
IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.6, June 2016

75

Manuscript received June 5, 2016
Manuscript revised June 20, 2016

Provide a Method of Scheduling In Computational Grid Using
Imperialist Competitive Algorithm

Mostafa Pahlevanzadeh 1 and Ali HarounAbadi 2,

1Department Of Computer Engineering, Electronic Branch, Islamic Azad University,Tehran,Iran
2Department Of Computer Engineering, Central Tehran Branch- Islamic Azad University, Tehran,Iran

Summary
The computational grids are a kind of distributed computations in
which the resources of different computers that are distributed
geographically, are shared to solve a particular problem.
Scheduler is used to schedule user tasks appropriately according
to the resources available in the Grid environment. To achieve
this objective, efficient scheduling is an important part of a grid.
In this paper, we present a new method using a combination of
Imperialist Competitive Algorithm and Gravitational emulation
local search algorithm. Findings of the experiments show that the
proposed algorithm can reduce the duration of finishing tasks and
the rate of missed tasks.
Keywords:
Computational Grid, scheduling of workflow, Imperialist
Competitive Algorithm, Gravitational emulation local search
algorithm

1. Introduction

The grid is actually a type of parallel and distributed
system that enables the sharing, selection and integration
of distributed resources across the field and various
organizations on the basis of availability, capability,
efficiency, cost and quality required by users [1].
Computational Grids have been developed as a new
approach to solving large-scale problems in science,
engineering and business. They be able to create Virtual
Enterprises in order to share and integrate geographically
millions of sources in organizations and managerial areas
[2]. One of the important components in Grid systems is
scheduler. This scheduler can be very simple, but most
schedulers should be able to prioritize tasks and control
system. In a Grid system, the user must be aware of the
available and accessible resources in the system. Workload
management system can easily do it [3]. Services like GIS
and MDS tell the system what source or sources are
provided [4]. The scheduler is for scheduling systems and
heterogeneous distributed computing systems including
NP-Complete and so far, several models and algorithms
are provided to optimize the scheduling problem on
heterogeneous systems.

2. Work Platform

Society-based algorithms such as Imperialist Competitive
Algorithm searching the problem space as a whole and as
a result, its integration is toward the global optimal and it
has nothing to do with the local optimal. This disadvantage
can be overcome using a combination of local search
algorithms. Gravitational emulation local search algorithm
is one of the local search algorithms that mimics the
gravitational force and prevents the particles trapped in
local optima.

2.1 Imperialist Competitive Algorithm

ICA algorithm is a method in the field of evolutionary
computation that is able to find the optimal solution for
optimization problems. With the mathematical model of
the process of social-political development, this algorithm
offers an algorithm for solving optimization mathematical
problems. The algorithm's main pillars consist of
assimilation, imperialistic competition and revolution.In
fact, this algorithm considers the answer of optimization
problem according to countries and tries to improve these
solutions in an iterative process and ultimately lead to the
optimal solution [5].

2.2 Gravitational emulation local search algorithm

This algorithm is based on the principle of gravitational
force that causes objects in nature to be absorbed towards
each other, so that an object which has more mass, would
has a higher gravitational force. In this algorithm, each
answer has different neighbors. Neighbors obtained in
each group called the neighbors in its dimension [8]. For
each dimension of answer, an initial speed would be
defined. However, any dimension which has more initial
speed, would be a more suitable answer to the required
problem. In this algorithm, the gravitational force between
two objects is calculated using (1).
F=G(CU−CA)

R2
 (1)

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5340301
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5340301
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5340301
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5340301
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5340301
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5340301

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.6, June 2016

76

3. Related Work

Regarding extension and dynamics of grid space,
deterministic algorithms cannot be efficient for solving the
problem of scheduling. This has prompted researchers to
experience the meta-heuristic algorithm for this problem,
because the major share of experiences to solve this
problem belong to the society-based algorithms such as
genetics, population of particles and imperialist
competition.
In [7], the imperialist competitive algorithm is designed
solely for scheduling computational grid. The duration
parameter is compared to methods such as GAA, GGA
and GSA. The result of this comparison is superiority of
Imperialist Competitive Algorithm in relation to the other
methods of scheduling in computational grid.
In [9], a hybrid algorithm called RHGGSA that combines
GA and Glass algorithms have been proposed to solve the
scheduling problem and take into consideration the time
and cost of completing the implementation simultaneously.
The results of this algorithm has been compared with Min-
Min, GA and GA-VNS algorithms, which indicates the
efficiency of the proposed algorithm.
In[10], with a combination of genetic and gravitational
emulation local search, a new algorithm is proposed to
reduce the execution time and the number of new tasks
that their deadline has passed. Compare the performance
of the proposed method with similar methods showed that
this method obtains better computational time. In this
paper, in addition to Makespan, the measure of load
balancing on resources is also investigated.
In [12], the combination of PSO and GELS algorithm is
used to schedule tasks. This algorithm aims to minimize
the execution time. Compare the results of this algorithm
and PSO, GA and SA algorithms, indicates the efficiency
of the proposed algorithm.

4. The proposed method

In this section, a method is proposed to schedule tasks of
computational grid by optimizing the time and the number
of the missed tasks. Suppose that there is a set of n tasks
and a set of m source. Each of the n tasks must be
processed in some way by each of the m source, so finally
when performing tasks minimized and also minimize the
number of missed tasks.

4.1 Fitness function

The first objective is to minimize Makespan or finish the
longest execution time among all processors in the system.
Suppose that Li and SPj to represent the size of the task i
and j are the source of processing speed. So the execution
time of task i on the source j can be achieved through the
(2).

T (exe)= Li
SPj

 (2)
On the other hand, the execution time of task i on the
source j can be achieved through the (3).
Tcompelete(I,j)=Texe(i,j)+wait(i,j) (3)
As a result, the (4) can obtain Makespan.
T complete = ∑Tk

spj
 (4)

Makespan(α)=max(T complete)
As noted above, the most important goal of scheduler is to
be able to minimize the Makespan. Note that this time
should be less than or equal to the maximum deadline
(MD) in the midst of all tasks. In the proposed method for
solving tasks scheduling with the help of imperialist
competitive algorithm, a colony is appropriate that in
addition to minimizing the Makespan, has a lower number
of missed tasks. (5) shows how to calculate the fitness
function for each colony.

fitness (country) = 1

 makespan (country)
+ 1
MissTask∗Md

 (5)

4.2 Production of initial population

The initial population (Ncountry) randomly generated that
each solution (country) is a vector to the dimensions of
1*n and n is the number of tasks. The value of each
solution is numbers from 1 to the number of available
resources. For example, Figure 1 shows an example of a
solution with 9 tasks and 3 sources. The fitness of each
solution is calculated based on the (5). The number of
Nimp solution of the members of this population
(countries with the best fitness function value) picked as
the empire. Ncol or the rest of the countries constitute
some colonies and each belong to an empire. For the
partition of colonies, a number of colonies to be assigned
to each empire commensurate with its power.

Fig. 1. Example of a solution with 9 tasks and 3 sources

In (6), Ci is the value of fitness in any empire and Min
(Ci) is the lowest fitness function in an empire.
ci= Ci -Min (Ci) (6)
Each imperial power is calculated according to (7), which
means that by the fitness of each empire to the total
amount of fitness in all empires.

Pi=� ci

∑ ciNimp
j=1

� (7)

Finally, the number of colonies for each empire, according
to the (8) is equal to:
N.Ci=Round(Pi*Ncol) (8)

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.6, June 2016

77

4.3 Policy of assimilation

In line with the policy of assimilation, some features of
empire will be applied to each colony. First, a number of
empires' cells randomly selected based on a absorption rate
and the properties of these cells applied in the colony. This
operation is shown in Figure 2.

Fig. 2. Movement of colonies toward the empire

4.4 Revolution operator

In Imperialist Competitive Algorithm, the revolution be
modeled, when a colonized country move accidentally
toward a new random situation. In this section, the number
of cell of colonies were randomly selected based on the
rate of revolution and their value changes [7]. If the new
colony is better than colony previous, it will replace the
previous colony. This operation is shown in figure 3.

Fig. 4. The revolution operation in task Scheduling

4.5 Changing the locations of colony and empire

At the time of movement of colony to the imperialist
country, some colonies may have better conditions than
the empire. In this case, the empire is replaced by the
imperialist country and algorithm continues with its
imperialist and imperialist country in the new position.
This time, it is considered as a new empire tries to impose
a uniform policy on the colonies.

4.6 Calculate the total power in an empire

The power of an empire is defined as the power of the
imperialist state, plus a percentage of the total power of its
colonies. ζ is a number between 0 and 1 as is sent input to
the algorithm. The power of an empire is calculated
according to the (9).

T.ci=Fit(imperialist)+ζ Mean(Fit(colonies of Empire))
(9)

4.7 The competition between empires

During the competition between empires, the weak
empires that during the execution of the algorithm
gradually lose their colonies, would drop and their
colonies fell into the hands of powerful empires. In each
iteration of the algorithm implementation, one or more
colonies will get from the weakest empires and would give
to the empires with the most power.
To model the competition between empires, the power of
each empire was obtained using (10) and then normalized
using (11):
N.T.Ci= T.ci- Min (T.ci) (10)

Ppi=� N.T.Ci

∑ N.T.CiNimp
j=1

� (11)

To do this, the roulette wheel method can be used, but due
to the exorbitant cost, we use another method described in
[4]; thus, first of all, vector P should be made that contains
normalized values of empires' power (12).
Then we use a vector of length 1 * Nimp that its amount
randomly selected from the uniform distribution in the
range of 0 and 1 (13). Finally, we subtract this random
vector of the vector P. The colonies gave to an empire
related to an index in vector D that contains the greatest
value.
P = [Pp1, Pp2, . . . , PpNimp] (12)
R = [r1, r2, . . . , rNimp] (13)
D = P − R = [D1,D2, . . . , DNimp] =[Pp1 − r1, Pp2 −
r2, . . . , PpNimp − rNimp]
In the proposed algorithm, an empire be considered
deleted when it has lost its colonies.

4.8 Gravitational algorithm

The solution is considered the gravity of each cell
dimension and neighbors of a solution obtain at any
dimension by change the solution in that dimension [9].
For example, in Figure (5) and the first solution, the cell
which has the most speed would be selected and a
neighbor's solution can be obtained.

Fig. 5. Showing a neighbor solution

After obtaining the solution adjacent to the current
solution, the solution neighboring fit using (10) is
calculated, the initial velocity vector to be updated. The
amount of gravitational force is added to the initial
velocity vector related to the dimension by which the

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.6, June 2016

78

neighbor solution is obtained in order to update velocity
vector [10].

Force=6.672*�Fit(Condidate)
R2

− Fit(Current)
R2

� (14)

In (10), Candidate and Current are neighboring current
solution, respectively. G is a fixed amount of 6.672 and R
is neighborhood radius parameter between two objects in
the search space. The algorithm ends when it reaches its
maximum number of iterations.

4.9 Work stages

After the competition in empires, because Imperialist
Competitive Algorithm does a poor job, some of the best
colonies selected and gave to the GELS algorithm with the
empire himself in order to produce a better neighbor's
solution. Finally, the Candidate colonies derived from the
output of the local search algorithm and replace the
weakest colonies of the empire.
Step 1. Based on the fitness function, some of the best
colony selected as the primary empires and then the
remaining colonies assigned in relation to the power of the
empires
Step 2. Move colonies toward the empire (matching policy
or absorption).
Step 3. Impose the revolution operator on the colonies.
Step 4. If there is a colony in an empire which has more
fitness function; the position of colony and empire should
be substituted.
Step 5. Calculate the total power of an empire (taking into
account the fitness value of an empire and its colonies).
Step 6. Select the weakest colonies of the weakest empires
and assign them to the most powerful empires
Step 7. Remove weak empires.
Step 8. GELS algorithm should be imposed on both
empire and percentage of best colonies.
8.1.: The current solution is considered as the best solution.
 8.2.: In the current solution, the dimension which has the
most initial speed would be selected and its value
randomly changes (a number between 1 to M). Fitting of
the neighboring countries obtained at this stage and
calculated according to the (14).
8.3.: If an empire or colony derived from previous empire
or a colony is better in terms of fitness function, it is
considered as the best solution.
8.4: The gravitational force between the neighbor empire
and the current empire is calculated using (10).
8.5.: The gravitational force obtained in the previous step
added to the dimension in which the neighbor solution
obtained. Therefore, the initial velocity vector be updated.
8.6.: If all elements of the vector of initial velocity are zero,
or the number of iteration reach its maximum, the
algorithm ends, otherwise go to step b.

8.7.: The colonies derived from the GELS algorithm
should be replaced by the weakest colonies of any empire
in terms of fitness function.
Step 9. If the algorithm has reached the maximum number
of iterations, stop now or otherwise go to 2.
Step 10. Choose the best empires among the empires as a
response.

5. Evaluation

In this section, the results of the proposed algorithm for
scheduling independent tasks on a computational grid
network in comparison with other methods is provided.
All experiments were carried out using Matlab software on
a system with 2.6 GHz CPU, 8 GB memory and Windows
10.
 Different parameters are shown in Table 1.

TABLE I. values of input parameters for the ICA-GELS algorithms

Value Parameter

ICA 10% Revolution operator rate
30% Absorption Rate

0.1 ζ
1 Neighborhood radius (R)

GELS
6.672 Gravitational constant

Between 1 and
maximum speed

Range of velocity vector
values

Number of tasks Maximum speed
TABLE 2 shows the results of ICIA-GELS algorithm and
other algorithms for MakeSpan. As can be seen, ICA-
GELS algorithm obtained better results than other
algorithms.

TABLE II: Comparison ICA-GELS algorithm results with other Method

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.6, June 2016

79

Fig. 6.: Comparison of Makespan for 50 task for different iteration

Figure 6 shows the Makespan for ICA GGA, GSA,, GA
ICA-GELS algorithms where 200 tasks, 10 sources in
repetitions of 100 to 300 on the resources scheduled using
specific algorithms. Among the scheduling algorithms, it
can be seen that the proposed algorithm has less Makespan
compared to other algorithms [7].

TABLE III: shows the results of ICA and ICA-GELS algorithms for
Miss Rate.

Iteration pop task Res ICA ICA-GELS

100 50 50 10 0.08 0.06
200 50 50 10 0.08 0.06
300 50 50 10 0.08 0.06

Fig.7.: Comparison of Miss Rate for 50 tasks for different iterations with
10 sources

6. Conclusions and future work

The imperialist competitive algorithm be used in the Grid
scheduling problems and its superiority over other meta-
heuristic algorithms such as genetic algorithms and
aggregation of particles is proven[7].
 In the proposed algorithm (ICA-GELS), the global search
ability of Imperialist Competitive Algorithm combined
with Gravitational Emulation Local Search, so that the

proposed algorithm can be more efficient than other
algorithms. The proposed algorithm was compared with
ICA algorithm and the simulation results show that the
proposed hybrid algorithm compared to ICA algorithm,
produced less Makespan and also reduces the number of
the missed tasks. In future research, other parameters
related to quality of service such as cost, efficiency and
fault tolerance should be examined.

References
[1] S.Dipti and M.pradeep, “Job Scheduling Algorithms For

Computational Grid In Grid Computational Environment.”,
International Journal Of Advance Research In Computer
Science And Software Engineer.Vol. 3 Issue.
5,2013,pp.735-744

[2] Y.Jia, B.Rajkumar and R.Kotagiri, “ Workflow Scheduling
Algorithms for Grid Computing.”, Grid Computing and
Distributed Systems (GRIDS) Laboratory. ISBN: 978-3-
540-69260-7.2008,pp. 110-150

[3] B.Elwyn, “Survey On Heuristics Based Resource
Scheduling In Grid Computing.”. IJCSE Vol. 5
No.1,2014,pp.9-14

[4] A.Yousif, and M.Sulaiman, ,”Job Scheduling Algorithms
on Grid Computing.”, International Journal of Grid
Distribution Computing Vol. 8, No.6, 2015,pp.125-140.

[5] E.Atashpaz, and C.Lucas, “ An algorithm for optimization
inspired by imperialist competive algorithm.”, IEEE
congress on evolution.2007, pp. 4661-4666.

[6] S.Attar, M.Mohammadi and R.Tavakoli, “A Novel
Imperialist Competitive Algorithm to SolveFlexible Flow
Shop Scheduling Problem in Order to Minimize Maximum
Completion Time.”, International Journal of Computer
Applications. Vol.28, No.10,2011, pp. 37-32

[7] Z.Pooranian, M.Shojaeefar and N.Behrouzian,”Using
imperialist competition algorithm for independent task
scheduling in grid computing.” Journal of Intelligent &
Fuzzy Systems.2013, DOI:10.3233/IFS-130988.

[8] A.Jula and N.Naseri, “ A Hybrid Genetic Algorithm-
Gravitational Attraction Search algorithm to Solve Grid
Task Scheduling Problem.” ICSCA, 2012, pp. 158-162.

[9] V. GhaedRrahmati and S.Alavi, “A Reliable and Hybrid
Scheduling Algorithm based on Cost andTime Balancing for
Computational Grid.” ACSIJ, Vol. 3, Issue 3,
No.9,2014,pp22-31.

[10] Z.Pooranian, “ A Hybrid Metaheuristic Algorithm for Job
Scheduling on Computational Grid”. Informatica,Vol.
37,NO. 2, 2014, pp. 157-164.

[11] R.vijaylakshmi, V.vasudevan, “Static Batch Mode Heuristic
Algorithm for mapping independent task in computational
grid.”, International journal of Computer Science, Vol.
11,2015,pp224-229

[12] Z.Pooranian, J.Abawajy,” An efficient meta-heuristic
algorithm for grid computing.” , Springer, Journal of
Combinatorial Optimization (JOCO). Vol. 30, Issue.
3,2015,pp 413-435.

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.6, June 2016

80

 Mostafa Pahlevanzadeh graduated in
Computer Applications from the South
branch of azad university in Tehran,2003.
He was born in 1972 in Ardebil. He was a
teacher in Web designing and computer
science from 2003 to 2015. He has been
working as a researcher in the fields of
algorithms and resource allocation. several
internal articles has published by this
person.

Ali HarounAbadi graduated from
computer Applications in Phd degree and
working as a university teacher in central
branch of azad university in Tehran .He is
interested in following research
topics:Grid,Software engineering,Computer
Systems Modeling and evaluation,etc.

