
IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.6, June 2016

125

Manuscript received June 5, 2016
Manuscript revised June 20, 2016

CAuth – Protecting DNS application from spoofing attacks

NM SAHRI† and Koji OKAMURA††

Summary
UDP-based DNS packet is a perfect tool for hackers to launch a
well-known type of distributed denial of service (DDoS). The
purpose of this attack is to saturate the DNS server availability
and resources. This type of attack usually utilizes a large number
of botnet and perform spoofing on the IP address of the targeted
victim. Therefore, it is hard for the DNS provider to differentiate
between legitimate and attack DNS query packets. We take a
different approach for IP spoofing detection strategy to protect
the DNS server by utilizing Software Defined Networking (SDN).
In this paper, we present CAuth, a novel mechanism that
autonomously block the spoofing query identified with no impact
on legitimate queries. By manipulating Openflow control
message, whenever a server controller receives query packet, it
will send an authentication packet back to the client network and
later the client controller also responds via authentication packet
back to the server controller. The server controller will only
forward the query to the DNS server if it receives the replied
authentication packet from the client. From the evaluation,
CAuth instantly manage to block spoofing query packet while
authenticate the legitimate query as soon as the mechanism
started. Most notably, our mechanism designed with no changes
in existing DNS application and Openflow protocol.
Key words:
DNS flooding attack, spoofing detection, authentication, network
security, Openflow, SDN

1. Introduction

One of common cyber-attacks is Denial of Service (DoS)
which aim to cripple down the attacked application online
resources. By doing this, the offered services will not be
available to intended users. Usually, the attack attempt to
temporarily or suspending the services of its hosting
provider. Making it worse, the UDP DDoS which is an
aggregate of attacks scenario that exploit UDP protocol
does not require any connection to be established prior the
communication between the client and server. Each of this
packet requires computational resources from the targeted
server, thus this overloads the victim’s capabilities.
Majority of recent large volume of DDoS attack use
flooding technique, such as exploiting DNS servers and
Network Time Protocol (NTP) [1]. Since almost every
Internet services depend on DNS, it is much more
damaging than the others are. The introduction of Open
Recursive DNS server such as OpenDNS spike security
threat higher to this type of attack since it permits any IP
addresses to access their service for IP resolution. DNS, a

UDP based network and always considered as a
fundamental Internet service is crucial and the services
need to be offer to the whole public. However, it is much
easier for hackers to spoof the source IP address as UDP
itself is connectionless and does not require a handshake
like TCP does.
The hackers can utilize a large number of botnet army with
spoofing the victim IP address and make a large number of
DNS query attempt to flood the DNS server with request
for the services. By spoofing the victim IP address, it will
make it harder for the application servers to distinguish
between the attack and legitimate query, since the
application are designed to accept any range of IP
addresses to process the DNS query. As a result, it would
simply process all the DNS query from both of them and
send the responses which will limit the resources of the
DNS server to process other legitimate request. The other
type of attack that manipulate the open recursive DNS
server known as DNS Amplification attacks. This attack
aims to amplify the attack traffic to a targeted victim. Since
the open recursive server accept any source to send query
packet, hacker include victim IP address in the DNS query
packet (spoofing) and the query packet size is much
smaller than the response packet, so the attack is amplified
to the victim with higher impact. Current protection against
this type of threat, such as IDS or firewall, is having
difficulties of differentiate which response packet is attack
or legitimate. Furthermore, by using only the network
statistic behavior to identify the malicious attempts, it is
not enough to separate or blocking such intelligent attacks
and most of the preventive action has been left to the
victim side [2].
The emergence of Software Defined Network (SDN) that
promise the simplicity in managing networks seems to be
the future of the current Internet architecture. By
separating the control plane that orchestrated by logical
network controller platform and data plane as a forwarding
drive, SDN, can play an important role as a network
protection tool against DDoS attacks. An effective defense
against spoofing UDP based DDoS attacks on DNS servers
requires source address spoofing detection. Assuming the
SDN-managed network is implemented in where the DNS
server reside can distinguish between spoofed DNS
packets from real queries, it can selectively drop those
spoofed packets and authenticate the legitimate DNS query
packet with little collateral damage.

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.6, June 2016

126

In this paper, we present a novel spoof detection
mechanism that exploit the UDP protocol to launch the
attack on the DNS server. This mechanism autonomously
blocks the “unwanted” DNS query packet that force the
DNS servers to amplify the unnecessary legitimate traffic
to the victims. In our approach, a server controller term is
introduced and this controller reside in the DNS server
domain. The server controller responsible to send an
authentication packet to each hosts that request for the
DNS services previously. By validating the “authentication
packet” that replied by the requesting client network, the
server controller is able to determine if a DNS query
launch from any of source IP address is indeed a legitimate
query or an attack packets. We developed a module called
CAuth, which can be implement without any changes in
DNS application servers. CAuth can be deployed at any
time during DNS server runtime without require dataset
training or manual tuning from the administrators.
Furthermore, we did not use any statistical analysis for the
anomalous flow behavior detection.
In Section 2, we discuss background, some existing
approaches and related works for defending against UDP
flood and amplification attacks for the DNS service
specifically. With the granularity and the flexibility
promised by SDN, we state the objective of our proposed
method and introduce the idea for the protection against IP
spoofing attack on DNS services in Section 3. In Section 4,
we empirically evaluate the effectiveness of the approach
and present the analysis of the experimental results. Finally,
in Section 5, we discussed some of the important finding in
our experiment and Section 6 summarize the paper.

2. Background

DNS, a UDP based network services is crucial and the
services need to be offer to the whole public. However, it
is much easier for hackers to spoof the source IP address as
UDP itself is connectionless and does not require a
handshake like TCP does. Therefore, it is worthwhile to
design a countermeasure against DDoS flooding that suited
the DNS traffic. Through the years, quite a number of
DDoS attack detection method against the DNS server has
been proposed, but these methods have certain drawbacks
such as no strong incentives for the providers to employ
since it protects the others network but not protect
themselves from the flooding attacks, false positive and
false negative, etc. In [3], the author proposed a method to
detect the spoofing DNS query packets. The method
requires the DNS server to generate some type of cookies
embedded in the DNS response packets. However, it only
can authenticate the requests between DNS servers. The
main attack tools that is generated from the general DNS
clients, cannot been verified.

Network Ingress Filtering [4], a mechanism that deploy
filters at the border of the network to block incoming
source IP addresses that not origin from the network itself.
Unfortunately, the effectiveness of this method depends on
the global deployment across the Internet. This method is
“neighborhood policy” than require all ISP to participate to
provide the list of IP addresses that does not belong to
their network. No doubt, the spoofing IP problem can be
solved by this method but it requires the needed
information to be pass between the ISP efficiently.
Furthermore, the information is passed between the ISP
manually. This means that the attack packet might traverse
through the network undetectable at the first time and it is
too little too late to block the packets.
In [2], the author proposed amplification attack detection
where they detect the attack using one to one mapping
process between the DNS query and response. However,
vast amount of database size could increase rapidly when
traffic rate is high make the approach is not scalable. In
Pushback [5], the mechanism allows network routers to
limit the effect of DDoS attack to some destinations. In this
work, every router has the capability to detect and drop
suspicious packet. Pushback act locally and impose a rate
limit on that particular traffic. SIFF [6], Stateless Internet
Flow Filter permit the packet receiver to inform the router
and selectively discard the flows from reaching their
network. All the above-discussed related works is a
network based solutions and detections method. The main
issue in this type of solutions is the complexity of
distributed environment, which require quite a number of
network resources to be sacrifice.

2.1 SDN

Network management cover the area of security, network
performance and reliability. It is often cause a headache for
the network operator. They are not only responsible to
maintain many of connected network devices, but also to
satisfy the demand of increasing number of users. The
current network management is lack of capabilities to
support the demands and for this reason, SDN is
introduced. SDN definition is described in the Open
Networking Foundation (ONF) white paper [12], ‘‘In the
SDN architecture, the control and data plane are decoupled,
network intelligence and state are logically centralized, and
the underlying network infrastructure is abstracted from
the applications’’. SDN decouple the network devices to
act as a forwarding plane only while the programmable
control plane is done centrally. With this feature, the
network configuration is performed with simple software
update centrally and pushed to the whole connected
devices rather than performing reconfiguration for the
whole devices one by one. In reality, many research groups
and industry parties has put their interest into SDN such as

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.6, June 2016

127

Ethane [13] and OpenFlow [14]. Many commercial switch
vendors such as HP and NEC support OpenFlow. For this
reason, many network operators are implementing SDN in
their network [15,16].
2.2 Security with SDN
With the programmability and resiliency of SDN
architecture, it can be utilized to improve the network
security. The network operator has the ability to deploy
any security features on the fly to their network. Once any
anomaly reported to the central controller, it can reactively
response to analyze the situation. Based on this report, the
controller can propagate the action to entire network at
once. Many security researchers have started to recognize
and proof that SDN is a workable tool to secure the
network such as [17], the author proposed a DDoS
detection method based on network flow features
monitored by NOX/OpenFlow switches. Suspicious flows
are investigated by analyzing the flow features with an
artificial neural network which is Self-Organizing Maps
(SOM). In [18], the author proposed a protection method
to block attack traffic. In their work, they utilize the ability
to redirect certain suspected traffic to certain ports after
they detect some attacks in a specific service.
In [19], the author uses multiple type of anomaly detection
algorithm in their research test where the author validates
their algorithm in Small Office/Home Office (SOHO)
environment. The author utilized Openflow for detecting
network security problem close to the source of
abnormality using the idea of decentralization control of
the network devices. The author also uses periodic
sampling for the flow statistics collection. Contrast to
previous work, author [20] decoupled the controller
communication channel with Openflow switches where the
sFlow flow statistics collection method is used and the
native Openflow communication channel is used only for
the forwarding purposed separately. The experimental
results show significant reduction in flow table size and the
control plane load.
Few effort is given from researchers to explore the IP
spoofing detection and mitigation mechanism with SDN.
Most notably, SEFA [21] is route-based spoofing filtering
that simply applied the existing IDPF [22] as the filtering
application in the controller. VASE [23] is also spoofing
detection method which utilize sampling and on the fly
filtering configuration. This work is the extension from
their previous work [24] which aim to detect the network
attack by validating the source IP address of the incoming
packets.
In this paper, we take a different approach for IP spoofing
detection strategy to protect the DNS server by utilizing
Software Defined Networking (SDN). In this paper, we
present CAuth, a novel mechanism that autonomously
block the spoofing query identified with no impact on
legitimate queries. CAuth mechanism is designed without

any changes to the applications itself. CAuth mechanism
allow filtering rules to be created on demand, thus can save
some expensive resources in the network for other
purposes.

3. UDP Spoofing Detection Approach

In this section, we elaborate our approach that aims to
detect the spoofing DNS query packet which gave high
damage on the server side resources and performance. This
approach exploits the ability of Openflow protocol [7] that
provide secure communication channel between the
network controller and the router/switches inside their
network. The DNS query packet is generated using random
source port number, make every query is unique to the
DNS server and make it harder for the server side network
to differentiate between legitimate and attacks query
packet. We depict the main components of our architecture
in Figure 1.

Figure 1: Main CAuth Architecture

3.1 Main Component of the Proposed Architecture

Based on Figure 1, our protection architecture against
DNS flood attack composed of an SDN network controller
in both client and server network domain, POX controller
[8], the CAuth application that include as the main
component in both of the network controller and Openflow
switches that communicate with the controller via
Openflow protocol. Our system require collaboration
between client and server side network. Meaning that both
client and server network is SDN managed network.
 We define the term for the server side controller as server
controller and client side controller as client controller. We
make several assumptions about the architecture
components in order for our protection application to suit
the real environment. The assumptions are as follows:

• The client controller holds a list of legitimate
internal network IP addresses. The controller uses
the addresses to identify the inbound and
outbound traffic that traverse through their
network. The lists play a crucial part for the client
controller decision making whether to perform

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.6, June 2016

128

packet redirection or to accept the incoming
legitimate DNS response packet. In real practice,
IDS/firewall might also have the list of legitimate
internal IP addresses to make filtering decision.

• The DNS flooding attack are initiated from botnet
by using the spoofed IP address of the victim
which made the decision to differentiate
legitimate or attack traffic become more
challenging task. Moreover, the botnet did not
show any anomalous behavior that the network
operator could easily detect and mitigate.
Furthermore, current type of attackers tries to
launch an attacks that aim to stay under the
threshold value to avoid getting detected and
dropped.

Based on these assumptions and the system architecture
depicted in Figure 1, we design our SDN-based DNS
spoofing blocking application CAuth component. The
objective of this application is for the DNS service
provider to be able to differentiate which DNS query is
attack packets or legitimate queries which aim to protect
itself from spoofing attack and able to protect the client
resources at the same time.

3.2 CAuth Main Table Structure

In our proposed work, CAuth application record any
inbound flow information into an active flow table. This
main flow table contain all current active inbound flows
record in their network. The structure of the table
described as in Figure 2. In this table, two important field
created to record specific information about a particular
inbound flow. In , we record the 5-tuples (source
port, destination port, source IP, destination IP and the
protocol) of any inbound flow. Our approach records the
5-tuples packet header information that sent via Packet-In
message as the input. The 5-tuples information is provided
by the Openflow switch to the controller when the
incoming flow has no match to be found in their flow table
entries list.
In Openflow, when packets received by the datapath and
sent to the controller, a control message
OFPT_PACKET_IN is used [9]. This control message
embeds the packet header together with other important
fields to the controller for further decision-making by the
central network controller. When the Openflow switches
has no match for any incoming packet, it will also buffer
the packet in their switch and provide a buffer ID, to
the central controller. It is used as a reference for the
switches to find the match packet information that sent by
the central network controller previously.

Figure 2. Controller Inbound Table Structure

Next, we introduced counter. This counter is critical
spoofing detection indication in our detection method. This
field record how many times the same information
that was sent via Packet-In has been receive by both client
and server controller. We elaborate in more details about
this counter in the next section.

3.3 DNS Query Spoofing Protection Workflow

Initially, when a new query from any client (Figure 3, step
1) arrives at Openflow switches at the server network, it
does not match any flow entry in the switch flow table. The
DNS query packet is generated using random source port
number, make every query is unique information to the
DNS server. As a result, the switch will buffer the packet
and send the copy of the packet to controller via Packet-In.
When the server controller receives a Packet-In (Figure 3,
step 2), assuming there is no information about this
particular flow, CAuth will save the 5-tuples together with
the packet buffer-id, in the CAuth App Table (Figure 3,
step 3). The buffer-id is unique value used to track the
location of the buffered packet in the switch. Note that in
this work, we did not consider the buffer arrangement
problem in the open Vswitches. Since the flow information
is not in the server controller list before, CAuth update the

 counter for to 1. Initially, the value of is
zero and we purposely set maximum value to two.
Next, we manipulate the ability of the Openflow protocol
to make changes to the packet header information. Once
the server controller records the information in their
flow table, in (Figure 3, step 4), CAuth replicate the
Packet-In flow tuples received with no changes to the
original buffered packet. Then, CAuth modify the flow
information at the previous replicated packet to send this
packet back to the client. The server controller modifies
the UDP and IP header information. As example, the
originally initiated DNS query packet source IP address is
1.1.1.1 and the destination IP address is 2.2.2.2 with
source port number 1234 and destination port number is
port 53. Now, server controller then swaps the IP and UDP
information of the replicated packet, with the objective to
send this packet back to the originator where the packet
source IP address is now change to 2.2.2.2 and the
destination IP address is 1.1.1.1 with source port number
53 and destination port number is port 1234. We provide
the command line that replicate and modify the incoming

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.6, June 2016

129

packet in Figure 3. Then, CAuth install the entry in the
respected switch with the action to forward this packet
back to the source of the query. The modified packet is
used by our method as an authentication mechanism to
detect the spoofed DNS query packet. It is worth to note
that the original query packet still buffered in switch and
the flow entry is yet to be installed.

Figure 3. Initial CAuth defense strategy in server network

The client controller also implements CAuth App Table
(Figure 2) in their database. When this authentication
packet arrives at the client network, there will also no
match for the packet since it is new flow information to the
client network, thus this packet is sent to client controller
for further decision making via Packet-In (Figure 4, step 1).
When the client controller receives the modified packet
from the server network, the authentication process started.
First, the client controller will check the destination IP
address of the packet header (Figure 4, step 2). The client
controller will only perform the authentication process if
the destination IP is in their network domain; otherwise, it
will forward the authentication packet to the next hop until
it reaches the destination. Here we assume that all client
controller has a list of all known IP addresses in their
domain. Furthermore, the client controller also checks the
source IP address of the authentication packet (Figure 4,
step 3). If the source IP address is from the server, the
client controller further checks in their CAuth App Table.
Since it is new information for the client controller, the 5-
tuples information from the authentication packet is copied
into the table and the counter updated to 1.

Figure 4. Initial CAuth defense strategy in client network

Next, the client controller modify the authentication packet
received by swapping back the IP and UDP information in
the packet header (Figure 4, step 4). This time, this
authentication packet is aim to be redirect back to the DNS
server. The client controller then checks the modified
authentication packet 5-tuples information with their
existing outbound flow table (Figure 4, step 5). If the client
controller found a match, then the client controller
confirms that there are DNS query packet previously sent
to server but still waiting for the reply. Finally, client
controller installs the flow entry in the switch with the
action to forward the packet to the server (Figure 4, step 6).
By this means, the authentication packet that originally
sent by the server controller is redirect back by the client
controller after the authentication verification process as
explained before.

Figure 5. Server controller receive CAuth authentication packet

When the server controller receive the authentication
packet sent from client, this packet information is not
match any entry in the switch, since we did not install the
flow entry for the original DNS query packet yet. As a
result, this packet is being forward to the controller as
Packet-in again (Figure 5, step 2). Then, the server
controller refers the incoming authentication packet header
with the CAuth App Table (Figure 5, step 3). This time,
server controller will found a match for the authentication
packet with the previously created flow information. Since
there is exactly genuine first DNS query packet attempt to

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.6, June 2016

130

the server, the second time controller receive the packet
with the same flow 5-tuples information, it will update the

counter to 2. After that, the server controller will free
the previously buffered authentic DNS query packet by
installing the flow entry into the switch in order to forward
the DNS query to the respected DNS server (Figure 5, step
4). Subsequently, CAuth authenticate the first attempt
query packet to use the DNS server services (Figure 5, step
5). In our work, we simply drop the packet that we used for
our authentication mechanism. The authentication packet
that created originally by the server controller and redirect
back by the client controller are used only for the server
network to authorize the DNS query packet to reach the
DNS server.

Figure 6. Client controller forward the DNS reply packet to client

When the DNS server process the received query, it will
find the related query information as usual and reply with
the DNS reply packet. Here, we did not modify any
application packet field for the CAuth authentication
process. The server controller will forward the DNS reply
packet to the client based on the header information. When
the client network receives the authentic DNS reply packet
from server, again there will be no match found in the
switch and the packet sent to controller (Figure 6, step 1).
This time the client controller check that 5-tuple
information is already created previously in the CAuth App
Flow Table (Figure 6, step 3). From this, the client
controller update the counter and install the flow
entry in switch to enable the DNS reply packet to reach the
client successfully (Figure 6, step 4). We provide CAuth
authentication method pseudo-code for server and client
network as in Figure 7 and 8.

Figure 7. CAuth server controller defense

Figure 8. CAuth client controller defense

4. Performance Evaluation

4.1 Emulation Parameter

To validate the effectiveness of the proposed method, we
develop the application of the mechanism to be part of
POX controller module. To emulate a large scale of DNS
spoofing attack, we use Mininet [10], a network emulator

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.6, June 2016

131

that illustrate SDN environment with the support of virtual
hosts, switches and network controller. The Mininet
emulator use the real code for both the Openflow and Open
vSwitch code and with the great functionality, as it can
easily connect to the real networks. For our test, we use
Mininet version 2.1.0 with the Openflow v1.3 supported.
To emulate a real DNS traffic, well-known BIND 9.8.1
server is configured in separate Linux virtual machine to
serve as the DNS server. Then, we bridge the Mininet SDN
network domain to the BIND server virtual machine using
the code function provided by the Mininet.
For our experiments, we create two types of DNS
enquirers, legitimate clients and spoof attackers. The
clients, attackers and the DNS server are design to be on
different SDN network domain and have their own POX
controller. We simulate a large-scale botnet to launch
DDoS attacks on the protected DNS server in SDN
environment. We purposely set the legitimate clients to
issue DNS query rate, every 3 seconds whereas the
bots, every 1 seconds. The reason why we set
query rate higher for the botnet attacks is for the botnet to
more active than the legitimate clients. The DNS query
issued with the Poisson exponential inter-arrival time
distribution. For the DNS query packet, we employ Scapy
[11], a packet manipulation program that able to forge
DNS packets easily. In our test, we set the number of
legitimate client, = 100 where one of the host in this
network is configured to be the victim of spoofing IP
addresses. The number of botnet attackers, = 400 is
configured so that issue the DNS query at their given
ferocities. All of this 400 hosts are configured to use the
single victim IP address. We configure the BIND server to
act as recursive server so that whenever the clients send
DNS query packet, the BIND server is assumed to be
responsive, so the DNS response returned as soon as
possible. Every DNS queries generated by the Scapy is
using a script where it randomly generates source port
number and query DNS name, thus every incoming DNS
query packet to the DNS server network is unique.

4.2 Number of Blocked Versus Number of
Authenticated Packets

This section describes the evaluation results of the
spoofing DNS query attack scenario; we configure all
botnet to send the query as soon as the emulation start. We
set all of each of the DNS queries generated from the bot is
unique; random source port numbers and random DNS
query name. By doing this, all of the DNS name and their
IP addresses information requested by the bots is not
cached in the local DNS server. By doing this, every time
the server controller receives DNS query packet which
different information and unique. This condition is also

true for the legitimate clients. We deliberately generate a
high throughput of DNS query packet to test the
effectiveness of our proposed CAuth mechanism that
implemented as a module in POX controller at both DNS
server and client side.

Figure 9. Number of blocked versus authenticated DNS queries packet

In this experiment, we measure the detection time that the
server controller takes to block the spoofed DNS query
packet while authenticate the query that issued by the
legitimate clients. The botnets and legitimate clients launch
DNS query packet that have randomly generated source
ports and query name so that every-time the DNS server
receive these query, it will act as a recursive. In Figure 9,
the vertical axis is the number of measured substance,
which is the number of blocked bots and the number of
authenticated queries from the legitimate clients. We
purposely launch the botnets to attack the DNS server at
t=30 seconds to investigate whether it has effect on the
legitimate query packets.
As can be seen at approximately t=33.2 seconds, the
CAuth has start to perform the detection mechanism to
block the spoofed queries. This indicate that CAuth are
able to classify and block the spoofed attempt at any time
before the server controller forward the queries to the DNS
server. Even the attack packet generated at every t=1
second, the server controller depends on the preconfigured
timeout to drop the identified spoofed packet. In our case,
the server controller decides to drop the incoming DNS
queries packet if it did not receive the authentication
packet reply from the clients in 2 seconds. CAuth managed
to block all botnets by roughly t=100 seconds. From the
Figure 9 however, as the legitimate queries inter-arrival
rate generated at every 3 seconds, even though CAuth can
successfully differentiate between the spoofing and
legitimate DNS queries, it takes a significant amount of
time to forward the legitimate packet to the DNS server.
The reason of this behavior is that CAuth require
additional one round trip time (RTT) in order to
authenticate the clients to use the DNS services. In this
experiment, we found that the detection of botnet packets

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.6, June 2016

132

has no direct impact on the legitimate queries packets.
Starting from near t=4.1 seconds onwards, CAuth are able
to forward all of the legitimate queries to the DNS server.

5. Discussion

5.1 DNS Provider Bandwidth Consumption

As we can observe, once the DNS server controller receive
the query packet, it will send an authentication packet out
to the clients that initiate the communication. Our
mechanism ensure that the authentication packet sent by
the server controller that was intended to reach the source
will never reach the spoofed IP address. Here, we assume
that no spoofing botnets army will receive the
authentication packet sent by the server controller. Since
the well-known objective of spoofing is to saturate the
legitimate victim resources, the botnets will never receive
any packet from the DNS server. In our works, the critical
spoofing identification is when CAuth decide to drop any

 that buffered and unprocessed DNS queries
after the server controller did not receive the authentication
packet back from the client network in time t=2 seconds.

Figure 10. DNS provider bandwidth usage

Even though CAuth is effective in defending against
spoofing IP addresses, another important issue to be
highlighted is the effect of the proposed method to the
DNS provider bandwidth. Since our method requires one
additional RTT for any client to perform DNS query, it
obviously increase a significant delay for the DNS
resolution process. As mentioned before, this additional
delay used as an authentication process in order for the
DNS provider to be able to recognize between legitimate
and attack packets. From the same emulation, we study the
average bandwidth usage of the DNS provider bandwidth.
The purpose is to find the impact to the provider
bandwidth. As in Figure 10, as expected, even though our
method can differentiate between legitimate and attack
packets and able to block the attacks before it reaches the
DNS server, our method consumes the usage of the
provider bandwidth. From the experiment, our method

increases on average 1.2 times higher comparing when
there is no protection introduced. This is clearly a trade-off
between the accuracy of the attacks packet detection and
network performance of the DNS provider.
5.2 Client Bandwidth Effect

Figure 11. Client bandwidth usage

We also perform another emulation to find the effect of our
method to the client network. Our method requires the
server controller to send an authentication packet back to
the source. This critical function introduced in order for
the server network to make decision whether to accept or
block the incoming packets that attempt to perform DNS
queries. Botnets that launch the attack packets will never
receive the authentication packet sent by the server
network, but the legitimate client will. In this test, 100
hosts with different set of IP addresses are configured to
launch DNS query packets towards the DNS server where
the inter-arrival time of each packet is every 1 seconds.
From Fig. 11, the client bandwidth consumption on
average increased 1.7 times higher than a network without
protection.

6. Conclusion

Figure 12. Summary of CAuth authentication process

We simplify the details of the CAuth workflow in Figure
12. In this paper, we proposed an efficient spoofing
detection mechanism to detect spoofed DNS query packets
against DNS servers thus ensuring the DNS operator to be

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.6, June 2016

133

able to protect their server resources. The key thwart of our
spoofing detection method is to block all queries from
clients that did not reply back the authentication packet
sent previously by the server controller. Our method
authenticates the DNS queries that enter the server network
domain for the second time. From this, the server
controller makes a decision to forward the previously
original DNS query that was buffered in the Openflow
switches and simply drop the authentication packet
received from the clients.
From the experiments, we can conclude that our method
effectively blocks all of the DNS queries that was sent by
the botnet. At the same time however, our method
increases the bandwidth consumption on both the client
and the server network. It is worth to note that, the UDP
attack is fast since the size of the attack packets is small
but it was not design to attack bandwidth but to consume
the victim resources. This scheme is well suited to an
SDN-administered network since the client and server
controllers need to collaborate for the process of creating
the authentication packets. Furthermore, worth to note that
our scheme does not require high computation algorithm to
detect the spoofed packet such as public key cryptography
that usually used for authentication purpose. Moreover,
we did not introduce any new protocols and all interaction
between the client and server networks use standard
Openflow protocol, make it as a lightweight spoofing
detection method.

Acknowledgments

The author would like to thank the Ministry of Higher
Education of Malaysia and University of Technology
MARA Malaysia for financially supporting this research
under Contract KPT(BS)790405085321.

References
[1] Arbor Networks. Q1 2015 Infrastructure Security Report.

[Online]. Available: http://preview.tinyurl.com/kvacqcv
[2] G. Kambourakis, T. Moschos, D. Geneiatakis, and S.

Gritzalis, “Detecting DNS Amplification Attacks,” in
Workshop on Critical Information Infrastructures Security
(CRITIS), vol. 5141. Springer, 2008, pp. 185–196.

[3] RFC 2827, “Network Ingress Filtering. Defeating Denial of
Service Attacks Which Employ IP Source Address
Spoofing.” Network Working Group, IETF

[4] F. Guo, J. Chen, and T. Chiueh, “Spoof detection for
preventing DoS attacks against DNS servers,” in IEEE
ICDCS, 2006, pp. 37–37.

[5] J. Ioannidis and S. M. Bellovin, “Implementing pushback:
Router-based defense against ddos attacks,” in Proc. of the
Symposium on Network and Distributed Systems Security
(NDSS 2002), 2002.

[6] A. Yaar, A. Perrig, and D. Song, “SIFF: A Stateless Internet
Flow Filter to Mitigate DDoS Flooding Attacks,” in Proc. of
IEEE Symposium on Security and Privacy, 2004, 2004.

[7] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L.
Peterson, J. Rexford, S. Shenker, and J. Turner. Openflow:
Enabling innovation in campus networks. ACM SIGCOMM
Computer Communications Review, 38(2):69–74, 2008

[8] POX. [Online]. Available:
http://www.noxrepo.org/pox/about-pox/

[9] OpenFlow Switch Specification, Version 1.3.0 (Wire
Protocol 0x04). [Online]. Available:
https://www.opennetworking.org/images/stories/
downloads/specification/openflow-spec-v1.3.0.pdf

[10] Mininet. (2013, Mar). An Instant Virtual Network on your
Laptop (or other PC). [Online]. Available: http://mininet.org

[11] SCAPY. <http://hg.secdev.org/scapy>.
[12] O.M.E. Committee et al., Software-defined Networking:

The New Norm for Networks, ONF White Paper, Open
Networking Foundation, Palo Alto, US.

[13] M. Casado, M.J. Freedman, J. Pettit, J. Luo, N. McKeown,
S. Shenker, Ethane: taking control of the enterprise, ACM
SIGCOMM Comput. Commun. Rev. 37 (4) (2007) 1–12.

[14] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L.
Peterson, J. Rexford, S. Shenker, J. Turner, OpenFlow:
enabling innovation in campus networks, ACM SIGCOMM
Comput. Commun. Rev. 38 (2) (2008) 69–74.

[15] H. Kim, N. Feamster, Improving network management with
software defined networking, IEEE Commun. Mag. 51 (2)
(2013) 114–119.

[16] G. Gibb, H. Zeng, N. McKeown, Outsourcing network
functionality, in: Proceedings of the First Workshop on Hot
Topics in Software Defined Networks, ACM, 2012, pp. 73–
78.

[17] R. Braga, E. Mota, A. Passito, Lightweight DDoS flooding
attack setection using NOX/OpenFlow, in: IEEE 35th
Conference on Local Computer Networks (LCN), IEEE,
2010, pp. 408–415.

[18] S. Lim, J. Ha, H. Kim, Y. Kim, S. Yang, A SDN-oriented
DDoS blocking scheme for botnet-based attacks, in: Sixth
International Conf on Ubiquitous and Future Networks
(ICUFN), IEEE, 2014, pp. 63–68.

[19] Syed Akbar Mehdi, Junaid Khalid, Syed Ali Khayam,
Revisiting traffic anomaly detection using software defined
networking, in: RAID’11 Proceedings of the 14th
International Conference on Recent Advances in Intrusion
Detection, 2011, pp. 161–180.

[20] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras,
and V. Maglaris, “Combining openflow and sflow for an
effective and scalable anomaly detection and mitigation
mechanism on sdn environments,” Computer Networks, vol.
62, no. 0, pp. 122 – 136, 2014.

[21] B. Zhang, J. Bi, T. Feng, P. Xiao, D. Zhou, Performing
software defined route- based IP spoofing filtering with
SEFA, in: the 23rd IEEE International Conference on
Computer Communications and Networks (ICCCN14),
IEEE, 2014.

[22] Z. Duan, X. Yuan, J. Chandrashekar, Constructing inter-
domain packet filters to control IP spoofing based on BGP
updates, in: Proceedings of IEEE Infocom, 2006.

http://preview.tinyurl.com/kvacqcv
http://www.noxrepo.org/pox/about-pox/

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.6, June 2016

134

[23] G. Yao, J. Bi, P. Xiao, Vase: filtering IP spoofing traffic
with agility, Comput. Netw. 57 (1) (2013) 243–257.

[24] G. Yao, J. Bi, P. Xiao, Source address validation solution
with OpenFlow/NOX architecture, in: 19th IEEE
International Conference on Network Protocols (ICNP),
IEEE, 2011, pp. 7–12.

Nor Masri Sahri received his first
Bachelor Degree (B. of Information
Technology) from Northern University of
Malaysia on 2001 and obtained his Master
Degree (MSc. of Information Technology)
from University of Technology MARA on
2006. He has 6 years of industrial
experience in one of the largest network
service provider in Malaysia working as

Senior Network Engineer. He is currently a Ph.D. student and
belong to the department of Advanced Information Technology,
Graduate School of Information Science and Electrical
Engineering, Kyushu University, Japan.

Koji Okamura is a Professor at
Department of Advanced Information
Technology and also at Computer Center
Kyushu University, Japan. He received
B.S. and M.S. Degree in Computer
Science and Communication Engineering
and Ph.D. in Graduate School of
Information Science and Electrical
Engineering from Kyushu University,

Japan in 1988, 1990 and 1998, respectively. He has been a
researcher of MITSUBISHI Electronics Corporation Japan for
several years and has been a Research Associate at the Graduate
School of Information Science, Nara Institute of Science and
Technology, Japan and Computer Center, Kobe University,
Japan.

