
IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.6, June 2016

43

Manuscript received June 5, 2016
Manuscript revised June 20, 2016

Adaptive Query Rate for Anomaly Detection with SDN

NM SAHRI† and Koji OKAMURA††,

Summary
In traditional approach, extracting important features for the
application to analyze the anomaly detection problem, introduce
significant overhead on the way of switch handling. Furthermore,
high volumes of network traffic introduce notable issues that
affect the performance and anomaly detection accuracy. Taking
advantage of centralized control plane of Software Defined
Networking (SDN), the task to handle the flow information is
much more simplified programmatically. The accuracy of the
measured flow statistic plays important role in anomaly detection.
While the use of sampling is capable to lessen the scalability
problem of traffic monitoring, the insufficiency of sampled flow
statistic may have led to inaccurate detection rate of anomaly. In
this paper, we propose an adaptive sampling strategy that is able
to provide essential traffic statistics for more accurate anomaly
detection in SDN. Our sampling mechanism utilizes the
clustering analysis, which is used to classify the attack in the
network to determine the severity of monitored traffic. By
manipulating the type of service of incoming packet together,
these two important parameter formulate our sampling
mechanism algorithm. We show experimentally that by putting
higher polling frequency on detected anomalous flow, we able to
detect network attacks much more accurate.
Key words:
adaptive poll, anomaly detection, network security, OpenFlow,
SDN.

1. Introduction

Flow-based method lures the interest from researchers for
the network analysis of high-speed networks. With ever
increasing load and network usage, clearly scalability is
paramount issue to be tackle. In order to perform analysis,
statistic features need to be recorded and it expose to
unrestraint processing capacity and network bandwidth.
For this reason, the accuracy of anomaly detection as well
as the need to balance the trade-off between the overhead
and the accuracy is crucial.
The emergence of SDN that promise the simplicity in
managing networks seems to be the future of the current
Internet architecture. In fact, several organizations have
adopted SDN in place, most notably Google [1]. By
separating the control plane that orchestrated by logical
network controller platform and data plane as a forwarding
drive, SDN, however, expose to network security threat
that can be commence from outside as well as from inside
attack of the network.

Network traffic statistics data has been used as inputs for
anomaly detection as security analysis is critical for
organization or network providers. In this paper, we
emphasize on the issues related with the effect of sampling
on anomaly detection problem. Network anomaly detection
techniques [2] is based on analysis on network traffic and
the characteristic of the dynamic statistic features in order
to detect network abnormalities quickly and accurately. It
is paramount to balance the trade-off between accuracy of
anomaly detection and overhead introduced from the flow
traffic measurements (e.g.-scalability). Sampling decision
should have some intelligent ability to address some of the
requirement such as to reach low false alarm and low
computation convolution objective. In this paper, we
proposed adaptive sampling decision for the controller to
capture the most dominant service type of DDoS attack in
the network where we aim to provide accurate anomaly
detection while at the same time lowering the number of
false reported alarm. Our sampling decision method ensure
malicious flows that come from commonly used attack
service port is given higher priority than others, thereby
addressing the accuracy parameter.
The remainder of this paper is organizes as follows.
Previous related work is discussed in Section 2 then the
following Section 3 gives a brief detail of our adaptive
anomaly detection architecture framework. Our flow
collector method is presented in Section 3.1 followed by
Section 3.2 where we explained important network features
that are crucial for our anomaly detection. The
methodology and algorithm of our proposed sampling
decision technique is explained in Section 3.3. The
performance evaluation results are shown in Section 4.
Finally, we conclude our discussion in Section 5.

2. Related Work

Previously, many researchers started to give attention to
the impact of sampling method on anomaly detection. [3],
the author has signified that the packet sampling degrades
the effectiveness of anomaly detection and dramatically
increase the false positives. In [4], the author compares
two type of sampling which is random flow sampling [5]
and sample-and-hold technique [6]. The result shows that
random flow sampling performs best for anomaly detection.
In [7] the authors used flow-based metrics such as the
number of source IP addresses for the detection and

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.6, June 2016

44

proved that the accuracy and performance of the anomaly
detection depends mainly on the sampling rate applied and
the author also proved it is less dependent on the sampling
technique used.
Intrusion detection problem has not drawn so much
intention from researcher despite substantial amount of
work in Openflow. The eminent work regarding anomaly
detection in SDN is reported in [8], [9] and [10]. In [8], the
author utilizes the Openflow architecture for detecting the
Distributed Denial of Service (DDoS) on the data plane.
Periodic sampling is used for flow statistics collection
retrieval and Self-Organized Map has been exploited for
the intrusion detection classification. In [9], the author uses
multiple type of anomaly detection algorithm in their
research test where the author validates their algorithm in
Small Office/Home Office (SOHO) environment. The
author utilized Openflow for detecting network security
problem close to the source of abnormality using the idea
of decentralization control of the network devices. The
author also uses periodic sampling for the flow statistics
collection. Contrast to previous work, author [10]
decoupled the controller communication channel with
Openflow switches where the sFlow flow statistics
collection method is used and the native Openflow
communication channel is used only for the forwarding
purposed separately. The experimental results show
significant reduction in flow table size and the control
plane load. However, the method used by the author
increase the false positives percentage in the intrusion
detection.

3. Adaptive Query Rate Methodology

To provide scalable and accurate sampling decision, we
considered two important parameters which is the anomaly
detection and the traffic measurement. In our work, two
important method applied to the incoming packet into the
controller. At first, the step is to be able to classify the
incoming packet is either anomalous or normal traffic
while the second step is responsible for our flow sampling
decision. Our proposed architecture has been generalized
in Fig. 1 where it contains 4 main components namely as
Flow_Collector, Flow_Processing, Sampling_Decision and
Forwarding_Logic modules. The components are
developed to be part in the POX controller [11] that we use
for our simulation. In general, Flow_Collector module
collect all active flows in the network while the Flow_
Processing carried out flow-level analysis to find the
anomaly behavior from the network flow inspected.
The module also responsible to provide attack event and
also the type of service of the incoming packet that has
been identified. This two information are sent to the
Sampling_Decision module for the sampling decision

making. The consideration of both the type of service port
number and the condition of traffic, our sampling decision
is defined in such a way that any malicious traffic service
is given higher priority to be queried and sampled. This is
to ensure to improve the accuracy of the anomaly detection
in SDN. We describe each of the components function
precisely in the following section.

Fig. 1 Main Skeleton of proposed architecture

3.1 Flow Collector

 It is important to describe how Openflow mechanism
works when a new packet of a particular flow arrive in the
switch. First, when any new packet reaches the switch,
matching process operation are performed. The switch will
check whether the flow entry that installed previously
match with the incoming packet. If there is a match, the
packet will follow the action set for the related flow entry.
Otherwise, the switch will send the packet to the controller
for further decision making. The controller receives the
header information from a control message namely as
Packet_In from Openflow switch which is result from
unmatched flow in the switch flow table. Furthermore, the
controller will perform necessary decision and install the
rules for the flow into the switch flow table as a flow entry
by using FlowMod control message. The switch then
forwards the packet to their destination and subsequent
packet of that flow are forwarded without interrupting the
controller. In our proposed work, we record the flow
information in an active flow table in the controller that
consist of all current active flows in the network. Our
structure of Flow_Collector can be described as in Fig. 2.

Fig. 2 Active Flow Collector Table in Controller

The table contains 2 main field namely as Flow and
Counter. The Counter field is further divided into

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.6, June 2016

45

Packet_Count, Total_Bytes and Duration field. After the
controller receive the incoming Packet_In and perform the
rules and forwarding decision, our method adds the new
information to a list of active flows, flowl (in Flow field)
which is associated with the incoming port of flow. Then,
controller installs the associated rules as a flow entry in
switch flow table via FlowMod message. When the flow
information has been stored, the controller will send
ofp_flow_stats_request control message to every switch
that has information about the active flow in order to
update the controller with their necessary statistic. The
statistics are as follows: we record the number of packet
per flow, total bytes per flow and duration of the flow.
Controller kept previous time-window value record for the
Counter and perform calculation when get new statistic to
update current time-window value. Our active flows
Counter are updated in controller when the Openflow
switch reply to request message.

3.1.1 Feature Extractor

Selection decision of different set from network traffic
feature sets to be used is common problem in anomaly
detection. As an example, various types of features are
widely known such as detection based on packet headers,
application layer protocol or content byte streaming. In
Openflow, the controller has the ability to check the packet
header information. When the switch cannot match the
incoming packet with their predefined flow table, it will
forward the packet header information to the controller for
further action. Our Feature Extractor module extract flow
information from the Active_Flows module which are vital
for our anomaly detection classification. All of the
important features are derive from the packet header
(source port, destination port, source IP, destination IP and
protocol). In Openflow, we can get that information from
control message namely as Packet In. The important
features are grouped into 5-tuples flow information in a
hash table. In this stage, all features selected is most likely
that influence the judgment to classify network traffic as
normal or as an attack.The 5-tuples features are as follows:

1. Flow Byte, - the number of bytes of a particular
flow capable to provide us a useful information
for anomaly event in network, such as port scan,
and it is normally small in size in order to
increase the coherence of attacks.

2. Flow Size, - IP spoofing is one of main
example of DoS attack that make the task to
detect the true source of spoofing is nearly
impossible. The normal operation of spoofing
usually generates flows with a small number of
packets. This contradicts from normal network
traffic where it usually generates a large number
of packets for a particular flow.

3. Number of different flows to same Destination IP,
- Flood attack are created to consume the

resources of victim host and usually will generate
a high number of flows. This feature will
calculate the number of flows to same victim’s
destination IP address.

4. Number of flows to different Destination Ports,
- port scan attack is a process that send

requests to a number of server port addresses on a
particular host. The aim of this attack is to
penetrate an active port on that host and any large
number of different destination port indicate the
abnormality and shows higher possibility of the
network are under attack.

5. Number of different Source and Destination pair,
 1– this feature able to spot the port and

network scans as well as distributed type of
attacks, which spike the number of source and
destination pairs. We define this 5 features as

 where
 is the observed value at time t. Furthermore,

this 5 features selected vector fed to our Anomaly
Classifier module. We purposely choose this 5
features since the number of packet and bytes of a
flow allow us to detect anomalies in traffic
volume while the others will show increment
values in the number.

3.1.2 Anomaly Classifier

There are many notable algorithms that has been
successfully proven to classify network traffic for anomaly
detection [12, 13]. In our simulation, we adopt K-mean
algorithm as our anomaly classifier for simplicity and
brevity purpose. This algorithm has the ability to learn and
detect anomalies from the audit data without the intrusion
signature which is usually provide by the security expert.
The advantage of this machine learning algorithm is it can
automatically identify groups of similar objects in the
training dataset. This clustering algorithm groups multiple
objects into predefined K disjoint clusters.
We summarize the steps of performing this algorithm in
the followings:

1. Define the number of K clusters. In our anomaly
detection problem, we set the K=2 where we
assume that legitimate and anomaly network
traffic features are from different cluster in space.

2. Initialize the randomly chosen K clusters and set
to be as centroid (center of cluster).

3. The calculation process begins to find the
distance from each objects to all centroids using
distance function method where the algorithm

1 We consider port numbers and IP addresses in utilizing this feature

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.6, June 2016

46

continues to read each objects from the data set
and assigns it to their nearest cluster.

4. Recalculate/iteration process is done after every
new objects insertion to the algorithm to get the
new cluster centroids.

5. Step 3-4 are repeated until the centroids do not
change.

In this algorithm, distance function is required to calculate
the similarity between two different objects. The following
equation is Euclidean function which is commonly utilized
to compute the distance where and

 are the two input vector with features.

 (1)
Using this function however, the features must be
normalized first since the features are usually measured
with different metrics. For the evaluation of our proposed
adaptive anomaly detection method, we use weighted
Euclidean function as in the following equation:

 (2)

The is weight factor and empirical normalization and of
the feature. The classification of the network traffic is
done by the controller where it utilizes this algorithm to
detect the anomaly. Whenever the 5-tuples features are
classified as attack, alerts are notices to an administrator.

3.2 Sampling Decision

Accuracy and efficiency are two important factors that our
formulation for the sampling decision is based on. The
effect of polling rate to anomaly detection and traffic
measurement derived from accuracy parameter. Higher
polling rate is favorable to accurately detect the network
traffic abnormality within short period of time. On the
contrary, efficiency factor denotes the effect of the polling
method to the controller memory and CPU resources.
Since high polling rate in the network lead to large number
of sampled flows, it is crucial for the controller to have the
ability to vary the polling rate so that it will not drain the
resources. Therefore, our sampling decision must have the
ability to dynamically adjust the polling rate, based
on previous stated two parameters.

3.2.1Anomaly Detection and Traffic Measurement

According to a report from Akamai [14], the concentration
of attack traffic is increased during the second quarter of
2013 where the increased concentration was driven by
indicatively increases in attack volume targeting Ports 80
(WWW/ HTTP) and 443 (SSL/HTTPS). For our objective
of traffic measurement accuracy, we classify common
attack port as the commonly used source of attack port
service over the overall flows population. We favor

sampling to flows that had been attack with commonly
used source port. Consider a set of m flows of various
source port service, =
where . If the source port service of a particular flow,

 is port 80, we assume that flow is using
commonly used attack source port service. Priority is given
to the network traffic based on severity level and the
service port of the particular flows where we define any
attacked flow with source port service is port 80 is given
highest priority. Given a flow with attack probability/event

 and the source port service of the flow is , the
prioritization can be expressed as following equation:

 = (3)

We define as and is a weight
given to them . From the equation above, a large value
denote the severe network attack on a flow with commonly
used attack port service. Since both information are known
parameters, the value is constructed in such a way that
higher value is given to abnormal flows. Thus, we ensure
that the flow with the priority is given more precedence
compare to other flows. With the network dynamically
change from time to time, it is very challenging to
determine the exact value of the weight , for that reason
and also for the simplicity, we manually define the value of
the weight. The appropriate value of the weight of a
particular flow can be defined by using any other heuristic
algorithm. After the above steps are completed, our polling
rate, for a particular flow are decided as following
equation:

(4)

For flows with priority , we set to poll the statistic

information with higher frequency, and for the flow with
attack that has lower severity, we poll the flow information
lower than the higher priority flow. We leverage the
accuracy and scalability of the sampling decision by lower
down the poll frequency for legitimate traffic, . The
decision for ofp_flow_stats_request scheduling timer are
set within predefined minimum and maximum timeout
value where . The pseudo-code is
given in Table 1. Note that our sampling decision favor
flows with certain bias criteria where higher priority is
given to malicious flows with commonly used attack
service port number.

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.6, June 2016

47

Table 1 Proposed Adaptive Polling Algorithm

After the controller receive the Packet_In message, it will
send FlowMod message to install the flow entry into the
related switch. Then, we utilize Openflow standard
message type [15] OFPMP_FLOW_STATS request which
is sent from controller to switches. Our poll scheduling
algorithm will start to send message to Openflow switch
requesting the flow statistics information. Furthermore, the
classification of anomaly is done where the anomaly flow
will be marked as , the sampling decision is made. The
process of the sampling decision is simplified for viewing
in Fig. 3.

Fig. 3. Sampling Decision in Timeline

4. Performance Evaluation

In this section, we present our experimental setup and
performance of our proposed anomaly detection method.
We focus on the accurateness level of anomaly detection
with our adaptive poll method and perform comparison
with static poll mechanism. We also measure the CPU
performance for the controller in order to leverage the
possible overhead introduced using our proposed
technique. We used Mininet [16] to emulate the network
attack consisting of Openflow switches, links and hosts on
a single machine. We provide details of the experimental
setup in Section A followed by explanation about dataset
and traffic generation that we used in our test Section B. In
Section C and D, the results are presented.

4.1 Experimental Setup

In our anomaly detection method, all of the algorithm is
implemented on POX controller which is written in Python
language. For the simulation purpose, we choose Mininet
network emulator version 2.2.0 with software switch
availability that support the Openflow standard software
switch which is OpenvSwitch [17]. We ran our
experiments to emulate the network attack scenario, as
well as to train the K-mean classification algorithm, on a
system with an Intel core i3 CPU and 8 GB RAM memory
capabilities. Fig. 4 shows the topology setup and the
network attack scenario that has been used for our
simulation. Victim network consist of three Openflow
standard switches that connected to POX controller via
Openflow protocol channel. We configure the link between
Victim and Attacker network via a gateway with 1 Gbps
bandwidth and 20 milliseconds of delay and all other links
are assumed to have 100Mbps bandwidth. The network
attack simulated is assumed origin from outside of Victim
network and all Victim host is connected directly to
Openflow switch 3 (OFS3).

Fig. 4. Simulation topology.

Algorithm 1: Polling Rate,
Input: , Feature: Active_flows, A ; ; C, control
message ,
 ,
 ,

if
 store
 for all
 send to switch, = T
 end for
end if
else if
 for all
 execute intrusion_detection_module (Algorithm 2)
 then
 if then at end if

 else if then at end if
 else if normal traffic then at end if

 end for
end if

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.6, June 2016

48

4.2 Dataset and Traffic Generation

In order to simulate high traffic network, we use CAIDA
benign Internet trace [18] aiming to evaluate our anomaly
detection method with real network environment. Since the
dataset size is huge, we extract only 10% from the data
which make up approximately 110Mbps of packet and
almost 6000 flows, enough to simulate high traffic
behavior of high traffic network. This dataset was used to
evaluate the accurateness level of anomaly detection with
the adaptive method proposed. We use Tcpreplay tool [19]
to replay the extracted CAIDA dataset in the Mininet. This
tool has the ability to do editing and replaying previously
captured network traffic and initially it is design to replay
the malicious network traffic patterns to Intrusion
Detection/Prevention Systems.
For the network attack traces, we utilized Scapy [20], a
computer network manipulation tools written in Python.
This tool allows us to generate sequence of traffic
randomly, thus it can be used to simulate attack traffic
behavior. For portscan attack scenario and to imitate the
commonly behavior of the attack, we generate and injected
packet with specific source and destination IP address.
Furthermore, the source and destination ports were
randomly selected in each packet generated. Next, to
emulate the DDoS attack, SYN packets with a set of
predefined destination port and IP address, together with a
constantly changed and random set of source port and IP
address.

4.3 Training Time and Traffic Classification

In our anomaly detection, a model that represent the
normal behavior of a particular network is constructed. We
train the benign CAIDA dataset with the weighted K-Mean
algorithm to learn the normal behavior of the data. For the
testing phase, we manually inject the attack packet and let
the weighted K-Mean algorithm differentiate and classify
the attack packet as anomaly. In Table 2, we present the
training and classification time take by the algorithm to
perform task such as training time and classification of the
sample. From the 5 data feature set that we used, the
training time takes around 7 hours and the classification
time takes around 315 miliseconds.

Table 2. Dataset training and classification time.
 Weighted K-Mean

Training
Weighted K-

Mean
Classification

 Hrs Ms
5 tuples 6,37 hs 314

4.4 Accuracy and Anomaly Classification

Three important factor to evaluate our proposed
mechanism is considered: (i) average network traffic rate,
(ii) the number of attack packet per second and (iii) polling
rate as shown in Table 3. We used a real 110Mbps Internet
dataset derived from CAIDA. We injected attack packets
that emulate the DDoS and port scan attack at different
packet rate. For our experiment we replayed the benign
110Mbps dataset while injecting DDoS and port scan.

Table 3. Parameter values used in experiment.

Our objective in this experiment is to have a better
accuracy in detecting network anomalies by doing
comparison using two different kind of network polling
rate mechanism. For the first experiment, we manually set
the polling rate to collect the network statistic from the
Openflow switches at every 5 seconds and the next
experiment we tested our proposed mechanism. In
anomaly detection problem, Receiver Operating
Characteristic (ROC) curve is usually used to measure the
performance of the method. The ROC curve is a plot of
intrusion detection accuracy against the false positive
probability. In Fig. 5 and Fig. 6, we present the ROC
curves that we have experimented with two different type
of attacks with different polling rate mechanism (Table 3).
In this first experiment, we inject 200 network attack
packet per second.

Fig. 5 ROC Curve for TCP Portscan attack.

Average
Traffic Rate

(Mbps)

Attack Rate
(pps)

Poll Rate

110 Mbps 200,350,500
pps

Every 5
seconds
(static)

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.6, June 2016

49

Fig. 5 depicts the ROC curves for TCP Portscan attack
with the static and algorithm. We set the polling rate
value of . From the graph, the
K-Mean anomaly classification algorithm achieve nearly
100% anomaly detection accuracy for both type of polling
rate mechanism. For the static polling rate, the False
Positive is approximately almost 52% whereas our
proposed adaptive polling rate implementation performed
better where the False Positive of is almost 43%. This
clearly shows that while the detection rate is almost
identical, our proposed method able to reduce the False
Positive factor where the legitimate traffic classified as
attack which can lead to different action taken from the
network administrator. Furthermore, it also can lead to
unnecessary network service disruption for the real
customers.
In Fig.6, the ROC curve illustrate our experiment with
DDoS type of network attack. In this experiment, we also
injected 200 attack packet per second. When we
experiment the static polling rate, the False Positive is
approximately almost 45% and when we tested our
algorithm, our proposed adaptive polling rate
implementation performed better where the False Positive
value significantly drop to almost 34%. The main
achievement of our method is that when using adaptive
poll rate, the anomaly detection rate is much faster and
more accurate than normal poll rate thus enable
administrator to alert/mitigate anomalous or suspicious
packet efficiently.
With the adaptive poll rate proposed, the algorithm might
force the POX controller to perform more computation
processing thus could increase the CPU processing time
since the controller need to handle anomaly detection and
forwarding decision at the same time. Furthermore, it also
could increase the communication between the controller
and all Openflow switches under control. We analyzed the
impact of the algorithm proposed on controller CPU
processing in the following Section 4.5.

Fig. 6. ROC Curve for DDoS attack.

4.5 CPU Performance

From our first experiment, where we use 110Mbps of
traffic rate together with 200 attack packet injected per
second, we further test the performance of the controller to
find the possible overhead that might introduced. We
measure and compare the system resources of the
controller with two types of polling rate. From Table 4, we
depict the positive factor of the adaptive approach versus
the static polling rate approach. We perform two type of
test where the first experiment is tested without the attack
injected. In this first experiment, we make comparison
between the static and adaptive polling rate with the
objective is to find the average CPU percentage introduced
while performing the polling mechanism. As we can see,
the required CPU cycles for our adaptive polling rate with
the weighted K-mean classification algorithm is reduced to
only 45% when compared to the respective static polling
rate approach (57%).
For the next experiment, we inject 200 attack packet that
depict the Portscan and DDoS attack while replay the
110Mbps traffic rate. During the attack phase, the static
polling rate CPU utilization is increased from 57% to 74%
(average of 17% increment of CPU power needed to
perform the algorithm. While with our adaptive method,
the CPU increase from 45% to 61% (14% different). As
shown in Table 4, we can achieve a slightly decrease in the
CPU cycle usage of the POX controller with our adaptive
polling rate methodology. In our method, even though we
poll more frequently for flow that classified as attack by
the weighted K-Mean algorithm, at the same time we
leverage the polling rate for flow that not classified as
attack to be more relaxed. By doing this way, we can
achieve lower increment in term of CPU usage percentage
for the controller.

Table 4 CPU performance comparison between the static polling rate
versus our proposed adaptive rated methodology.

 110Mbps traffic
(%)

110Mbps with
200 attack pps

(%)
Weighted K-Mean

normal poll rate
57 74

Weighted K-Mean
adaptive poll rate

45 59

5. Conclusion

We presented our work on developing more accurate
intrusion detection mechanism for the network attack in
SDN paradigm, ultimately allowing better defense against
the network cyber-attack for an organization. We showed
that the adaptive query rate anomaly detection is able to
detect the abnormal traffic behavior much more accurate

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.6, June 2016

50

compared with static interval polling rate time. We prove
that by using the adaptive method, the False Positive is
reduced significantly. Furthermore, by relaxing the polling
rate for traffic that not classified by our method as
abnormal, we only introduce small increment in CPU
percentage compared to static polling rate that does not
differentiate any type of flows.
As proven from our simulation, the classification K-Mean
algorithm did not achieve 100% detection rate for the
injected attack packets. To be exact, the algorithm only
able to detect 97.82% from total manipulated attack
packets. We strongly believe that this algorithm are not
suitable to be used as any DDoS attack defense mechanism
for classification. The important achievement in this work
is to prove that by giving higher polling frequency to any
high probability attack flows from the network, we are able
to detect more accurate attack flows as opposed to the
previous related work [8, 9] that use fix time periodic
sampling for all type of flows.

Acknowledgments

The author would like to thank the Ministry of Higher
Education of Malaysia and University of Technology
MARA Malaysia for financially supporting this research
under Contract KPT(BS)790405085321.

References
[1] S. Jain, A. Kumar, S.Mandal, J. Ong, L. Poutievski, A.

Singh, S. Venkata, J.Wanderer, J. Zhou, M. Zhu, J. Zolla, U.
Holzle, S. Stuart, and A. Vahdat, “B4: Experience with a
Globally-deployed Software DefinedWAN,” SIGCOMM
Comput. Commun. Rev., vol. 43, no. 4, pp. 3–14, Aug.
2013

[2] P. Barford and D. Plonka, “Characteristics of Network
Traffic Flow Anomalies,” Proc. 1st ACM SIGCOMM
Internet Measurement Wksp, San Francis- co, CA, Nov.
2001, pp. 69–74.

[3] MAI J., SRIDHARAN A., CHUAH C.N., ET AL.: ‘Impact
of packet sampling on portscan detection’, IEEE J. Sel.
Areas Commun., 2006, 24, (12), pp. 2285–2298

[4] MAI J., SRIDHARAN A., CHUAH C.N., ET AL.: ‘Is
sampled data sufficient for anomaly detection?’. Internet
Measurement Conf., Rio de Janeiro, Brazil, October 2006,
pp. 165–176

[5] DUFFIELD N.G., LUND C.: ‘Predicting resource usage and
estimation accuracy in an IP flow measurement collection
infrastructure’. ACM SIGCOMM Internet Measurement
Conf., Miami, FL, USA, October 2003, pp. 179–191

[6] ESTAN C., VARGHESE G.: ‘New directions in traffic
measurement and accounting’. Proc. SIGCOMM’02,
Pittsburgh, PN, USA, August 2002, pp. 323–336

[7] ANDROULIDAKIS G., CHATZIGIANNAKIS V.,
PAPAVASSILIOU S., ET AL.: ‘Understanding and
evaluating the impact of sampling on anomaly detection

techniques’. IEEE Military Communications
Conf.,Washington, DC, USA, October 2006

[8] Rodrigo Braga, Edjard Mota, Alexandre Passito,
Lightweight DDoS flooding attack detection using
NOX/OpenFlow, in: LCN ‘10 Proceedings of the 2010
IEEE 35th Conference on Local, Computer, 2010, pp. 408–
415.

[9] Syed Akbar Mehdi, Junaid Khalid, Syed Ali Khayam,
Revisiting traffic anomaly detection using software defined
networking, in: RAID’11 Proceedings of the 14th
International Conference on Recent Advances in Intrusion
Detection, 2011, pp. 161–180.

[10] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras,
and V. Maglaris, “Combining openflow and sflow for an
effective and scalable anomaly detection and mitigation
mechanism on sdn environments,” Computer Networks, vol.
62, no. 0, pp. 122 – 136, 2014.

[11] POX.’An Openflow Controller’, Online Referencing,
http://www.noxrepo.org/pox/about-pox/ (2008, accessed
May 2015).

[12] Y. Gu, A. McCallum, and D. Towsley, “Detecting
anomalies in network traffic using maximum entropy
estimation,” in Proc. Internet Measurement Conference,
2005

[13] RAMADAS, M., OSTERMANN, S., AND TJADEN, B. C.,
“Detecting anomalous network traffic with self-organizing
maps.” In Proceedings of the Conference on Recent
Advances in Intrusion Detection. 2003, 36–54

[14] Ed. Belson David, “The State of the Internet,” Volume 6,
Number 2, Akamai Internet Quarterly Report, Online
Referencing,
http://www.akamai.com/dl/documents/akamai_soti_q213.pd
f (2013, accessed March 2015).

[15] Open Networking Foundation, "OpenFlow switch
specification, version 1.3.", Online Referencing,
https://www.opennetworking.org/images/stories/downloads/
sdn-resources/onf-specifications/openflow/openflow-spec-
v1.3.0.pdf (2012, accessed April 2015).

[16] Mininet, “An Instant Virtual Network on your Laptop”,
Online Referencing, http://mininet.org (2012, accessed
April 2015).

[17] Ben Plaff et al., Extending networking into the
virtualization layer, in: 8th ACM Workshop on Hot Topics
in Networks (HotNets-VIII), New York, City, 2009.

[18] CAIDA, “The CAIDA UCSD Anonymized Internet traces
2013.”, Online Referencing,
http://www.caida.org/data/passive/passive_2013_dataset.xm
l (2013, accessed August 2015).

[19] Tcpreplay, Online Referencing,
http://tcpreplay.synfin.net(accessed June 2015).

[20] SCAPY, Online Referencing, http://hg.secdev.org/scapy
(accessed June 2015).

http://www.noxrepo.org/pox/about-pox/
http://www.akamai.com/dl/documents/akamai_soti_q213.pdf
http://www.akamai.com/dl/documents/akamai_soti_q213.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
http://mininet.org/
http://www.caida.org/data/passive/passive_2013_dataset.xml
http://www.caida.org/data/passive/passive_2013_dataset.xml
http://tcpreplay.synfin.net/
http://hg.secdev.org/scapy

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.6, June 2016

51

Nor Masri Sahri received his first
Bachelor Degree (B. of Information
Technology) from Northern University of
Malaysia on 2001 and obtained his Master
Degree (MSc. of Information Technology)
from University of Technology MARA on
2006. He has 6 years of industrial
experience in one of the largest network
service provider in Malaysia working as

Senior Network Engineer. He is currently a Ph.D. student and
belong to the department of Advanced Information Technology,
Graduate School of Information Science and Electrical
Engineering, Kyushu University, Japan.

Koji Okamura is a Professor at
Department of Advanced Information
Technology and also at Computer Center
Kyushu University, Japan. He received B.S.
and M.S. Degree in Computer Science and
Communication Engineering and Ph.D. in
Graduate School of Information Science
and Electrical Engineering from Kyushu
University, Japan in 1988, 1990 and 1998,

respectively. He has been a researcher of MITSUBISHI
Electronics Corporation Japan for several years and has been a
Research Associate at the Graduate School of Information
Science, Nara Institute of Science and Technology, Japan and
Computer Center, Kobe University, Japan.

