abnormality using the idea 
of decentralization control of the network devices. The 
author also uses periodic sampling for the flow statistics 
collection. Contrast to previous work, author [10] 
decoupled the controller communication channel with 
Openflow switches where the sFlow flow statistics 
collection method is used and the native Openflow 
communication channel is used only for the forwarding 
purposed separately. The experimental results show 
significant reduction in flow table size and the control 
plane load. However, the method used by the author 
increase the false positives percentage in the intrusion 
detection.  

3. Adaptive Query Rate Methodology 

To provide scalable and accurate sampling decision, we 
considered two important parameters which is the anomaly 
detection and the traffic measurement. In our work, two 
important method applied to the incoming packet into the 
controller. At first, the step is to be able to classify the 
incoming packet is either anomalous or normal traffic 
while the second step is responsible for our flow sampling 
decision. Our proposed architecture has been generalized 
in Fig. 1 where it contains 4 main components namely as 
Flow_Collector, Flow_Processing, Sampling_Decision and 
Forwarding_Logic modules. The components are 
developed to be part in the POX controller [11] that we use 
for our simulation. In general, Flow_Collector module 
collect all active flows in the network while the Flow_ 
Processing carried out flow-level analysis to find the 
anomaly behavior from the network flow inspected.  
The module also responsible to provide attack event and 
also the type of service of the incoming packet that has 
been identified. This two information are sent to the 
Sampling_Decision module for the sampling decision 

making. The consideration of both the type of service port 
number and the condition of traffic, our sampling decision 
is defined in such a way that any malicious traffic service 
is given higher priority to be queried and sampled. This is 
to ensure to improve the accuracy of the anomaly detection 
in SDN. We describe each of the components function 
precisely in the following section. 

 

 

Fig. 1 Main Skeleton of proposed architecture 

3.1 Flow Collector 

 It is important to describe how Openflow mechanism 
works when a new packet of a particular flow arrive in the 
switch. First, when any new packet reaches the switch, 
matching process operation are performed. The switch will 
check whether the flow entry that installed previously 
match with the incoming packet. If there is a match, the 
packet will follow the action set for the related flow entry. 
Otherwise, the switch will send the packet to the controller 
for further decision making. The controller receives the 
header information from a control message namely as 
Packet_In from Openflow switch which is result from 
unmatched flow in the switch flow table. Furthermore, the 
controller will perform necessary decision and install the 
rules for the flow into the switch flow table as a flow entry 
by using FlowMod control message. The switch then 
forwards the packet to their destination and subsequent 
packet of that flow are forwarded without interrupting the 
controller. In our proposed work, we record the flow 
information in an active flow table in the controller that 
consist of all current active flows in the network. Our 
structure of Flow_Collector can be described as in Fig. 2.  
 

 
Fig. 2 Active Flow Collector Table in Controller 

 
The table contains 2 main field namely as Flow and 
Counter. The Counter field is further divided into 
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Packet_Count, Total_Bytes and Duration field. After the 
controller receive the incoming Packet_In and perform the 
rules and forwarding decision, our method adds the new 
information to a list of active flows, flowl (in Flow field) 
which is associated with the incoming port of flow. Then, 
controller installs the associated rules as a flow entry in 
switch flow table via FlowMod message. When the flow 
information has been stored, the controller will send 
ofp_flow_stats_request control message to every switch 
that has information about the active flow in order to 
update the controller with their necessary statistic. The 
statistics are as follows: we record the number of packet 
per flow, total bytes per flow and duration of the flow. 
Controller kept previous time-window value record for the 
Counter and perform calculation when get new statistic to 
update current time-window value. Our active flows 
Counter are updated in controller when the Openflow 
switch reply to request message. 

3.1.1 Feature Extractor 

Selection decision of different set from network traffic 
feature sets to be used is common problem in anomaly 
detection. As an example, various types of features are 
widely known such as detection based on packet headers, 
application layer protocol or content byte streaming. In 
Openflow, the controller has the ability to check the packet 
header information. When the switch cannot match the 
incoming packet with their predefined flow table, it will 
forward the packet header information to the controller for 
further action. Our Feature Extractor module extract flow 
information from the Active_Flows module which are vital 
for our anomaly detection classification. All of the 
important features are derive from the packet header 
(source port, destination port, source IP, destination IP and 
protocol). In Openflow, we can get that information from 
control message namely as Packet In. The important 
features are grouped into 5-tuples flow information in a 
hash table. In this stage, all features selected is most likely 
that influence the judgment to classify network traffic as 
normal or as an attack.The 5-tuples features are as follows: 

1. Flow Byte,  - the number of bytes of a particular 
flow capable to provide us a useful information 
for anomaly event in network, such as port scan, 
and it is normally small in size in order to 
increase the coherence of attacks. 

2. Flow Size,  - IP spoofing is one of main 
example of DoS attack that make the task to 
detect the true source of spoofing is nearly 
impossible. The normal operation of spoofing 
usually generates flows with a small number of 
packets. This contradicts from normal network 
traffic where it usually generates a large number 
of packets for a particular flow. 

3. Number of different flows to same Destination IP, 
- Flood attack are created to consume the 

resources of victim host and usually will generate 
a high number of flows. This feature will 
calculate the number of flows to same victim’s 
destination IP address. 

4. Number of flows to different Destination Ports, 
- port scan attack is a process that send 

requests to a number of server port addresses on a 
particular host. The aim of this attack is to 
penetrate an active port on that host and any large 
number of different destination port indicate the 
abnormality and shows higher possibility of the 
network are under attack. 

5. Number of different Source and Destination pair, 
 1– this feature able to spot the port and 

network scans as well as distributed type of 
attacks, which spike the number of source and 
destination pairs. We define this 5 features as 

 where 
 is the observed value at time t. Furthermore, 

this 5 features selected vector fed to our Anomaly 
Classifier module. We purposely choose this 5 
features since the number of packet and bytes of a 
flow allow us to detect anomalies in traffic 
volume while the others will show increment 
values in the number. 

3.1.2 Anomaly Classifier 

There are many notable algorithms that has been 
successfully proven to classify network traffic for anomaly 
detection [12, 13]. In our simulation, we adopt K-mean 
algorithm as our anomaly classifier for simplicity and 
brevity purpose. This algorithm has the ability to learn and 
detect anomalies from the audit data without the intrusion 
signature which is usually provide by the security expert. 
The advantage of this machine learning algorithm is it can 
automatically identify groups of similar objects in the 
training dataset. This clustering algorithm groups multiple 
objects into predefined K disjoint clusters.  
We summarize the steps of performing this algorithm in 
the followings: 

1. Define the number of K clusters. In our anomaly 
detection problem, we set the K=2 where we 
assume that legitimate and anomaly network 
traffic features are from different cluster in space. 

2. Initialize the randomly chosen K clusters and set 
to be as centroid (center of cluster). 

3. The calculation process begins to find the 
distance from each objects to all centroids using 
distance function method where the algorithm 

                                                           
1 We consider port numbers and IP addresses in utilizing this feature 
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continues to read each objects from the data set 
and assigns it to their nearest cluster. 

4. Recalculate/iteration process is done after every 
new objects insertion to the algorithm to get the 
new cluster centroids. 

5. Step 3-4 are repeated until the centroids do not 
change. 

In this algorithm, distance function is required to calculate 
the similarity between two different objects. The following 
equation is Euclidean function which is commonly utilized 
to compute the distance where  and 

 are the two input vector with features. 
 

      (1) 
Using this function however, the features must be 
normalized first since the features are usually measured 
with different metrics. For the evaluation of our proposed 
adaptive anomaly detection method, we use weighted 
Euclidean function as in the following equation: 

         (2) 

The is weight factor and empirical normalization and of 
the  feature. The classification of the network traffic is 
done by the controller where it utilizes this algorithm to 
detect the anomaly. Whenever the 5-tuples features are 
classified as attack, alerts are notices to an administrator. 

3.2 Sampling Decision 

Accuracy and efficiency are two important factors that our 
formulation for the sampling decision is based on. The 
effect of polling rate to anomaly detection and traffic 
measurement derived from accuracy parameter. Higher 
polling rate is favorable to accurately detect the network 
traffic abnormality within short period of time. On the 
contrary, efficiency factor denotes the effect of the polling 
method to the controller memory and CPU resources. 
Since high polling rate in the network lead to large number 
of sampled flows, it is crucial for the controller to have the 
ability to vary the polling rate so that it will not drain the 
resources. Therefore, our sampling decision must have the 
ability to dynamically adjust the polling rate,  based 
on previous stated two parameters. 

3.2.1Anomaly Detection and Traffic Measurement 

According to a report from Akamai [14], the concentration 
of attack traffic is increased during the second quarter of 
2013 where the increased concentration was driven by 
indicatively increases in attack volume targeting Ports 80 
(WWW/ HTTP) and 443 (SSL/HTTPS). For our objective 
of traffic measurement accuracy, we classify common 
attack port as the commonly used source of attack port 
service over the overall flows population. We favor 

sampling to flows that had been attack with commonly 
used source port. Consider a set of m flows of various 
source port service, =  
where . If the source port service of a particular flow, 

 is port 80, we assume that flow is using 
commonly used attack source port service. Priority is given 
to the network traffic based on severity level and the 
service port of the particular flows where we define any 
attacked flow with source port service is port 80 is given 
highest priority. Given a flow with attack probability/event 

 and the source port service of the flow is , the 
prioritization can be expressed as following equation: 
 

 =        (3) 
 
We define as  and  is a weight 
given to them . From the equation above, a large value 
denote the severe network attack on a flow with commonly 
used attack port service. Since both information are known 
parameters, the   value is constructed in such a way that 
higher value is given to abnormal flows. Thus, we ensure 
that the flow with the priority is given more precedence 
compare to other flows. With the network dynamically 
change from time to time, it is very challenging to 
determine the exact value of the weight  , for that reason 
and also for the simplicity, we manually define the value of 
the weight. The appropriate value of the weight of a 
particular flow can be defined by using any other heuristic 
algorithm. After the above steps are completed, our polling 
rate, for a particular flow are decided as following 
equation: 

(4) 

For flows with priority , we set to poll the statistic 

information with higher frequency,  and for the flow with 
attack that has lower severity, we poll the flow information 
lower than the higher priority flow. We leverage the 
accuracy and scalability of the sampling decision by lower 
down the poll frequency for legitimate traffic, . The 
decision for ofp_flow_stats_request scheduling timer are 
set within predefined minimum and maximum timeout 
value where  . The pseudo-code is 
given in Table 1. Note that our sampling decision favor 
flows with certain bias criteria where higher priority is 
given to malicious flows with commonly used attack 
service port number.  
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Table 1 Proposed Adaptive Polling Algorithm 

 
After the controller receive the Packet_In message, it will 
send FlowMod message to install the flow entry into the 
related switch. Then, we utilize Openflow standard 
message type [15] OFPMP_FLOW_STATS request which 
is sent from controller to switches. Our poll scheduling 
algorithm will start to send message to Openflow switch 
requesting the flow statistics information. Furthermore, the 
classification of anomaly is done where the anomaly flow 
will be marked as , the sampling decision is made. The 
process of the sampling decision is simplified for viewing 
in Fig. 3. 

 

Fig. 3. Sampling Decision in Timeline 

4. Performance Evaluation 

In this section, we present our experimental setup and 
performance of our proposed anomaly detection method. 
We focus on the accurateness level of anomaly detection 
with our adaptive poll method and perform comparison 
with static poll mechanism. We also measure the CPU 
performance for the controller in order to leverage the 
possible overhead introduced using our proposed 
technique. We used Mininet [16] to emulate the network 
attack consisting of Openflow switches, links and hosts on 
a single machine. We provide details of the experimental 
setup in Section A followed by explanation about dataset 
and traffic generation that we used in our test Section B. In 
Section C and D, the results are presented. 

4.1 Experimental Setup 

In our anomaly detection method, all of the algorithm is 
implemented on POX controller which is written in Python 
language. For the simulation purpose, we choose Mininet 
network emulator version 2.2.0 with software switch 
availability that support the Openflow standard software 
switch which is OpenvSwitch [17]. We ran our 
experiments to emulate the network attack scenario, as 
well as to train the K-mean classification algorithm, on a 
system with an Intel core i3 CPU and 8 GB RAM memory 
capabilities. Fig. 4 shows the topology setup and the 
network attack scenario that has been used for our 
simulation. Victim network consist of three Openflow 
standard switches that connected to POX controller via 
Openflow protocol channel. We configure the link between 
Victim and Attacker network via a gateway with 1 Gbps 
bandwidth and 20 milliseconds of delay and all other links 
are assumed to have 100Mbps bandwidth. The network 
attack simulated is assumed origin from outside of Victim 
network and all Victim host is connected directly to 
Openflow switch 3 (OFS3).  
 

 

Fig. 4. Simulation topology. 

Algorithm 1: Polling Rate,  
Input: , Feature: Active_flows, A ;  ; C, control 
message  , 
 , 
 , 

 
if   
       store  
        for all  
            send  to  switch, = T 
       end for 
end if 
else if  
        for all  
        execute intrusion_detection_module (Algorithm 2)  
            then 
                 if  then at  end if 

                 else if  then at  end if 
 else if normal traffic then at end if 

       end for 
end if         
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4.2 Dataset and Traffic Generation 

In order to simulate high traffic network, we use CAIDA 
benign Internet trace [18] aiming to evaluate our anomaly 
detection method with real network environment. Since the 
dataset size is huge, we extract only 10% from the data 
which make up approximately 110Mbps of packet and 
almost 6000 flows, enough to simulate high traffic 
behavior of high traffic network. This dataset was used to 
evaluate the accurateness level of anomaly detection with 
the adaptive method proposed. We use Tcpreplay tool [19] 
to replay the extracted CAIDA dataset in the Mininet. This 
tool has the ability to do editing and replaying previously 
captured network traffic and initially it is design to replay 
the malicious network traffic patterns to Intrusion 
Detection/Prevention Systems.  
For the network attack traces, we utilized Scapy [20], a 
computer network manipulation tools written in Python. 
This tool allows us to generate sequence of traffic 
randomly, thus it can be used to simulate attack traffic 
behavior. For portscan attack scenario and to imitate the 
commonly behavior of the attack, we generate and injected 
packet with specific source and destination IP address. 
Furthermore, the source and destination ports were 
randomly selected in each packet generated. Next, to 
emulate the DDoS attack, SYN packets with a set of 
predefined destination port and IP address, together with a 
constantly changed and random set of source port and IP 
address. 

4.3 Training Time and Traffic Classification 

In our anomaly detection, a model that represent the 
normal behavior of a particular network is constructed. We 
train the benign CAIDA dataset with the weighted K-Mean 
algorithm to learn the normal behavior of the data. For the 
testing phase, we manually inject the attack packet and let 
the weighted K-Mean algorithm differentiate and classify 
the attack packet as anomaly. In Table 2, we present the 
training and classification time take by the algorithm to 
perform task such as training time and classification of the 
sample. From the 5 data feature set that we used, the 
training time takes around 7 hours and the classification 
time takes around 315 miliseconds.  

Table 2. Dataset training and classification time. 
 Weighted K-Mean 

Training 
Weighted K-

Mean 
Classification 

 Hrs Ms 
5 tuples 6,37 hs 314  

4.4 Accuracy and Anomaly Classification 

Three important factor to evaluate our proposed 
mechanism is considered: (i) average network traffic rate, 
(ii) the number of attack packet per second and (iii) polling 
rate as shown in Table 3. We used a real 110Mbps Internet 
dataset derived from CAIDA. We injected attack packets 
that emulate the DDoS and port scan attack at different 
packet rate. For our experiment we replayed the benign 
110Mbps dataset while injecting DDoS and port scan.  

Table 3. Parameter values used in experiment. 

 
Our objective in this experiment is to have a better 
accuracy in detecting network anomalies by doing 
comparison using two different kind of network polling 
rate mechanism. For the first experiment, we manually set 
the polling rate to collect the network statistic from the 
Openflow switches at every 5 seconds and the next 
experiment we tested our proposed  mechanism. In 
anomaly detection problem, Receiver Operating 
Characteristic (ROC) curve is usually used to measure the 
performance of the method. The ROC curve is a plot of 
intrusion detection accuracy against the false positive 
probability. In Fig. 5 and Fig. 6, we present the ROC 
curves that we have experimented with two different type 
of attacks with different polling rate mechanism (Table 3). 
In this first experiment, we inject 200 network attack 
packet per second.  

 

Fig. 5 ROC Curve for TCP Portscan attack. 

Average 
Traffic Rate 

(Mbps) 

Attack Rate 
(pps) 

Poll Rate 

110 Mbps 200,350,500 
pps 

Every 5 
seconds 
(static) 
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Fig. 5 depicts the ROC curves for TCP Portscan attack 
with the static and  algorithm. We set the polling rate 
value of . From the graph, the 
K-Mean anomaly classification algorithm achieve nearly 
100% anomaly detection accuracy for both type of polling 
rate mechanism. For the static polling rate, the False 
Positive is approximately almost 52% whereas our 
proposed adaptive polling rate implementation performed 
better where the False Positive of is almost 43%. This 
clearly shows that while the detection rate is almost 
identical, our proposed method able to reduce the False 
Positive factor where the legitimate traffic classified as 
attack which can lead to different action taken from the 
network administrator. Furthermore, it also can lead to 
unnecessary network service disruption for the real 
customers.  
In Fig.6, the ROC curve illustrate our experiment with 
DDoS type of network attack. In this experiment, we also 
injected 200 attack packet per second. When we 
experiment the static polling rate, the False Positive is 
approximately almost 45% and when we tested our 
algorithm, our proposed adaptive polling rate 
implementation performed better where the False Positive 
value significantly drop to almost 34%. The main 
achievement of our method is that when using adaptive 
poll rate, the anomaly detection rate is much faster and 
more accurate than normal poll rate thus enable 
administrator to alert/mitigate anomalous or suspicious 
packet efficiently.  
With the adaptive poll rate proposed, the algorithm might 
force the POX controller to perform more computation 
processing thus could increase the CPU processing time 
since the controller need to handle anomaly detection and 
forwarding decision at the same time. Furthermore, it also 
could increase the communication between the controller 
and all Openflow switches under control. We analyzed the 
impact of the algorithm proposed on controller CPU 
processing in the following Section 4.5. 

 

Fig. 6. ROC Curve for DDoS attack. 

4.5 CPU Performance 

From our first experiment, where we use 110Mbps of 
traffic rate together with 200 attack packet injected per 
second, we further test the performance of the controller to 
find the possible overhead that might introduced. We 
measure and compare the system resources of the 
controller with two types of polling rate. From Table 4, we 
depict the positive factor of the adaptive approach versus 
the static polling rate approach. We perform two type of 
test where the first experiment is tested without the attack 
injected. In this first experiment, we make comparison 
between the static and adaptive polling rate with the 
objective is to find the average CPU percentage introduced 
while performing the polling mechanism. As we can see, 
the required CPU cycles for our adaptive polling rate with 
the weighted K-mean classification algorithm is reduced to 
only 45% when compared to the respective static polling 
rate approach (57%).  
For the next experiment, we inject 200 attack packet that 
depict the Portscan and DDoS attack while replay the 
110Mbps traffic rate. During the attack phase, the static 
polling rate CPU utilization is increased from 57% to 74% 
(average of 17% increment of CPU power needed to 
perform the algorithm. While with our adaptive method, 
the CPU increase from 45% to 61% (14% different). As 
shown in Table 4, we can achieve a slightly decrease in the 
CPU cycle usage of the POX controller with our adaptive 
polling rate methodology. In our method, even though we 
poll more frequently for flow that classified as attack by 
the weighted K-Mean algorithm, at the same time we 
leverage the polling rate for flow that not classified as 
attack to be more relaxed. By doing this way, we can 
achieve lower increment in term of CPU usage percentage 
for the controller. 

Table 4 CPU performance comparison between the static polling rate 
versus our proposed adaptive rated methodology. 

 110Mbps traffic 
(%) 

110Mbps with 
200 attack pps 

(%) 
Weighted K-Mean 

normal poll rate 
57 74 

Weighted K-Mean 
adaptive poll rate 

45 59 

5. Conclusion 

We presented our work on developing more accurate 
intrusion detection mechanism for the network attack in 
SDN paradigm, ultimately allowing better defense against 
the network cyber-attack for an organization. We showed 
that the adaptive query rate anomaly detection is able to 
detect the abnormal traffic behavior much more accurate 
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compared with static interval polling rate time. We prove 
that by using the adaptive method, the False Positive is 
reduced significantly. Furthermore, by relaxing the polling 
rate for traffic that not classified by our method as 
abnormal, we only introduce small increment in CPU 
percentage compared to static polling rate that does not 
differentiate any type of flows.  
As proven from our simulation, the classification K-Mean 
algorithm did not achieve 100% detection rate for the 
injected attack packets. To be exact, the algorithm only 
able to detect 97.82% from total manipulated attack 
packets. We strongly believe that this algorithm are not 
suitable to be used as any DDoS attack defense mechanism 
for classification. The important achievement in this work 
is to prove that by giving higher polling frequency to any 
high probability attack flows from the network, we are able 
to detect more accurate attack flows as opposed to the 
previous related work [8, 9] that use fix time periodic 
sampling for all type of flows.  
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