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Summary 
Artificial neural networks have been recognized as a powerful 
tool for pattern classification problems and have attracted a lot of 
research effort in the field of machine learning. However, 
optimal design of such models is known to be a notoriously hard 
problem. In this paper we investigate the effectiveness of a new 
hybrid evolutionary approach to address the optimal design of 
neural network based classifiers. The particularity of this 
approach lies in the use of two major techniques; the first one is 
to carry out an elite-based-reproduction strategy using either the 
compact genetic algorithm or a learning automata-based 
algorithm and the second one is the evolution itself driven by the 
differential evolution algorithm. The proposed approach is 
applied to both multilayer and radial basis function neural 
network classifiers. Different testing and training scenarios are 
presented using two classification benchmark problems, obtained 
from the UCI repository. Those scenarios are designed to provide 
an empirical comparison of performances of the two-classifier 
models and the most suitable elite-based-reproduction strategy 
used. 
Key words: 
Neural Network classifier, Learning, Hybrid Evolutionary 
Algorithm, Differential Evolution, learning automata, Compact 
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1. Introduction 

Neural network based classifiers have attracted a lot of 
research effort in the field of machine learning and are 
widely used in real world applications, including 
handwritten characters recognition, detection of faces in 
images, medical diagnosis and several other tasks [1] [2] 
[3]. This however does not imply that a Neural Network 
(NN) can easily learn the underlying functional mapping 
between the input data and the desired output. In fact, the 
main drawbacks of NN are problems associated with the 
optimal design of the NN model. 
Population-based stochastic search approaches, such as 
Evolutionary Algorithms (EA) [4] have attracted a lot of 
research effort during the last 20 years, and they are still 
one of the hottest research areas in the computer science 
research community. EA have been proposed to address 
the problem of the optimal design of the whole NN, since 
such methods are particularly useful for dealing with 
complex problems having large search spaces with many 

local optima. A comprehensive review of these approaches 
can be found in [5]. 
In this paper, a new hybrid evolutionary approach is 
proposed to address the optimal design of neural network 
classifiers. The particularity of this approach lies in the use 
of two aspects: a) the development of an elitist 
reproductive strategy to promote the group of individuals 
having the best structure, to dominate the population. This 
is done by changing the proportions of individuals in each 
group according to the estimate of a probability 
distribution associated with each individual in the 
population and b) the evolutionary process itself. For the 
first aspect, two algorithms are investigated in this work. 
The first one is the compact genetic algorithm [6], whereas 
the second one is the learning automata-based algorithm 
[7]. For the second aspect, Differential Evolution (DE) 
strategy [8] is used to perform the evolutionary process. 
This paper presents, moreover, a first rigorous attempt to 
apply the same evolutionary proposed method for the 
automatic design of both multilayer and radial basis 
function neural network classifiers. Different testing and 
training scenarios are presented. Those scenarios are 
designed to obtain the most suitable classifier model for 
each used benchmark problem. 
The remainder of this paper is organized as follows. 
Section 2 summarizes the advances in evolutionary 
generation of NN-Classifiers. The two elitist reproductive 
strategies, used in this paper, are covered in Section 3. 
Algorithm implementation of the proposed approach, 
based on the two aspects mentioned above, is given in 
Section 4. Simulation results and discussions of the 
obtained results are drawn in Section 5. Finally, the paper 
is concluded in Section 6 with some potential directions 
for future research. 

2. Evolutionary Generation of NN-Classifiers 

There have been extensive efforts in recent years to 
improve the automatic design of Artificial Neural Network 
models. Constructive and pruning algorithms are two most 
widely used non-evolutionary methods. A constructive 
algorithm [9] adds new nodes and connection information 
incrementally to a minimal NN architecture during 
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training, whereas a pruning algorithm [10] removes 
needless nodes and connections gradually starting from 
larger NN during training. Although this may result in 
good generalization models, both constructive and pruning 
algorithms are highly dependent on user defined training 
parameters. 
An alternative is offered by evolutionary computing 
techniques [4], which have been successfully applied to 
finding the global optima of various multidimensional 
functions. Such methods are particularly useful for dealing 
with complex problems having large search spaces with 
many local optima [4]. Moreover, they are less dependent 
on user defined training parameters [4]. A comprehensive 
review of these approaches can be found in [5]. 
  Several authors [11, 12, 13] discussed the use of 
Differential Evolution (DE) [8], as more promising 
evolutionary algorithm, for automatic design of NN 
models. Liu and Lampinen [13] apply a DE-based 
incremental training method in the search of the RBF 
network parameters (centers, weights and widths) which 
provide the best possible function approximation. The 
comparison with other incremental algorithms reported in 
the literature has shown that the DE-based RBF network 
growing approach combined with cycling scheme 
performed better in terms of the lower Mean Square Error 
(MSE) between the desired and actual outputs with 
smaller network in the tested cases. In [11], DE algorithm 
was implemented to train RBF networks. In each iteration, 
DE is used to determine centers of hidden units. Whereas, 
widths of hidden units were calculated by heuristic 
methods, and connection weights between hidden layer 
and output layer were obtained by SVD [14]. In [12], a 
new Enhanced Differential Evolution (EDE) algorithm has 
been developed to construct the optimal RBF network for 
fast restoration of distribution systems under various load 
levels. The proposed EDE provides more efficient fitting 
and forecasting capabilities than some other methods 
based on the same network structure. 

3. Elitist Reproductive Strategies 

The purpose of the elitist reproductive strategy is to 
promote group of individuals having the best structure, to 
dominate the population. To carry out such strategy, two 
algorithms are investigated, in this work: the compact 
genetic algorithm [6] and the learning automata-based 
algorithm [7]. 

3.1 Compact Genetic Algorithm (CGA) 

The compact Genetic Algorithm [6] is an Estimation of 
Distribution Algorithm that represents a virtual population 
for a binary Genetic Algorithm (GA) by a vector of 
probabilities. The principle of CGA algorithm is to assign 
a probability to each sub-population (group of individuals 

with the same structure). This probability translates the 
chance of the sub-population to be the best structure. The 
CGA algorithm uses a virtual population represented by 
the following probability vector 

       (1) 

Where refers to the group of individuals with units 

in the hidden layer. At the beginning of the algorithm, the 
different groups have the same chance to represent the 
optimal structure. They all have a probability of 0.5. 
At each generation, the probability vector is updated 
according to the following equations: 

 

  (2) 

Where  and is the update 

rate calculated as follows : 

                 (3) 

The term represents the sum of the fitness values 

of the chromosomes in the group. 

is a predefined threshold value. is the best 

fitness value in the group and is the average 
fitness value in the whole population calculated as 
follows: 

        (4) 

If an element of the probability vector reaches 1, the CGA 
is stopped and the probability vector is set to 1 for all 
groups with the same structure. To complete the 
population, chromosomes are generated randomly. 

3.2 Learning Automata-Based Algorithm 

Each sub-population represents an action (candidate) for 
the learning automaton [7]. At each generation t, an action 
is considered after a selection procedure, which consists in 
duplicating each individual according to its average fitness 
value. This can easily be done by performing consecutive 
random draws where each individual, of the group, has 
the following probability of selection: 
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        (5) 

is the average fitness value of the individuals 

of the group at the generation calculated as follows 
(Eq. 6): 

        (6) 

is the fitness value, at the generation , of the 

individual of the group. 

The evaluation system generates  (Eq. 7) that 
reflects the quality of the behaviour of the action. 

   (7) 

and are the best fitness 

values of the selected group, respectively at and 
generations. 

According to this value , the probability adjustment 
algorithm will adjust the probability distribution of the 
different actions while keeping their sum equals [15]. 
In every generation , if , no change is 
introduced into the probability vector

. Else, it is updated according to 

the following equations (Eq. 8) [15]: 

   (8) 

Where  and is a predefined threshold 

value chosen between 0 and 1. 
If the probability of an element of  approaches 1, the 
encoded structure of the corresponding group is 
considered as optimal. The algorithm is then stoped 
forcing all other groups to have the optimal structure 
found. 

4. Algorithm Implementation  

4.1 Representation Scheme 

The encoding is the first step of an EA when it treats a 
particular problem. Since the NN architectures affect also 

the lengths of chromosomes; a special representation is 
used to tackle certain particularly difficult problems for 
which a generic representation used in EAs might not be 
appropriate. 
Both multilayer perceptron (MLP) and radial basis 
function neural (RBF) networks, which we consider in this 
work, share the characteristic of symmetry between hidden 
units. In other words, it is possible to interchange places of 
the units of the hidden layer while maintaining equivalent 
network. 
As shown in Figures (1 and 3), we can divide the network 
into homogeneous blocks represented by units of the 
hidden layer.  
 

 

Fig. 1. Parameters associated to a hidden node _j (MLP) 

 

Fig. 2. Hierarchical representation of a chromosome (MLP) 

 

Fig. 3. Parameters associated to a hidden node _j (RBF) 
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Fig. 4. Hierarchical representation of a chromosome (RBF) 

 Figures (2 and 4) show the genotypic representations 
of respectively the MLP and the RBF networks. 
This hierarchical representation uses two types of coding: 

- A binary mask (structural genes) representing the 
enabled units of the hidden layer (i.e. if an element 
of the mask is set to zero, the corresponding unit is 
not fed to the network). 

- A real-valued string (parametric genes) formed by 
concatenating parameters of hidden layer units (i.e. 

connection weight vectors ( ) and bias ( ) for 

MLP and the center vectors ( ) and spreads ( ) 

of the basis functions for RBF), and the synaptic 
weights ( ) of the output layer nodes. 

4.2 Replacement Scheme 

In each generation, individuals in the population are sorted 
as follows: The individual having the best (the minimum) 
cost function is of rank 1 and the one having the highest 

cost function is ranked (  is the size of the 
population). We, then, divide the population into two 

sub-populations of identical sizes ( ). Individuals in 

the first half of the population, called sub-population of 
parents, will serve to the reproductive phase. Whereas 
individuals of the second half of the population, called 
sub-population of children, will be replaced by new 
individuals already created. In each generation, the 
number of individuals belonging to each group in the 
sub-population of parents that will be selected for the 
reproduction will depend on its probability distribution. 
For this, each group in the sub-population of parents is 

assigned a number of chromosomes that will be 

selected. When the probability distribution associated with 
each individual is based in the compact genetic algorithm, 

is calculated as follows (Eq. 9) [6]: 

          (9) 

Where is the ceiling function. 
If a learning automata-based algorithm is used to estimate 
the probability distribution associated with each individual, 

is calculated as follows (Eq. 10) [16]: 

   (10) 

4.3 Evolutionary Process 

The Differential Evolution (DE) strategy [8], which has 
gained popularity thanks to its simplicity and good 
observed performance, has been employed to perform the 
evolutionary process. 
In DE, a child is generated applying the crossover operator 
to three parents ( ). The resultant child ( ) 

is a perturbation of the main parent ( ). 

If we consider ,  and  the  parametric 

genes respectively of parents , then the 

parametric gene of the child  (i.e. ) is generated as 
follows: 

   (11) 

 
Where  is a predefined factor.  is the rate of 
crossover and  is a random fraction in the [0, 1] 
interval. 
 
Once the child parametric genes are generated, we proceed 
to apply the same principle of differential evolution for 
structural genes to determine the structure of the child to 
generate. 
If we consider ,  and  the structural 

genes respectively of parents  the  
structural gene of the child  (i.e. ) is generated as 
follows [17]: 

   (12) 
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5. Simulation Results and Discussion 

The proposed approach was developed and implemented 
using Xcode version 5 under a Mac os x 10.11.5 
workstation. 
To examine the performance of the proposed approach for 
both MLP and RBF classifiers, we consider two 
benchmark classification problems, selected from the UCI 
repository1. 
 
The first used dataset is the Wisconsin Breast Cancer 
Diagnosis (WBCD). It represents medical measurements, 
which represents the result of the efforts made at the 
University of Wisconsin Hospital for accurately 
diagnosing breast masses based solely on a Fine Needle 
Aspiration (FNA) test. 
 
The dataset consists of 699 samples taken from Fine 
Needle Aspirates (FNA) of human breast tissue. Each 
record in the database has nine integer-valued attributes, 
which represent cytological characteristics of breast FNA. 
To these attributes is assigned an integer value between 
one and ten, with one being the closest to benign 
(non-cancerous) and ten the most malignant (cancerous). 
The dataset contains two classes referring to benign and 
malignant samples. Table 1 gives a brief description of this 
dataset. We removed the sixteen instances with missing 
values from the dataset to construct a new dataset with 683 
instances. 

Table 1. Description of the WBCD dataset 

 
The second dataset, that we consider in this work, is the 
IRIS, which has been used extensively for evaluating the 
performance of pattern classification algorithms. This data 
set contains 150 samples of dimension four that are Sepal 
Width, Sepal Length, Petal Width, and Petal Length. These 
samples can be divided into three classes (Iris Setosa, Iris 
Versicolour, and Iris Virginica) representing different IRIS 
subspecies. Setosa class is far from the other two, which 
have overlap of their features. Figure 5 shows two scatter 
plots of the IRIS dataset for sepal length vs. sepal width 
(left) and for petal length vs. petal width (right).  
In this paper, we denote : 
 

                                                   
1 http://archive.ics.uci.edu/ml/datasets.html 

- M1 : the proposed method of multilayer neural 
network classifiers design using the compact genetic 
algorithm as an elitist reproductive strategy. 

- M2 : the proposed method of multilayer neural 
network classifiers design using a learning 
automata-based algorithm as an elitist reproductive 
strategy. 

- M3 : the proposed method of radial basis function 
neural network classifiers design using the compact 
genetic algorithm as an elitist reproductive strategy. 

- M4 : the proposed method of radial basis function 
neural network classifiers design using a learning 
automata-based algorithm as an elitist reproductive 
strategy. 

-  
Tables 2 and 3 provide, for different values of , the 
optimal number of hidden units found respectively by M1 
and M2 for the Iris dataset on 30 runs. 

is the maximum number (on 30 runs) of 
required iterations to converge to the appropriate network 
structure. 
 
According to tables 2 and 3, if the value of is relatively 
high ( ) the number of hidden units obtained by the 
two methods is arbitrary. In fact, the decision about the 
winner is, in such case, premature and the generated NN 
depend on the random initialization of network parameters. 
On the contrary, if the value of is too low, the premature 
convergence of the method is avoided and the number of 
hidden units obtained focuses on a definite value, but the 
convergence is very slow. 
 
A choice of  usually gives a good compromise 
(between the values of relatively high and those 
relatively low), at least for the applications we tested. 
The other point to be drawn from the results of Tables 2 
and 3 is that the convergence to the appropriate structure 
of the method M1 is faster compared to the method M2. 
Table 4 shows the results obtained by the different 
methods (M1, M2, M3 and M4) for the Iris and Breast 
Cancer datasets. 

is the number of iterations required by the method to 
converge to the appropriate network structure, while  

denotes the total number of iterations. is the 
accuracy of the designed classifier, evaluated in terms of 
percentage of correct classifications. 

Class Data distribution 
 Nb of instances Missing 

atributes 
Benign 458 14 

Malignant 241 2 
Total 699 16 
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Fig. 5. Scatte rplots of the Iris data set 

Table 2. Convergence of the method M1 for different values of (Iris dataset) 

λ Number of hidden units obtained  
3 4 5 6 7 8 9 

0.5 - - 3 times 6 times 5 times 5 times 11 times 44 
0.1 1 time 4 times 4 times 7 times 5 times 4 times 5 times 86 
0.05 2 times - - 13 times - - 5 times 117 
0.01 - - 2 times 26 times - 2 times - 165 

0.001 - - - 27 times - - 3 times 309 

Table 3. Convergence of the method M2 for different values of (Iris dataset) 

λ Number of hidden units obtained  
3 4 5 6 7 8 9 

0.5 3 times 2 times 3 times 2 times 5 times 6 times 9 times 37 
0.1 1 time 4 times 4 times 7 times 5 times 4 times 5 times 102 
0.05 2 times - - 13 times - - 5 times 267 
0.01 1 time - 2 times 23 times - 2 times 2 times 470 

0.001 1 time - - 28 times - - 1 time 962 

 

Fig. 6. ROC curves generated by both methods for multilayer (a) and radial basis function (b) neural network classifiers 

 
As shown in table 4, the number of hidden units  (respectively ) found by M1 and M2 (respectively M3 

and M4) for multilayer (respectively for radial basis 
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function) neural network classifiers are identical except for 
breast cancer dataset using radial basis function model (i.e. 
M3 and M4). However, in terms of accuracy, both 
designed models are identical. The results reported in this 
table show also that radial basis function neural network 
model achieves slightly better performance in terms of 
accuracy (98,65% as opposed to 97,98% for multilayer 
classifier) for the breast cancer dataset. 

Table 4. Classification results of the used classification problems 

 
In terms of computational time, methods using the 
compact genetic algorithm as an elitist reproductive 
strategy (M1 and M3) are faster to converge to the 
appropriate structure than methods using the learning 
automata-based algorithm (M2 and M4). Once the 
appropriate structure is obtained, these methods (M2 and 
M4) do not require a high number of iterations (compared 
to M1 and M3) to converge to the final solution. 
Another comparison between the different methods (M1, 
M2, M3 and M4) was carried out using a Receiver 
operating characteristics (ROC) graph, which is a very 
useful tool for visualizing and evaluating classifiers [18]. 
An ROC graph is a two-dimensional depiction of classifier 
performance in which the true positive rate ( ) is 
plotted on the Y-axis and the false positive rate (1 - 

) is plotted on the X-axis. 
An important point about ROC graphs is that they are 
insensitive to changes in class distribution. If the 
proportion of positive to negative instances changes in a 
test set, the ROC curves will not change [18]. 
Figure 6 shows the ROC graph of the developed classifier 
using breast cancer dataset. Resulting ROC curves are 
obtained by varying the output threshold value of the 
activation function, so that only binary classification 
dataset is used. 
 In general, the area under the ROC curve, abbreviated 
AUC, is a powerful index for assessing the classification 
performance of the classifier. The closer the value AUC is 
to 1, the better is the performance of the model. Therefore, 
models obtained by methods using the learning 
automata-based algorithm, as an elitist reproductive 

strategy, (M2 and M4) are slightly better than models 
obtained by methods using the compact genetic algorithm, 
as an elitist reproductive strategy (M1 and M3). Moreover, 
if the same elitist reproductive strategy is used, radial basis 
function model achieves slightly better performance than 
multilayer based classifier. 

6. Conclusion  

In this paper, a new hybrid evolutionary approach has been 
presented and applied to address the optimal design of 
neural network classifiers. 
The proposed approach is divided into two major steps; the 
first one is to carry out the elite-based-reproduction 
strategy using either the compact genetic algorithm or a 
learning automata-based algorithm and the second one is 
the evolution itself driven by the differential evolution 
algorithm. The proposed approach was tested for both 
multilayer and radial basis function neural network 
classifiers. Simulation results on two benchmark 
classification problems, indicate that models given by 
methods using the learning automata-based algorithm, as 
an elitist reproductive strategy perform slightly better than 
models given by methods using the compact genetic 
algorithm. Moreover, if the same elitist reproductive 
strategy is used, radial basis function model achieves 
slightly better performance than multilayer based 
classifier. 
An interesting issue that rises from this work is how to 
extend the proposed approach using multi-objective 
optimization to emphasize the trade-off between 
complexity and accuracy of the NN based classifier. 
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